Shape Coexistence and quantum phase transitions in even-even and odd-mass nuclei

Noam Gavrielov Racah Institute of Physics, The Hebrew University, Jerusalem

Shapes and Symmetries in Nuclei: from Experiment to Theory, Orsay 2024

Quantum Phase Transitions in Nuclei

Quantum Phase Transitions in Nuclei

Quantum Phase Transitions in Nuclei

Intertwined Quantum Phase Transitions (IQPT)

Even-even nuclei: $_{40}$ Zr isotopes

The Interacting Boson Model (IBM)

F. Iachello and A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge) 1987.

- Low lying collective states can be described by **bosonic degrees of freedom**.
- Bosons ≈ correlated valence nucleon pairs (no distinction between proton or neutron bosons).

•
$$s^{\dagger} (L^{p} = 0^{+}), d^{\dagger}_{\mu} (\mu = 0, \pm 1, \pm 2; L^{p} = 2^{+}).$$
 $b^{\dagger}_{\alpha} \in \{s^{\dagger}, d^{\dagger}\}$

• Hamiltonian:
$$H = \sum_{\alpha\beta} \varepsilon_{\alpha\beta} G_{\alpha\beta} + \sum_{\alpha\beta\gamma\delta} V_{\alpha\beta\gamma\delta} G_{\alpha\beta} G_{\gamma\delta} + \dots \qquad (G_{\alpha\beta} = b^{\dagger}_{\alpha} b_{\beta\beta})$$

The Interacting Boson Model (IBM)

F. Iachello and A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge) 1987.

- Low lying collective states can be described by **bosonic degrees of freedom**.
- Bosons ≈ correlated valence nucleon pairs (no distinction between proton or neutron bosons).

•
$$s^{\dagger} (L^{p} = 0^{+}), d^{\dagger}_{\mu} (\mu = 0, \pm 1, \pm 2; L^{p} = 2^{+}).$$
 $b^{\dagger}_{\alpha} \in \{s^{\dagger}, d^{\dagger}\}$

• Hamiltonian: $H = \sum_{\alpha\beta} \varepsilon_{\alpha\beta} G_{\alpha\beta} + \sum_{\alpha\beta\gamma\delta} V_{\alpha\beta\gamma\delta} G_{\alpha\beta} G_{\gamma\delta} + \dots \quad (G_{\alpha\beta} = b^{\dagger}_{\alpha} b_{\beta})$ Hermitian, (boson) number conserving, rotational invariant (good SO(3) symmetry).

Dynamical Symmetry

F. Iachello and A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge) 1987.

UNIVERSITY OF JERUSALEN

Dynamical Symmetry

F. Iachello and A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge) 1987.

Introduction Boson counting: ⁹⁸Zr

$$|\boldsymbol{\psi}; L\rangle = a |\boldsymbol{\psi}_{A}; N_{A}, L\rangle + b |\boldsymbol{\psi}_{B}; N_{B}, L\rangle; a^{2} + b^{2} = 1$$

$$|\psi; L\rangle = a |\psi_{A}; N_{A}, L\rangle + b |\psi_{B}; N_{B}, L\rangle; a^{2} + b^{2} = 1$$

Normal Intruder

$$|\boldsymbol{\psi}; L\rangle = a |\boldsymbol{\psi}_{A}; N_{A}, L\rangle + b |\boldsymbol{\psi}_{B}; N_{B}, L\rangle; \ a^{2} + b^{2} = 1$$
$$N_{A} = N_{b}; \qquad N_{B} = N_{b} + 2$$

$$|\boldsymbol{\psi}_{i}; N_{i}, L\rangle = \sum_{n_{d}, \boldsymbol{\tau}, n_{\Delta}} C_{n_{d}, \boldsymbol{\tau}, n_{\Delta}}^{(N,L)} |N_{i}, n_{d}, \boldsymbol{\tau}, n_{\Delta}, L\rangle$$
 U(5) basis

$$|\boldsymbol{\psi}; L\rangle = a |\boldsymbol{\psi}_{A}; N_{A}, L\rangle + b |\boldsymbol{\psi}_{B}; N_{B}, L\rangle; \ a^{2} + b^{2} = 1$$
$$N_{A} = N_{b}; \qquad N_{B} = N_{b} + 2$$

$$|\boldsymbol{\psi}_{i}; N_{i}, L\rangle = \sum_{n_{d}, \tau, n_{\Delta}} C_{n_{d}, \tau, n_{\Delta}}^{(N,L)} |N_{i}, n_{d}, \tau, n_{\Delta}, L\rangle \longrightarrow P_{n_{d}}^{(N_{i},L)} = \sum_{\tau, n_{\Delta}} [C_{n_{d}, \tau, n_{\Delta}}^{(N,L)}]^{2} n_{d} \text{ occupation}$$

$$\rightarrow P^{(N_i,L)} = \sum_{n_d} P^{(N,L)}_{n_d} \qquad N_b \text{ occupation}$$

i = A, B

N. Gavrielov, Physica Scripta, **99**, 075310 (2024)

Results Energy levels

Results Energy levels

Results: quantum phase transitions Evolution of shape and configuration

Results: quantum phase transitions Evolution of shape and configuration

Odd-mass nuclei: $_{40}$ Zr isotopes

Interacting Boson Model Configuration Mixing Hamiltonian

IBM-CM Hamiltonian

$$\hat{H} = \hat{H}_{B}$$

$$\hat{H}_{B} = \begin{bmatrix} \hat{H}^{(1)}(\xi_{1}) & \hat{W}(\omega) \\ \\ \hat{W}(\omega) & \hat{H}^{(2)}(\xi_{2}) \end{bmatrix}$$

Interacting Boson-Fermion Model Configuration Mixing Hamiltonian

Fermion

Core

Boson

$$\hat{H} = \hat{H}_{B} + \hat{H}_{F} + V_{BF}$$
IBM-CM
Hamiltonian
$$\hat{H}_{B} = \begin{bmatrix} \hat{H}^{(1)}(\xi_{1}) & \hat{W}(\omega) \\ \hat{W}(\omega) & \hat{H}^{(2)}(\xi_{2}) \end{bmatrix}$$
Fermion part
$$\hat{H}_{F} = \begin{bmatrix} \varepsilon_{j} \hat{n}_{j} & 0 \\ 0 & \varepsilon_{j} \hat{n}_{j} \end{bmatrix}$$
Bose-Fermi interaction
$$\omega_{j} = \omega, \text{ for all } j \quad V_{BF} = \begin{bmatrix} V_{BF}^{-(1)}(A^{(1)}, \Gamma^{(1)}, A^{(1)}) & 0 \\ 0 & V_{BF}^{-(2)}(A^{(2)}, \Gamma^{(2)}, A^{(2)}) \end{bmatrix}$$

N. Gavrielov, Phys. Rev. C 108, 014320 (2023)

Wave function structure and spherical occupation odd-mass nuclei

Wave function structure and spherical occupation odd-mass nuclei

$$|\boldsymbol{\psi}; J\rangle = \sum_{\alpha, L_{b}, j} C_{\alpha, L_{b}, j}^{(N,J)} |\boldsymbol{\psi}_{A}; N_{A}, \alpha, L_{b}, j; J\rangle + \sum_{\alpha, L_{b}, j} C_{\alpha, L_{b}, j}^{(N+2,J)} |\boldsymbol{\psi}_{B}; N_{B}, \alpha, L_{b}, j; J\rangle$$

$$N_{A} = N_{b}; \qquad N_{B} = N_{b} + 2$$

$$|\boldsymbol{\psi}_{i}; N_{i}, \alpha, L_{\mathrm{B}}, j; J\rangle = \sum_{\alpha, L_{b}, j} C_{\alpha, L_{b}, j}^{(N,L)} |N_{i}, n_{d}, \boldsymbol{\tau}, n_{\Delta}, L_{b}, j; J\rangle$$
 U(5) basis

Wave function structure and spherical occupation odd-mass nuclei

$$|\boldsymbol{\psi}; \boldsymbol{J}\rangle = \sum_{\alpha, L_{b}, j} C_{\alpha, L_{b}, j}^{(N,J)} |\boldsymbol{\psi}_{A}; N_{A}, \alpha, L_{b}, j; \boldsymbol{J}\rangle + \sum_{\alpha, L_{b}, j} C_{\alpha, L_{b}, j}^{(N+2,J)} |\boldsymbol{\psi}_{B}; N_{B}, \alpha, L_{b}, j; \boldsymbol{J}\rangle$$

$$N_{A} = N_{b}; \qquad N_{B} = N_{b} + 2$$

$$|\boldsymbol{\psi}_{i}; N_{i}, \alpha, L_{\mathrm{B}}, j; J\rangle = \sum_{\alpha, L_{b}, j} C_{\alpha, L_{b}, j}^{(N,L)} |N_{i}, n_{d}, \boldsymbol{\tau}, n_{\Delta}, L_{b}, j; J\rangle$$

$$\rightarrow P^{(N_{i}, J)}_{n_{d}, \boldsymbol{\tau}, n_{\Delta}, L} \sum_{L} C_{n_{d}, \boldsymbol{\tau}, n_{\Delta}, j, L}^{(N_{i}, J)} |^{2} j \text{ occupation}$$

$$\rightarrow P^{(N_{i}, J)}_{n_{d}} = \sum_{\boldsymbol{\tau}, n_{\Delta}, j, L} [C_{n_{d}, \boldsymbol{\tau}, n_{\Delta}, j, L}^{(N_{i}, J)} |^{2} n_{d} \text{ occupation}$$

$$\rightarrow P^{(N_{i}, J)} = \sum_{n_{d}} P^{(N_{i}, J)}_{n_{d}} N_{b} \text{ occupation}$$

N. Gavrielov, Physica Scripta, **99**, 075310 (2024)

Noam Gavrielov, Racah Institute of Physics

i = A, B

Introduction

Boson-Fermion counting: 99Zr

Introduction

Boson-Fermion counting: 99Zr

N. Gavrielov arXiv:2409.00967

Results

Evolution of occupation probabilities

THE HEBREW UNIVERSITY OF JERUSALEM

Evolutions:

• single quasi-particle energies:

- *j* occupation (orbital):
- n_d occupation (deformation):
- N_b occupation (configuration):

N. Gavrielov arXiv:2409.00967

What is the nature of the isomeric $7/2^+$ state?

PHYSICAL REVIEW LETTERS 124, 112501 (2020)

g Factor of the ⁹⁹Zr $(7/2^+)$ Isomer: Monopole Evolution in the Shape-Coexisting Region

F. Boulay,^{1,2,3} G. S. Simpson,⁴ Y. Ichikawa^(a),² S. Kisyov,⁵ D. Bucurescu,⁵ A. Takamine,² D. S. Ahn,² K. Asahi,^{2,6} H. Baba,² D. L. Balabanski,^{2,7} T. Egami,^{2,8} T. Fujita,^{2,9} N. Fukuda,² C. Funayama,^{2,6} T. Furukawa,^{2,10} G. Georgiev^(a),¹¹ A. Gladkov,^{2,12} M. Hass,¹³ K. Imamura,^{2,14} N. Inabe,² Y. Ishibashi,^{2,15} T. Kawaguchi,^{2,8} T. Kawamura,⁹ W. Kim,¹² Y. Kobayashi,¹⁶ S. Kojima,^{2,6} A. Kusoglu^(a),^{11,17} R. Lozeva,¹¹ S. Momiyama,¹⁸ I. Mukul,¹³ M. Niikura,¹⁸ H. Nishibata,^{2,9} T. Nishizaka,^{2,8} A. Odahara,⁹ Y. Ohtomo,^{2,6} D. Ralet,¹¹ T. Sato,^{2,6} Y. Shimizu,² T. Sumikama,² H. Suzuki,² H. Takeda,² L. C. Tao,^{2,19} Y. Togano,⁶ D. Tominaga,^{2,8} H. Ueno,² H. Yamazaki,² X. F. Yang,²⁰ and J. M. Daugas^{1,2}

What is the nature of the isomeric $7/2^+$ state?

$$\mu(^{97}\text{Zr}) = 1.365 \,\mu_N; \, 7/2^+ \text{ is a } \nu g_{7/2} \text{ excitation},$$

 $\mu(^{99}\text{Zr}) = 2.31 \,\mu_N; \, 7/2^+ \text{ is } \dots ?$

What is the nature of the isomeric $7/2^+$ state?

IBFM (single configuration): $7/2^+$ is $\nu d_{5/2}$ excitation

F. Boulay et al., Phys. Rev. Lett. 124, 112501 (2020)

What is the nature of the isomeric $7/2^+$ state?

F. Boulay et al., Phys. Rev. Lett. 124, 112501 (2020)

P. E. Garrett, Phys. Rev. Lett. 127, 169201 (2021)

Results Magnetic Moments

Results Magnetic Moments

 $\mu(\mu_N)$

7/2

Isomers

Results Magnetic Moments

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

Single Particle

 $\cdots J_{gs}^+$

IBFM-CM

 I_{gs}^+

 $\mu(\mu_N)$

 $7/2_1^+$

Results Magnetic Moments

2.5

Single Particle

IBFM-CM

Results Magnetic Moments

What is the nature of the isomeric $7/2^+$ state?

 $\mu(^{97}\text{Zr}) = 1.365 \,\mu_N; \, 7/2^+ \text{ is a } \nu g_{7/2} \text{ excitation (normal and spherical).}$

 $\mu(^{99}\text{Zr}) = 2.31 \,\mu_N; \quad 7/2^+ \text{ is a } \nu g_{7/2} \text{ excitation (mixed and deformed).}$

N. Gavrielov arXiv:2409.00967

Conclusions

- Calculation of even-even (IBM-CM) and odd-mass (IBFM-CM) Zr isotopes.
- Quantum analysis of the evolution of energy levels and other observables (two-neutron separation energies, *E2*, *E0*, isotope shift, quadrupole and magnetic moments).
- Calculated change in the configuration and symmetry content of wave functions.

All point toward the occurrence of *IQPTs*:

- *Configuration crossing:* QPT between two configurations (normal and intruder).
- *Shape evolution:* QPT [spherical to deformed] of the intruder B configuration.
- *Triad of effects (odd-mass):* shape, configuration and single-quasi particle evolution.

Thank you

Appendix ⁹⁹Zr: critical point between ⁹⁸Zr and ¹⁰⁰Zr

Appendix IBM-1-CM Hamiltonian

 $\hat{H} = \hat{H}_{A}^{(N)} + \hat{H}_{B}^{(N+2)} + \hat{W}^{(N,N+2)}$ *Normal configuration* (0p-0h): $\hat{H}_{A} = \varepsilon_{d}^{(A)} \hat{n}_{d} + \kappa^{(A)} Q \cdot Q$ $[N_h]$ irrep. *Intruder configuration* (2p-2h): $\hat{H}_{B} = \varepsilon_{d}^{(B)} \hat{n}_{d} + \kappa^{(B)} Q \cdot Q + \kappa^{(B)} L \cdot L + \Delta_{n}$ $[N_{h}+2]$ irrep. *Coupling:* $\hat{W}^{(N,N+2)} = \omega \left[(d^{\dagger} d^{\dagger})^{(0)} + (s^{\dagger})^2 \right] + h.c.$ $[N_b] \oplus [N_b+2]$ irrep.

Appendix IBM-1-CM operators

• Pairing: $n_d = d^{\dagger} \cdot \tilde{d}$

• Quadrupole: $Q(\chi) = d^{\dagger}s + s^{\dagger}\tilde{d} + \chi(d^{\dagger}\times\tilde{d})^{(2)}$

• Angular momentum: $L = \sqrt{10} (d^{\dagger} \times \tilde{d})^{(1)}$

Appendix Parameters

TABLE V. Parameters of the IBM-CM Hamiltonian, Eq. (14), are in MeV and χ is dimensionless. The first row of the Table lists the number of neutrons, and particle-bosons (N, N+2) or hole-bosons $(\bar{N}, \bar{N}+2)$ in the (A, B) configurations.

	52(1,3)	54(2,4)	56(3,5)	58(4, 6)	60(5,7)	62(6, 8)	64(7,9)	66(8, 10)	$68(\bar{7},\bar{9})$	$70(\bar{6},\bar{8})$
$\epsilon_d^{(A)}$	0.9	0.8	1.82	1.75	1.2	1.2	1.2	1.2	1.2	1.2
$\kappa^{(A)}$	-0.005	-0.005	-0.005	-0.007	-0.006	-0.006	-0.006	-0.006	-0.006	-0.006
$\epsilon_d^{(B)}$	0.35	0.37	0.6	0.45	0.3	0.15	0	0	0	0.15
$\kappa^{(B)}$	-0.02	-0.02	-0.015	-0.02	-0.02	-0.025	-0.0275	-0.03	-0.0275	-0.025
$\kappa'^{(B)}$	0.01	0.01	0.01	0.01	0.0075	0.01	0.0125	0.0125	0.0125	0.01
χ	-0.6	-0.6	-0.6	-0.6	-1.0	-1.0	-0.75	-0.25	-0.25	0
$\Delta_p^{(B)}$	1.6	1.6	1.84	1.43	0.8	0.8	0.8	0.8	0.8	0.8
ω	0.1	0.1	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02

Appendix Parameters: fitting procedure

$$\begin{split} \epsilon_d^{(B)}(N) &= \epsilon_d^{(B)}(N_0) \\ &+ \frac{\partial \epsilon_d^{(B)}}{\partial N} \Big|_{N=N_0} (N - N_0) + \ldots \approx \epsilon_0 - \theta N , \\ \kappa^{(B)}(N) &= \kappa^{(B)}(N_0) \\ &+ \frac{\partial \kappa^{(B)}}{\partial N} \Big|_{N=N_0} (N - N_0) + \ldots \approx \kappa_0 , \\ \kappa'^{(B)}(N) &= \kappa'^{(B)}(N_0) \\ &+ \frac{\partial \kappa'^{(B)}}{\partial N} \Big|_{N=N_0} (N - N_0) + \ldots \approx \kappa'_0 . \end{split}$$

 $(\varepsilon_0, \boldsymbol{\theta}) = (1.35, 0.15) \text{ MeV}, \ \kappa^{(B)} \approx 3\kappa^{(A)}$

Appendix Parameters: fitting procedure

TABLE VI. Experimental levels of ${}^{92-110}$ Zr that are assigned to configuration-*B* and used to fit the parameters of \hat{H}_B (20b). For ${}^{92-98}$ Zr, the indicated levels correspond to calculated states dominated by U(5) components with $n_d \approx 0, 1, 2, 3$ within the *B* configuration part of the wave function $|\Psi_B; [N+2], L\rangle$, Eq. (16) (see Section V for more details).

92 Zr	$0_2^+, 2_2^+, (4_2^+, 2_3^+, 0_3^+), (6_1^+, 4_3^+, 3_1^+, 2_5^+)$
$^{94}\mathrm{Zr}$	$0_2^+, 2_2^+, (4_2^+, 2_3^+), (6_1^+, 4_3^+, 3_1^+, 2_5^+)$
$^{96}\mathrm{Zr}$	$0^+_2, \ 2^+_2, \ (4^+_1, \ 2^+_3, \ 0^+_3), \ (6^+_4, \ 4^+_3, \ 2^+_4, \ 0^+_4)$
$^{98}\mathrm{Zr}$	$0_2^+, 2_1^+, (0_3^+, 2_2^+, 4_1^+), (6_1^+, 4_3^+, 3_1^+, 2_4^+, 0_4^+)$
$^{100}\mathrm{Zr}$	$0^+_1,\ 2^+_1,\ 4^+_1,\ 0^+_3,\ 2^+_2,\ 6^+_1,\ 2^+_3$
$^{102}\mathrm{Zr}$	$0^+_1,\ 2^+_1,\ 4^+_1,\ 0^+_2,\ 6^+_1,\ 2^+_2,\ 2^+_3,\ 3^+_1$
$^{104}\mathrm{Zr}$	$0^+_1, \ 2^+_1, \ 4^+_1, \ 6^+_1$
$^{106}\mathrm{Zr}$	$0^+_1,\ 2^+_1,\ 4^+_1,\ 2^+_2,\ 6^+_1$
$^{108}\mathrm{Zr}$	$0^+_1,\ 2^+_1,\ 4^+_1,\ 6^+_1$
$^{110}\mathrm{Zr}$	$0^+_1, \ 2^+_1, \ 4^+_1, \ 2^+_2$

Appendix Classical analysis

$$\mathcal{E}(\beta,\gamma) = \frac{\langle [N]; \beta,\gamma | H | [N]; \beta,\gamma \rangle}{\langle [N]; \beta,\gamma | [N]; \beta,\gamma \rangle}$$

$$H = \begin{bmatrix} \hat{H}_{A}(\xi_{A}) & \hat{W}(\omega) \\ \hat{W}(\omega) & \hat{H}_{B}(\xi_{B}) \end{bmatrix} \longrightarrow \mathcal{E}(\beta,\gamma) = \begin{bmatrix} \mathcal{E}(\beta,\gamma)_{A} & \Omega \\ \Omega & \mathcal{E}(\beta,\gamma)_{B} \end{bmatrix} \longrightarrow \mathcal{E}_{\pm}(\beta,\gamma)$$

A. Frank, P. Van Isacker and C. E. Vargas, Phys. Rev. C **69**, 034323 (2004) A. Frank, P. Van Isacker and F. Iachello, Phys. Rev. C **73**, 061302(R) (2006)

SSNET 2024

Appendix U(5)-coexistence region

Blue: normal levels Black: intruder levels Arrows: *E2* transitions

Appendix U(5)-coexistence region

⁹⁴Zr exp ⁹⁴Zr calc 5_Γ 8^{+}_{1} 4 (8^+_1) 3.825 3.632 (6^+_1) 3.142 6^{+}_{1} 4^{+}_{3} (2_{5}^{+}) E (MeV) 2.962 2.908 $\underline{} \quad 2^+_{5} \underline{} \quad 0^+_{5} \underline{}$ 2.861 $_{2.774}$ 3^+_1 $(3_1)^+_{2.508} 2_4^+$ 4^{+}_{2} 4 2.366 0_{4}^{12} 2.330 2^+_3 2 320 2.233 2,188 2.151 0.06 34^{+10}_{-17} 10(5) 2^+_2 0^+_2 7^{+4}_{-3} 27 ↓1.781 1.02(15) 13^{+4}_{-7} 2^{+}_{2} 2.06 1.671 1.6+5 0.06 1.399 1.470 0 19(2)6(1).... 2^{+}_{1} 1.300 2^{+}_{1} 0.879(23)9.3 0.001 9.3(4) 0.930 1 3.9(3) 11(3) 1.22 0.01 0.06^{+13}_{-6} 4^{+1}_{-2} 1.49 0.8 4.9(3) 0_{1}^{+} 0^{+}_{1} 0.000 0.000 0

Blue: normal levels Black: intruder levels Arrows: *E2* transitions

Appendix U(5)-coexistence region

Blue: normal levels Black: intruder levels Arrows: *E2* transitions

Appendix **IQPT** region

⁹⁸Zr exp

Appendix IQPT region

Appendix IQPT region

¹⁰²Zr exp ¹⁰²Zr calc 12^{+}_{1} 3.343 12^{+}_{1} 3.212 3 129 10^{+}_{1} 10^{+}_{1} 2.352 2.370 E (MeV) 6^{+}_{2} 2 1.847 151 (6^+_2) 8^{+}_{1} 8_{1}^{+} (4^+_3) <u>1.</u>653 1.595 4_{3}^{+} 1.560 1.538 (4^{+}_{2}) 1.460 4^{+}_{2} <u>1.</u>387 <u>1.</u>242 .354 (2^+_3) 1.211 (3_1^+) 2^+_3 91 **J** 1.099 3^{+}_{1} 176 6_{1}^{+} 6^{+}_{1} <u>1.</u>036 134 (0^+_2) 0.965 1 0.895 (2^+_2) 0.915 2^{+}_{2} 0_{2}^{+} 1.025 4_{1}^{+} 4^{+}_{1} 0.478 0.438 $166.95\substack{+30.01\\-22.08}$ 177.19 0.132 2^+_1 2^+_1 0.152 105(14) 128 0^{+}_{1} 0^{\mid} 0^{+}_{1} 0.0 0.0

Noam Gavrielov, Racah Institute of Physics

SSNET 2024

Appendix Decomposition

Appendix Decomposition

Appendix Decomposition

Appendix Magnetic moments

Appendix 98 Zr

Appendix Zr experimental spectrum

Noam Gavrielov, Racah Institute of Physics

CONIET10

SSNET 2024

Thank you