Highly charged radioactive ions - the intersection of nuclear structure, atomic physics and astrophysics

Yury A. Litvinov

www.gsi.de/astrum

SSNET'24 International Conference on Shapes and Symmetries in Nuclei: from Experiment to Theory

4-8 November, 2024

IJCLab, Orsay, France

Heavy-Ion Storage Rings - Versatile Instruments Dedicated beam preparation and manipulation techniques

A huge trap – more than 100 m circumference, aperture size – 25 cm

ASTRUm

Nuclear reaction inevitably leads to large momentum spread of the secondary beam Beam cooling - high quality beams Isochronous mode – high mass resolution Small production rates of secondary beams

Accumulation techniques Single-particle sensitivity detection

> Short-lived species Instantaneous detection

Radioactive Ion Beam Facility at GSI

HELMHOLTZ II II II

Experimental Storage Ring ESR in Darmstadt, Germany

Photos: A. Zschau, GSI; IMPCAS Lanzhou

Characteristics of mass spectrometry techniques

Why do not we measure them all?

Mass spectrometry techniques:

- Bandwidth
- Resolving power
- Speed
- Sensitivity

Ultimate goal to combine all 4 characteristics

HELMHOLTZ

Schottky and Isochronous Storage Ring Mass Spectrometry

B. Franzke, H. Geissel, G. Münzenberg, Mass Spectr. Rev. 27 (2008)

IMS: Time-of-Flight Spectra

M. Hausmann et al., Hyperfine Interactions 132 (2001) 291

erc

Non-Destructive Particle Detection

F. Nolden et sl., Nucl. Instr. Meth. A (2011)

S. Sanjari et al., Rev. Sci. Instr. (2020)

The goal: to measure non-destructively the revolution frequency of a single ion within a few miliseconds

Courtesy F. Nolden and M. S. Sanjari

Combined Isochronous+Schottky Mass Spectrometry

Schottky spectra of single events Separation of the 101 keV isomer in ⁷²Br

HELMHOLTZ

Courtesy W. Korten and D. Fernandez

erc

ASTRUm

CRS

MAX-PLANCK-INSTITU FÜR KERNPHYSIK

Nuclear two-photon or double-gamma decay

HD-DA Crystal Ball (Nal array)

Isolated 2-photon decay in ⁷²Ge

usually $\alpha_{E1} \gg \chi_{M1} \gg \alpha_{E2}$

Combined Isochronous+Schottky Mass Spectrometry

Courtesy: D. Fernandes and W. Korten

erc

ASTRUm

Comparison of Two-Photon Decay Half Lives

Two-photon decay in ⁷²Ge substantially faster than extrapolated from "magic" nuclei ¹⁶O, ⁴⁰Ca, ⁹⁰Zr

Comparison of Two-Photon Decay Half Lives

Two-photon decay in ⁷²Ge substantially faster than extrapolated from "magic" nuclei ¹⁶O, ⁴⁰Ca, ⁹⁰Zr

David Freire-Fernandez et al., Phys. Rev. Lett. 133, 022502 (2024)

Experiment on 0⁺ states in ⁹⁸Zr and ⁹⁸Mo

HELMHOLTZ III III

Ĩ

Cea

0+

0+

Courtesy W. Korten

erc

ASTRUm

Experiment – April 2025

EPJ Web of Conferences 123, 04003 (2016) Heavy Ion Accelerator Symposium 2015

Heavy-ion storage rings offer rich, versatile capabilities for the research with radioactive highly charged ions

Masses of exotic nuclei Isomeric states Exotic decay modes Nuclear reactions (high E) Astrophysical reactions (low E) Atomic reactions Laser spectroscopy Electron spectroscopy

ERC CoG ASTRUm Litvinov ERC AdG NECTAR Jurado ERC StG ELDAR Bruno ERD AdG HITHOR Stöhlker

HELMHOL

Many thanks to our collaborators from all over the world !!!

ASTRUm

HELMHOLTZ 🖬 🎫 🏛