

Probing nuclear structure with thermal neutrons

SSNET 2024 - International Conference on Shapes and Symmetries in Nuclei

Caterina Michelagnoli | 4 November 2024

Institut Laue-Langevin and University of Grenoble-Alpes

Shapes: molecules vs nuclei

(9^{+}) (8+) (7+)

Shapes: molecules vs nuclei

-0.0

¹⁰⁰Y₆₁

Probing nuclear structure with thermal neutrons

Caterina Michelagnoli

Neutron-induced reactions

 S_n

a.s.

- Structure of nuclei close to stability \diamond
- Structure at low spin (below S_n) \diamond
- ◊ Cross-sections (applications)
- ◇ ²⁷Al(n,γ): σ=0.2 b; ¹⁵⁷Gd: 2.5 10⁵b

Neutron number N

Neutron-induced fission

- ◊ Structure of n-rich nuclei (far from stability)
- Section Fission vields and dynamics
- ♦ 235 U: σ_{f} =585 b; 245 Cm: σ_{f} =2141 b

World's highest neutron flux for in-beam experiments

- $\checkmark~$ up to 1.5 $10^{15}~\text{n/s/cm}^2$
- ✓ in-pile irradiation of radioisotopes
- ✓ "slow" neutrons delivered to ≈ 40 instruments
- ✓ guided with little losses over hundreds of meters

High-resolution γ spectroscopy at a neutron beam

Fission Product Prompt γ -ray Spectrometer

- ✓ 8HPGe clovers+Anti-Comptons (segmented)
- ✓ "pencil-like" thermal neutron beam (1.5cm diam., 5 10⁷ n/s/cm²)
- ✓ digital electronics
- / list mode
- ✓ tight polycarbonate casemate (radioactive targets)
- ✓ possibility to add ancillary detectors: LaBr₃, additional clovers from IFIN-HH, ...

C. Michelagnoli et al., EPJ Web Conf., 193 (2018) 04009; many Master/PhD theses

G. Colombi et al., in preparation

The FIPPS instrument at ILL

High-statistics coincidence measurements using radioactive targets

Shape coexistence in ⁶⁴Ni

Adapted from N. Marginean at al., Phys. Rev. Lett. 118 (2017) 162502

Triaxiality in ⁶²Ni: MCSM calculations and (n, γ) data

10 new 0⁺ states identified via high-statistics angular correlations

Courtesy of T. Otsuka

Shape coexistence in nuclei with A \approx 100

P. Garrett, M. Zielińska, E. Clément, PPNP 124, 103931 (2022)

Shape coexistence in Ru isotopes: structure of ¹⁰⁰Ru

- Previous branching ratio for 358-keV γ ray, 3.1(4)%, leads to 270 W.u. 2₄⁺ →0₃⁺ transition obviously wrong, casting doubt on placement and band assignment
- New branching ratio 0.39(6)%, yielding 34(5) W.u. using half life of 390(70) fs from $(n,n'\gamma)$ reaction B(E2) indicates similar collectivity to gsb that has 35.3(7) W.u.

Courtesy of P. Garret

Band structures in ¹⁰⁰Ru

 $\mathbf{0}_{as}^{+}$ band

Courtesy of P. Garret

Neutron-rich nuclei produced in the fission process

S. Leoni, C. Michelagnoli and J. Wilson, Riv. Nuovo Cim. 45 (2022) 461

High-resolution spectroscopy of neutron rich fission fragments

J. Dudouet et al., Phys. Rev. C 110 (2024) 034304

A. Navin, Phys. Lett. B 278 (2014) 136

Deformation of neutron-rich Br isotopes: two complementary data sets

Deformation of neutron-rich Br isotopes: two complementary data sets

⁸⁹Br: Gate on 506 & 1063 keV 4000 (19/2*) 400 (17/25) 600 650 700 750 800 850 F. (keV) 2000 2 600 ⁸⁹Br: Gate on 506 & 1339 keV 1000 ບິງທາ manuelle 700 800 000 1000 1100 E. (keV) Counts / keV ⁸⁹Br 6000 4000 2000 ¹⁶⁰⁰E₇ (keV)

800

1000

1200

1400

prolate to oblate shape transition

J. Dudouet et al., Phys. Rev. C 110 (2024) 034304

600

200

400

Selection of fission events using an active target

Adapted from F. Kandzia et al., Eur. Phys. J A 56 (2020) 207

Selection of fission events using an active target

106

105

104

 10^{3}

 10^{2}

 10^{1}

Lineshapes in multi- γ coincidence spectra

G. Colombi, PhD Thesis, Univ. Grenoble-Alpes, ILL and Univ. Milan, 2023

NEUTRONS

"Surprising" deformation in neutron-rich nuclei

NEUTRONS

Concluding remarks and future perspectives

- The slow neutrons produced by the ILL high flux reactor can be used for investigating nuclear deformation, shape coexistence and transition phenomena (complementary to other facilities)
 - ◊ nuclear structure close to stability (shape coexistence at zero spin -^{62,64}Ni)
 - structure of neutron-rich fission fragments (shape coexistence, structure at large N/Z asymmetry, ...); lifetime measurements, deformation at medium-high spin in Zr isotopes

Concluding remarks and future perspectives

- The slow neutrons produced by the ILL high flux reactor can be used for investigating nuclear deformation, shape coexistence and transition phenomena (complementary to other facilities)
 - ◊ nuclear structure close to stability (shape coexistence at zero spin -^{62,64}Ni)
 - structure of neutron-rich fission fragments (shape coexistence, structure at large N/Z asymmetry, ...); lifetime measurements, deformation at medium-high spin in Zr isotopes
- A fission fragment selection setup at a neutron beam will allow for high-sensitivity prompt spectroscopy of fission fragments (excellent performance expected, diamond technology)

Concluding remarks and future perspectives

- The slow neutrons produced by the ILL high flux reactor can be used for investigating nuclear deformation, shape coexistence and transition phenomena (complementary to other facilities)
 - ◊ nuclear structure close to stability (shape coexistence at zero spin -^{62,64}Ni)
 - structure of neutron-rich fission fragments (shape coexistence, structure at large N/Z asymmetry, ...); lifetime measurements, deformation at medium-high spin in Zr isotopes
- A fission fragment selection setup at a neutron beam will allow for high-sensitivity prompt spectroscopy of fission fragments (excellent performance expected, diamond technology)

♦ Many projects/possibilities:

- plunger setup for fission
- ¹⁷⁹Ta radioactive target
 (¹⁸⁰Ta nucleosynthesis -ILL, nToF, LANSCE)
- ◊ fission data open for Lol
- diamond-based fission tag
- ◇ ²⁴⁵Cm(n,fission) campaign
- ◊ other ideas ??

Acknowledgements

L. Domenichetti, J.-M. Daugas, R. Pommier, E. Ruiz-Martinez, M. Jenstchel, U. Köster, H. Faust and other ILL colleagues and services

J. Dudouet et al. IP2I Lyon

N. Marginean, C. Mihai, A. Turturica et al., IFIN-HH

P. Garret, G. Colombi et al., Univ. of Guelph

S. Leoni, S. Bottoni et al., University and INFN Milan

B. Fornal, N. Cieplicka et al., PAN Krakow

J.M. Regis et al., IKP Cologne

and many many other collaborators!!!

Acknowledgements

