Shell evolution near and beyond the neutron dripline

Takashi Nakamura

Department of Physics, Institute of Science Tokyo

(←Tokyo Institute of Technology)

SSNET'2024

Int. Conf. on Shapes and Symmetries in Nuclei: from Experiment to Theory, IJC Lab Orsay, 4-8 Nov 2024

Contents

- Introduction : Nuclear landscape at the limit
- Observation of ²⁸O (Z=8, N=20: doubly magic candidate)
- Observation of ³⁰F (Z=9, N=21)
- Halo-Shell/Shape Interplay—³¹Ne (Z=10, N=21)
 Exclusive Coulomb breakup and double-component halo in ³¹Ne
- Summary and Perspectives

Nuclear Landscape at the limit

Shell Evolution At the Edge of Nuclear Landscape?

Key Question on the neutron dripline nuclei

 What are the interplay between the Shell evolution, Shape evolution, and the Phenomena due to proximity to the Neutron Drip-line?

> Weakly Bound : Halos Weakly Unbound: Resonances

Observation of ²⁸O and ²⁷O

Y.Kondo et al., Nature 620, 965-970 (2023).

Yosuke Kondo

²⁸O? -- Doubly Magic Nuclei by Mayer-Jensens view Why

Shell Evolution At the Edge of Nuclear Chart?

²⁸F:A.Revel,PRL124,152502(2020) p-wave ground state

²⁹F: S. Bagchi et al., PRL124, 222504, (2020): p-wave 2n halo

P. Doornenbal, et al., PRC95, 041301(R), (2017): N=20 magicity lost

What is known for oxygen isotopes beyond the dripline?

Method: Invariant mass spectroscopy of ²⁷O and ²⁸O

²⁸O measurement @ RIBF-SAMURAI

Decay energy spectrum

Y.Kondo et al. Nature **620**, 965 (2023).

Decay energy spectrum (²⁴O+3n coincidence)

Y.Kondo et al. Nature **620**, 965 (2023).

Is ²⁸O doubly magic?

²⁹F

 $C^2S(\pi 1d_{5/2}) \sim 0 \rightarrow {}^{28}O$ can be doubly magic (neutron configurations between ${}^{29}F$ and ${}^{28}O$: different)

 $C^2S(\pi 1d_{5/2}) \sim 1 \rightarrow$ neutron config. of ²⁸O \sim ²⁹F

 $\begin{array}{c} \text{Current result} \\ \sigma_{-1p} = 1.36^{+0.16}_{-0.14} \ \text{mb} \ \text{(syst. error 0.13 mb)} \end{array}$

 $\Box > C^2 S(\pi 1d_{5/2}) = 0.48^{+0.05}_{-0.06}(stat) \pm 0.05(syst)$

Shell model calculation (EEdf3, mod ver. of EEdf1) →C²S=0.68 consistent with exp. (~30% reduction factor considered)
If ²⁸O is 100% closed-shell config → C²S=0.13

N=20 neutron magicity disappears in ²⁸O

Comparison with theories ²⁵⁻²⁸O

Observation of ³⁰F

J.Kahlbow, T.Aumann, O.Sorlin, Y.Kondo, TN et al., PRL 133, 082501 (2024). @SAMURAI at RIBF

Halo-Shell Interplay—³¹Ne (Z=10, N=21)

Takato Tomai, PhD Thesis

γ -ray spectrum : Excited ³⁰Ne-core component

ÛÛ

Coulomb breakup of ³¹Ne: Energy Spectrum

 31 Ne+Pb \rightarrow 30 Ne+n+X (Coulomb) $|^{31}$ Ne(3/2⁻) > = $\alpha |^{30}$ Ne(0⁺₁) $\otimes 2p_{3/2} > +\beta |^{30}$ Ne(2⁺₁) $\otimes 2p_{3/2} > +\cdots$ do(E1)/dE_{rel} (mb/MeV) $\alpha^2 = C^2 S(0^+_1; 3/2^-)$ $\beta^2 = C^2 S(2^+_1; 3/2^-)$ 30 Ne(0⁺₁) $\otimes 2p_{3/2}$ 30 Ne(2⁺₁) $\otimes 2p_{3/2}$ 30 Ne(0⁺₁) $\otimes 2p_{3/2}$ 30 Ne(2⁺₁) $\otimes 2p_{3/2}$ Higher excited core $(E_x > E_x(2_1^+))$ 0 5 2 3 4 0 *TN, N. Kobayashi et al., PRL**112**, 142501 (2014). E_{rel} (³⁰Ne+n) (MeV)

Double-Component Halo: Unique to p-wave halo $|^{31}Ne(3/2^-) > = \alpha |^{30}Ne(0^+_1) \otimes 2p_{3/2} > +\beta |^{30}Ne(2^+_1) \otimes 2p_{3/2} >$

Double-Component Halo:

Preliminary

✓ Unique feature of p-wave halo

c.f. **Single**-component for **s-wave halo** $|^{11}\text{Be}(1/2^+) > = \alpha |^{10}\text{Be}(0^+_1) \otimes 2s_{1/2} > +\beta |^{10}\text{Be}(2^+_1) \otimes 1d_{5/2} >$ s-wave halo non-halo

Summary

²⁷O,²⁸O: Y.Kondo Nature **620**, 965 (2023).
³⁰F: J.Kahlbow, PRL **133**, 082501 (2024).
³⁰Ne: T.Tomai, *In prepartation*

✓ <u>Neutron dripline</u>→Boundary of Open/Closed Quantum Systems→Universal features ✓ $^{29}F(p,2p)^{28}O, ^{29}F(p,2pn)^{27}O, ^{31}Ne(p,2p)^{30}F$ at SAMURAI at RIBF

- ✓ World-first invariant mass spectroscopy with 4n+fragment in coincidence
- ✓ ²⁸O: unbound by 4n emission with $E = 0.46^{+0.05}_{-0.04}$ (*stat*) ± 0.13(*sys*)MeV
- ✓ ²⁷O: unbound by 3n emission with $E = 1.09 \pm 0.04(stat) \pm 0.02(sys)$ MeV
- ✓ ²⁸**O**: N=20 magicity is lost: Not a doubly magic nucleus
- ✓ ³⁰**F**: $E = 0.472 \pm 0.058(stat) \pm 0.033(sys)$ MeV
- ✓ ³⁰**F:** N=20 magicity lost: \rightarrow ³¹**F** p-wave halo, Superfluidity for O/F with N>16
- ✓ <u>Halo-Shell Interplay: ³¹Ne :</u>
 - Exclusive Coulomb Breakup of ³¹Ne

✓ Soft-E1 Excitation → Double halo components: Unique feature of p-wave halo

Perspectives

More exotic weakly bound and unbound nuclei along the neutron drip line ⁶n, ²⁸O(2₁⁺), ²⁹O ...

→Understand Microscopically Shell-Halo Interplay
 →Many-body effects at the boundary open-closed quantum systems
 →Universal Features with Exotic hadrons and Ultra-cold atoms

Multi-neutron detections

 \rightarrow Key to understanding physics near and beyond the neutron drip line

SAMURAI21 collaboration—^{27,28}O, ²⁸F, ³⁰F

Y.Kondo, <u>T.Nakamura</u>, N.L.Achouri, H.Al Falou, L.Atar, T.Aumann, H.Baba, K.Boretzky, C.Caesar, D.Calvet, H.Chae, N.Chiga, A.Corsi, H.L.Crawford, F.Delaunay, A.Delbart, Q.Deshayes, Zs.Dombrádi, C.Douma, Z.Elekes, P.Fallon, I.Gašparić, J.-M.Gheller, J.Gibelin, A.Gillibert, M.N.Harakeh, A.Hirayama, C.R.Hoffman, M.Holl, A.Horvat,

Á.Horváth, J.W.Hwang, T.Isobe, **J.Kahlbow**, N.Kalantar-Nayestanaki, S.Kawase, S.Kim, K.Kisamori, T.Kobayashi, D.Körper, S.Koyama, I.Kuti, V.Lapoux, S.Lindberg, F.M.Marqués, S.Masuoka, J.Mayer, K.Miki, T.Murakami, M.A.Najafi, K.Nakano, N.Nakatsuka, T.Nilsson, A.Obertelli, F.de Oliveira Santos, N.A.Orr,

H.Otsu, T.Ozaki, V.Panin, S.Paschalis, **A.Revel**, D.Rossi, A.T.Saito, T.Saito, M.Sasano, H.Sato, Y.Satou, H.Scheit, F.Schindler, P.Schrock, M.Shikata, Y.Shimizu, H.Simon, D.Sohler, O.Sorlin, L.Stuhl, S.Takeuchi, M.Tanaka, M.Thoennessen, H.Törnqvist, Y.Togano, T.Tomai, J.Tscheuschner, J.Tsubota, T.Uesaka, H.Wang, **M.Yasuda**, Z.Yang, K.Yoneda

Tokyo Tech, Argonne, ATOMKI, CEA Saclay, Chalmers, CNS, Cologne, Eotvos, GANIL, GSI, IBS, KVI-CART, Kyoto Univ., Kyushu Univ., LBNL, Lebanese-French University of Technology and Applied Science, LPC-CAEN, MSU, Osaka Univ., RIKEN, Ruđer Bošković Institute, SNU, Tohoku Univ., TU Darmstadt, Univ. of Tokyo 88 Participants (+analysis) 25 Institutes

Y.Kondo et al., Nature **620**, 965-970 (2023). A. Revel et al., PRL124,152502(2020). (²⁸F) J. Kahlbow et al., PRL in Press (³⁰F)

Exclusive Coulomb/nuclear breakup of ³¹Ne

• Collaborators

T. Tomai, A N. Kobayashi, T. Nakamura, A Y. Togano, Y. Kondo, S. Takeuchi, A. T. Saito, T. Ozaki, A. Hirayama, M. Yasuda, H. Yamada, T. Kobayashi, S. Koyama, S. J. Kim, J. W. Hwang, H. Otsu, Y. Shimizu, N. A. Orr, J. D. Gibelin, T. Aumann, H. Sato, P. C. Doornenbal, H. Baba, T. Isobe, N. L. Achouri, M. Marques, F. L. Delaunay, Q. Deshayes, A. Revel, I O. Sorlin, V. Panin, I. Gašparić, H. T. Toernqvist, S. Y. Park, K I. K. Hahn, K Y. Kubota, M. Sasano, L. Stuhl, D. H. Kim, K. M. Matsumoto, M. Parlog, D. M. Rossi, H. L. Atar, S. Lindberg, J. Kahlbow, S. Paschalis, S. Sakaguchi, R. Reifarth, L. Mullay, F. Browne, M. L. Cortes Sua, S. D. Chen, J. Steinhauser Theories: J.A. Tostevin^R, A. Poves^S, Y. Utsuno^T, K.Hagino^U

- Institution
 - TokyoTech^A, Osaka U. RCNP^B, RIKEN Nishina center^C, Tohoku U.^D, U. Tokyo CNS^E, Seoul N. U.^F, LPC-ENSICAEN^G, GSI^H, GANIL^I, IRB^J, Ewha W. U.^K, Chalmers U. T.^L, U. York^M, Kyushu U.^N, U. Frankfurt^O, U. Brighton^P, U. Rikkyo^Q, U. Surrey^R, U. Autonoma-Madrid^S, JAEA^T,Kyoto U^U

<u>T. Tomai,</u> <u>PhD thesis</u> <u>Paper in</u> <u>Preparation</u>