The recoil distance Doppler-shift technique:

a valuable method for nuclear structure studies far from the valley of stability

- Cologne compact plungers for RDDS @ JYFL, Argonne, LNL,...
- Recent experimental campaigns
 - Structure of mid-shell Te isotopes
 - → Structural evolution in neutron deficient nuclei around A=170
- New Cologne CATHEDRAL spectrometer

Funded by the German Research Foundation Grant No. FR 3276/3-1

Deutsche Forschungsgemeinschaft German Research Foundation

C. Fransen, A. Blazhev, F. Dunkel, A. Esmaylzadeh, J. Jolie, C.-D. Lakenbrink, C. Müller-Gatermann, R. Novak, F. von Spee Institute for Nuclear Physics, University of Cologne C. Müller-Gatermann Argonne National Laboratory, USA

The recoil distance Doppler-shift (RDDS) technique

RDDS: level lifetimes in ps range:

- \rightarrow absolute transition strengths
- → independent of reaction mechanism (but recoil velocity > 1%c) fusion-evaporation, Coulex, direct reactions, transfer,...

Cologne compact plungers

Compact:

- → Use with charged particle arrays
- → use at grazing angles

APPA Plunger, JYFL JYTube + JUROGAM III + MARA/RITU

3-foil plunger CoCoDiff AGATA + PRISMA M. Beckers et al., NIM A 1042 (22) 167418

iCAPS plunger + Microball integrated Cologne-Argonne plunger setup GAMMASPHERE/GRETINA (+ AGFA/FMA)

Structural evolution around ⁴⁸Ca

Experiment at LNL, April 2024

RDDS ⁴⁶⁻⁴⁸Ar, DSAM ^{50,51}Ca multinucleon transfer ⁴⁸Ca @ 330 MeV, ²³⁸U target modified CoCoDiff Plunger + AGATA + PRISMA

 → SDPF shell model: breakdown of N=28 PRC 55, 1266 (97), PRC 93, 044333 (19)
 → large mixing closed shell – 2p-2h bandhead E. Caurier et al., NPA 742, 14 (04)

Existing data: no conclusion

RDDS + MNT @ GANIL D. Mengoni et al., PRC 82, 024308 (10) Coulex @ LISE/GANIL

S. Calinescu et al. PRC 93, 044333 (19)

RDDS spectra ^{46,48}Ar, LNL April 2024

⁴⁶Ar 30 μm, 5 μm + 20 μm offset 48 h /distance

⁴⁸Ar sum 5 μm, 30 μm

Analysis ongoing...

Structure of mid-shell Te isotopes

Level schemes Te (N=52) similar to Cd (N=48): vibrators? → known: shape coexistence in Cd P. Garrett et al., Prog. Part. Nucl. Phys. 124, 103931 (22)

Detailed investigation of ¹¹⁶⁻¹²⁰Te @ Cologne

F. von Spee, PhD thesis, Univ. of Cologne (2024) $^{100}Mo(^{23}Na,4np)^{118}Te RDDS$ $^{112}Sn(^{12}C,^{8}Be)^{116}Te RDDS$ $^{114}Sn(^{12}C,^{8}Be)^{118}Te RDDS$ $^{116}Sn(^{12}C,^{8}Be)^{120}Te RDDS$ $^{107}Ag(^{12}C,^{3}n)^{116}I \stackrel{\beta}{\rightarrow} ^{116}Te angular corr.$ $^{108}Ag(^{12}C,^{3}n)^{118}I \stackrel{\beta}{\rightarrow} ^{118}Te angular corr.$

Structure of mid-shell Te isotopes

Signatures shape coexistence in Te:

2. ¹¹⁸Te: large $\rho^2(E0)$ value $0_2^+ \rightarrow 0_1^+$: change of mean square charge radius

3. collective in-band transitions of intruder structure

P.E. Garrett et al., Prog. Part. Nucl. Phys. **124**, 103931 (2022)

→ ¹⁷⁸⁻¹⁸⁶Pt:

- well deformed config.
- below weakly deformed
- → supported by B(E2), kinematic moments of inertia
- \rightarrow what happens for A<178?
- → measure yrast B(E2)

Shape evolution in n-deficient Pt?

Calculations: Garcia-Ramos et al., PRC 89, 034313 (14)

Hartree-Fock Bogoliubov: sharp transition prolate (¹⁷⁸Pt) – spherical (¹⁷⁴Pt)

Precise B(E2) values needed for ¹⁷²⁻¹⁷⁶Pt!

Experiment on ¹⁷⁶Pt₉₈ at HIL, Warsaw

¹⁴⁸Sm(³²S,4n)¹⁷⁶Pt @ 170 MeV

Target: 0.75 mg/cm² ¹⁴⁸Sm on 1.5 mg/cm² Ta Cologne plunger + EAGLE spectrometer 10 distances 0 – 600 μ m

- $\gamma\gamma$ coincidences:
- \rightarrow exclude problems from unobserved feeding
- \rightarrow no assumptions on feeding!

This work			Dracoulis et al., J. Phys. G 12, L97 (86)		
J _i π	τ(J i ^π)	B(E2; J _i ^π → J _i ^π -2)	τ(J i ^π)	B(E2; J _i ^π → J _i ^π -2)	
2 ₁ ⁺	41.0 (41) ps	231 ⁺²⁶ - ₂₁ W.u.	109 (10) ps	87 ⁺⁹ ₋₇ W.u.	
4 ₁ +	15.0 (25) ps	347 ⁺⁷⁰ - ₅₀ W.u.	32 (3) ps	163 ⁺¹⁷ - ₁₄ W.u.	
6 ₁ +	12.1 (50) ps	232 ⁺¹⁶³ -68 W.u.	16.2 (15) ps	173 ⁺¹⁸ -15 W.u.	
yy coincidences			γ-ray singles → feeding?		

Experiment on ¹⁷²Pt₉₄ at Argonne iCAPS plunger + GAMMASPHERE + AGFA

Argonne Gas Filled Analyzer dipole + aberration corr.

92Mo(83 Kr, 3n)¹⁷²Pt 8 distances 3 – 400 µm 16 h/distance $\gamma\gamma$ coincidences + α decay tagging (AGFA): ¹⁷²Pt 10⁻⁵ of total cross section

⁹²Mo(⁸³Kr,3n)¹⁷²Pt with high efficiency of GAMMASPHERE

Spectrum ¹⁷²Pt @ 400 μ m, 1 HPGe ring, α decay tagging ¹⁷²Pt (AGFA)

→ Analysis ongoing (PhD thesis C.-D. Lakenbrink, Cologne): $\tau(2_1^+, 4_1^+, 6_1^+, 8_1^+)$ $\tau(2_1^+, 4_1^+) \gamma \gamma$ coincidences!

B. Cederwall et al., PRL 121, 022502 (18):

same reaction @ JYFL, γ singles + α decay tagging: $\tau(2_1^+, 4_1^+) \rightarrow B_{4/2} = 0.55(19)$

Qt plots 172-180Pt

→ ^{178,180}Pt rotor like ¹⁷⁸Pt: C. Fransen et al., EPJ Web Conf, 223, 01016 (19) ¹⁸⁰Pt: C. Müller-Gatermann et al., NIM A 920, 95 (19)

- \rightarrow ¹⁷⁶Pt still collective, 2₁⁺, 4₁⁺ rotor like? (IKP Cologne, HIL Warsaw)
- → ¹⁷²Pt: Low collectivity yrast band (poster C.D. Lakenbrink)

	176 Pt		
$B(E2;2_1^+ \to 0_1^+)$	20 ⁺⁸ -4 W.u.	231 ⁺²⁶ -21 W.u.	
$B(E2;4_1^+ \to 2_1^+)$	25 ⁺⁵ -3 W.u	347 ⁺⁷⁰ -50 W.u.	
B _{4/2}	1.3 (6) / old: 0.55(19)	1.50 (30)	
B _{6/4}	0.60 (17)	0.67 (52)	

Experiments on n-deficient nuclei around A=170: ¹⁶⁸W₉₄

Cologne Plunger @ GAMMASPHERE, ANL \rightarrow 108Pd(⁶⁴Zn,2p2n)¹⁶⁸W \rightarrow 50 HPGe for RDDS: ϵ = 5% @ 1.3 MeV \rightarrow 12 distances 10 µm - 6400 µm \rightarrow V_T(¹⁶⁸W) = 3.3% c = 10.2 µm/ps

1800

Structural change W – Os – Pt below n midshell

- W, Os, Pt: N>94 collective N≤94: B_{4/2}≤1 seniority symmetry → only expected near closed shells. Here: N_p≥4, N_n≥8
- Shell model W Os Pt: 0.5 Cederwall et al., PRL 121, 022502 (18)

B_{4/2}

- → $\nu f_{7/2}$, $\nu h_{9/2}$ strongly mixed, nearly degenerate
- → attractive v- π vh_{9/2} π h_{11/2} monopole interaction
- **But:** B_{4/2}<1 requires very weak ν-π quad.-quad. interaction ¹⁶⁸W: just at transition!
- \rightarrow B_{6/4}= 0.38 (6)
 - \rightarrow structural change for 6₁⁺?

A new spectrometer for lifetime measurements at Cologne

Stefan Thiel, CF; IKP Cologne

measurements

24 HPGe, 6 each @ 30°, 55°, 125°, 150° 8 LaBr3(Ce) for simultaneous fast-timing

Coincidence Array at the Tandem accelerator for

High-Efficiency Doppler Recoil And LaBr fast-timing

 → charged particle detector array: particle-γ-γ coincidences: RDDS with γγ coincidences in transfer reactions

- ε_{abs}(1.3 MeV) HPGe: 3.5%, LaBr: 0.6%

Commissioning CATHEDRAL spectrometer ¹⁰⁰Mo(¹⁸O,¹⁶O)¹⁰²Mo, Cologne plunger/RDDS + fast timing

Conclusion

- Development of sophisticated compact plunger devices: GAMMASPHERE/GRETINA+FMA/AGFA @ Argonne JUROGAM+MARA/RITU @JYFL PRISMA + AGATA @ LNL
- Investigation of structure south-east and east of ⁴⁸Ca
- Hints for shape coexistence in mid-shell Te
- Structure in neutron-deficient nuclei around A=170
 - \rightarrow shape evolution in Pt
 - \rightarrow region in Os W Pt with B_{4/2}<1 for N<96
- New Cologne CATHEDRAL spectrometer
 - → combined γ -ray Doppler-shift measurements (RDDS, DSAM) and fast timing
 - \rightarrow high efficiency: particle- γ - γ coincidences

Commissioning of HISPEC plunger for FAIR @ Cologne

Simulate large area beam (slowed down radioactive beam @ FAIR)

→ already done: commissioning HISPEC plunger @ Cologne precision, repeatibility proven!

CATHEDRAL spectrometer: realization

HPGe @ 30°, 150° hexagonal crystals and endcaps → max. eff.

γ-ray efficiency (226 Ra):24 HPGe8 LaBr3(Ce)351 keV7.03 %2.16 %609 keV5.05 %1.11 %1120 keV3.60 %0.69 %1764 keV2.70 %0.43 %

Upstream: detector rings 125°, 150° + Plunger chamber

Downstream part detector rings 30, 55° 8 LaBr3(Te) @ 90°

PIN diodes (solar cells) @ 115-165°

→ charge particles det. transfer reactions

→ Introduction: Shape coexistence in Hg

Hg: weakly deformed ground state conf., prolate intruder

- → level schemes
- $\rightarrow Q_t$ systematics
- e.g. PRC 80, 014324 (09)

evolution towards intermediate def. in ¹⁷⁸Hg

C. Müller-Gatermann et al., PRC 99, 054325 (19)

Similar in Pt?

Neutron deficient W, Os: analogy to Pt?

Structural change W - Os - Pt below n midshell

University of Cologne - Institute for Nuclear Physics

Shape coexistence in Te isotopes?

Commissioning CATHEDRAL spectrometer results fast timing ¹⁰²Mo, ¹⁰⁰Mo, ¹¹⁴Sn

nucleus	state J^{π}	cascade keV	P/B feeder—decay	τ ps	$ au_{ m adopted} \ { m ps}$	$ au_{ m aliterature} \ { m ps}$
$^{102}\mathrm{Mo}$	2_{1}^{+}	$\begin{array}{r} 447 - 297 \\ 402 - 297 \end{array}$	$\substack{1.60(2) - 2.24(2) \\ 0.93(2) - 1.84(2)}$	$180(3) \\ 186(4)$	182(2)	$180(6)^{a}$
	4_1^+	584—447	0.34(2) - 0.53(2)	17(9)	17(9)	18(4) ^a
$^{100}\mathrm{Mo}$	2^+_1	600—536	2.30(3) - 5.02(5)	16(2)	16(2)	$17.9(3)^{\rm b}$
¹¹⁴ Sn	2_{1}^{+}	888—1300	18.0(3)-23.1(4)	< 4	<(4)	0.61(4) ^c
	4_1^+	628-888	10.77(11) - 8.11(8)	4.7(14)	4.7(14)	$7.6(6)^{\rm c}$
	5_{1}^{-}	272-628	8.21(7) - 9.53(8)	42.1(14)	42.1(14)	$>2^{\rm c}$

^a D. De Frenne, Nucl. Data Sheets 110, 8 (2009)

^b B. Singh and J. Chen, Nucl. Data Sheets 172, (2021)

^c J. Blachot, Nucl. Data Sheets 113, 2 (2012)

M. Ley IKP Cologne

¹⁰²Mo RDDS: $t(2_1^+) = 180(3)$ ps

Commissioning HISPEC Plunger for FAIR at Cologne

FN Tandem Cologne

Beam focusing on 5 points 20 mm apart

solar cell array: detect backscattered particles

Coulex ¹⁸¹Ta: beam ³²S @ 85 MeV

use known lifetimes of 181 Ta $\tau(11/2^+) = 23(4) \text{ ps}$ $\tau(13/2^+) = 9.1(11) \text{ ps}$

Check parallelity with precision ~1 um

Experiment with HISPEC Plunger at Cologne with event-by-event reconstruction of kinematics

Dennis Bittner, IKP Cologne