Impact of the isospin symmetry breaking on nuclear properties

内藤 智也 (Tomoya Naito)

RIKEN iTHEMS Program, JAPAN Department of Physics, Graduate School of Science, The University of Tokyo, JAPAN

06 November 2024

SSNET'24

International Conference on Shapes and Symmetries in Nuclei: From Experiment to Theory

Laboratoire De Physique Des 2 Infinis Irène Joliot-Curie (IJCLab), Orsay, FRANCE

MLPhys Foundation of "Machine Learning Physics" 学習物理学の創成

Tomoya Naito (RIKEN/U. Tokyo)

Isospin symmetry breaking of nuclear interaction

Nuclear interaction: almost isospin symmetric

$$v_{pp}^{T=1} \simeq v_{pn}^{T=1} \simeq v_{nn}^{T=1}$$

Miller, Opper, and Stephenson. Annu. Rev. Nucl. Part. Sci. 56, 253 (2006)

Tomoya Naito (RIKEN/U. Tokyo)

Isospin symmetry breaking of nuclear interaction

- Nuclear interaction: *almost* isospin symmetric
- Charge symmetry breaking (CSB)
 - Difference between *p*-*p* int. and *n*-*n* int.

$$v_{\text{CSB}} \equiv v_{nn}^{T=1} - v_{pp}^{T=1} \sim \tau_{zi} + \tau_{zj}$$

- Originates from mass difference of nucleons (m_p ≠ m_n) and π⁰-η & ρ⁰-ω mixings in meson-exchange process
- Contribute to β term (β^{2n+1} terms) in nuclear EoS
- Charge independence breaking (CIB)
 - Difference between like-particle int. and diff.-particle int.

$$v_{\text{CIB}} \equiv \frac{v_{nn}^{T=1} + v_{pp}^{T=1}}{2} - v_{np}^{T=1} \sim \tau_{zi} \tau_{zj}$$

- Originates from mass difference of pions $(m_{\pi^0} \neq m_{\pi^{\pm}})$
- Contribute to SNM and β^2 term (β^{2n} terms) in nuclear EoS

Miller, Opper, and Stephenson. Annu. Rev. Nucl. Part. Sci. 56, 253 (2006)

 $v_{nn}^{T=1} \simeq v_{nn}^{T=1} \simeq v_{nn}^{T=1}$

Introduction

Isospin symmetry breaking of atomic nuclei

- Different properties of mirror nuclei
 - Mass (Okamoto-Nolen-Schiffer anomaly)
 - Ground-state spin $\binom{73}{38}$ Sr (5/2⁻) and $\frac{73}{35}$ Br (1/2⁻) at NSCL)
 - ← New result by Alejandro Algora yesterday (⁷¹Br and ⁷¹Kr at RIBF)
 - Shape $\binom{70}{36}$ Kr and $\frac{70}{34}$ Se at RIBF)
- Finite (negative) neutron-skin thickness $\Delta R_{np} = R_n R_p$ of N = Z nuclei

Okamoto. Phys. Lett. **11**, 150 (1964) Nolen and Schiffer. Annu. Rev. Nucl. Sci. **19**, 471 (1969) Hoff et al. Nature **580**, 52 (2020) Wimmer et al. Phys. Rev. Lett. **126**, 072501 (2021) Algora et al. arXiv:2411.00509 [nucl-ex]

Isobaric analog energy (IAE) and neutron-skin thickness

• Isobaric analog energy: Energy difference between $|\Psi\rangle$ and $T_{\pm}|\Psi\rangle$

- E.g. ²⁰⁸₈₂Pb and ²⁰⁸₈₃Bi*
- Spatial-spin wave function is almost the same
- Energy difference originates from Coulomb interaction
- There is a correlation between E_{IAS} and ΔR_{np} of ²⁰⁸Pb
- Exp. values of E_{IAS} and ΔR_{np} cannot be described at the same time

Roca-Maza, Colò, and Sagawa. Phys. Rev. Lett. 120, 202501 (2018)

Skyrme-like ISB interaction

 To perform mean-field (DFT) calculation, the Skyrme-like ISB interaction is introduced

$$v_{\text{Sky}}^{\text{CSB}}(\mathbf{r}) = s_0 \left(1 + y_0 P_{\sigma}\right) \delta(\mathbf{r}) \frac{\tau_{1z} + \tau_{2z}}{4}$$

$$v_{\text{Sky}}^{\text{CIB}}(\mathbf{r}) = u_0 \left(1 + z_0 P_{\sigma}\right) \delta(\mathbf{r}) \frac{\tau_{1z} \tau_{2z}}{2}$$

$$\mathcal{E}_{\text{CSB}} = \frac{s_0 \left(1 - y_0\right)}{8} \left(\rho_n^2 - \rho_p^2\right)$$

$$\mathcal{E}_{\text{CIB}} = \frac{u_0}{2} \left[\left(1 - z_0\right) \left(\rho_n^2 + \rho_p^2\right) - 2 \left(2 + z_0\right) \rho_n \rho_p \right]$$

Note: $\tau_z = -1$ for protons and $\tau_z = +1$ for neutrons (low-energy convention)

- SAMi-ISB EDF is used in this work
 - $y_0 = z_0 = -1$ to select the spin-singlet (S = 0) channel
 - s₀ and u₀ are parameters
 - All the parameters including the main part are optimized altoghether
- Spherical symmetry is assumed to avoid the deformation effect

Sagawa, Van Giai, and Suzuki. Phys. Lett. B 353, 7 (1995)

Roca-Maza, Colò, and Sagawa. Phys. Rev. Lett. 120, 202501 (2018)

Isospin Symmetry Breaking in Nuclear DFT

Neutron-skin thickness of ²⁰⁸Pb

- L vs ΔR_{np} correlation is estimated using SAMi-J family
- SAMi-J fmaily
 Same as SAMi but different J
 → Different L
- On top of SAMi-J family, ISB terms are considered
- If we assume the same ΔR_{np} , difference between estimated L_{full} without & that with ISB is 11.1 MeV CSB contribution 13.9 MeV CIB contribution -2.7 MeV
- $L_{\text{CIB}} = 2.3 \text{ MeV}$ and $L_{\text{CSB}} = -3.2 \text{ MeV} \rightarrow \text{Change of } L \text{ is } 12 \text{ MeV}$

Naito, Colò, Liang, Roca-Maza, and Sagawa. Phys. Rev. C 107, 064302 (2023)

- ISB effects on nuclear properties depends on ISB strengths
- Phenomenological determination—Referring experimental data

Ab initio determination

-CSB strength s₀ extracted from ab initio calculation

 $\label{eq:solution} \begin{array}{c} \mbox{Method:} \underline{\mbox{Naito},\mbox{Col}{\circ},\mbox{Liang},\mbox{Roca-Maza},\mbox{and Sagawa}.\mbox{Phys. Rev. C 105},\mbox{L021304 (2022)} \\ \hline s_0-value: Roca-Maza,\mbox{Col}{\circ},\mbox{and Sagawa}.\mbox{Phys. Rev. Lett. 120},\mbox{202501 (2018)} \\ s_0-value: Bączyk,\mbox{Dobaczewski et al. Phys. Lett. B 778},\mbox{178 (2018)} \\ \mbox{CC & χEFT: Novario, Lonardoni, Gandolfi, and Hagen.\mbox{Phys. Rev. Lett. 130},\mbox{032501 (2023)} \\ \mbox{VMC & AV18: Wiringa}.\mbox{Private communication} \end{array}$

Summary: Naito, Colò, Liang, Roca-Maza, and Sagawa. Nuovo Cim. C 47, 52 (2024)

- ISB effects on nuclear properties depends on ISB strengths
- Phenomenological determination—Referring experimental data
 - $s_0 = -26.3 \text{ MeV fm}^3$ (IAE of ²⁰⁸Pb)
 - $s_0 \simeq -10 \,\mathrm{MeV} \,\mathrm{fm}^3$ (MDE and TDE)
- Ab initio determination
 - -CSB strength s₀ extracted from ab initio calculation

 $\label{eq:solution} \begin{array}{c} \mbox{Method: Naito, Colò, Liang, Roca-Maza, and Sagawa. Phys. Rev. C 105, L021304 (2022)} \\ \hline s_0-value: Roca-Maza, Colò, and Sagawa. Phys. Rev. Lett. 120, 202501 (2018) \\ s_0-value: Bączyk, Dobaczewski et al. Phys. Lett. B 778, 178 (2018) \\ \mbox{CC & }\chi \mbox{EFT: Novario, Lonardoni, Gandolfi, and Hagen. Phys. Rev. Lett. 130, 032501 (2023) \\ \mbox{VMC & AV18: Wiringa. Private communication} \end{array}$

Summary: Naito, Colò, Liang, Roca-Maza, and Sagawa. Nuovo Cim. C 47, 52 (2024)

O(10) MeV fm³

- ISB effects on nuclear properties depends on ISB strengths
- Phenomenological determination—Referring experimental data
 - $s_0 = -26.3 \text{ MeV fm}^3$ (IAE of ²⁰⁸Pb)
 - $s_0 \simeq -10 \,\mathrm{MeV} \,\mathrm{fm}^3$ (MDE and TDE)
- Ab initio determination
 - -CSB strength s₀ extracted from *ab initio* calculation
 - $s_0 \simeq -2 \,\text{MeV}\,\text{fm}^3 \,(\Delta E_{\text{tot}} \text{ of } {}^{48}\text{Ca-}{}^{48}\text{Ni}, \,\text{CC \& }\chi\text{EFT})$
 - $s_0 \simeq -3 \text{ MeV fm}^3$ (ΔE_{tot} of ${}^{10}\text{Be}{}^{-10}\text{C}$, VMC & AV18)

 $\label{eq:solution} \begin{array}{c} \mbox{Method:} \underline{\mbox{Naito},\mbox{Col}{\circ},\mbox{Liang},\mbox{Roca-Maza},\mbox{ and Sagawa}. Phys. Rev. C 105, L021304 (2022) \\ \hline s_0-value: Roca-Maza, Colo, and Sagawa. Phys. Rev. Lett. 120, 202501 (2018) \\ s_0-value: Bączyk, Dobaczewski et al. Phys. Lett. B 778, 178 (2018) \\ CC \& \chi EFT: Novario, Lonardoni, Gandolfi, and Hagen. Phys. Rev. Lett. 130, 032501 (2023) \\ \mbox{VMC \& AV18: Wiringa}. Private communication} \end{array}$

Summary: Naito, Colò, Liang, Roca-Maza, and Sagawa. Nuovo Cim. C 47, 52 (2024)

O(10) MeV fm³

- ISB effects on nuclear properties depends on ISB strengths
- Phenomenological determination—Referring experimental data
 - $s_0 = -26.3 \text{ MeV fm}^3$ (IAE of ²⁰⁸Pb)
 - $s_0 \simeq -10 \,\mathrm{MeV} \,\mathrm{fm}^3$ (MDE and TDE)
- Ab initio determination

-CSB strength s₀ extracted from *ab initio* calculation

- $s_0 \simeq -2 \text{ MeV fm}^3$ (ΔE_{tot} of ⁴⁸Ca-⁴⁸Ni, CC & χ EFT)
- $s_0 \simeq -3 \text{ MeV fm}^3$ (ΔE_{tot} of ${}^{10}\text{Be-}{}^{10}\text{C}$, VMC & AV18)

 $\label{eq:solution} \begin{array}{c} \mbox{Method:} \underline{\mbox{Naito},\mbox{Col}{\circ},\mbox{Liang},\mbox{Roca-Maza},\mbox{ and Sagawa}. Phys. Rev. C 105, L021304 (2022) \\ \hline s_0-value: Roca-Maza, Colo, and Sagawa. Phys. Rev. Lett. 120, 202501 (2018) \\ s_0-value: Bączyk, Dobaczewski et al. Phys. Lett. B 778, 178 (2018) \\ CC \& \chi EFT: Novario, Lonardoni, Gandolfi, and Hagen. Phys. Rev. Lett. 130, 032501 (2023) \\ \mbox{VMC \& AV18: Wiringa. Private communication} \end{array}$

Summary: Naito, Colò, Liang, Roca-Maza, and Sagawa. Nuovo Cim. C 47, 52 (2024)

O(10) MeV fm³

O(1) MeV fm³

- ISB effects on nuclear properties depends on ISB strengths
- Phenomenological determination—Referring experimental data
 - $s_0 = -26.3 \text{ MeV fm}^3$ (IAE of ²⁰⁸Pb)
 - $s_0 \simeq -10 \,\mathrm{MeV} \,\mathrm{fm}^3$ (MDE and TDE)
- Ab initio determination

-CSB strength s₀ extracted from *ab initio* calculation

- $s_0 \simeq -2 \,\text{MeV}\,\text{fm}^3 \,(\Delta E_{\text{tot}} \text{ of } {}^{48}\text{Ca-}{}^{48}\text{Ni}, \,\text{CC \& }\chi\text{EFT})$
- $s_0 \simeq -3 \,\mathrm{MeV} \,\mathrm{fm}^3 \;(\Delta E_{\mathrm{tot}} \;\mathrm{of} \;{}^{10}\mathrm{Be} {}^{-10}\mathrm{C}, \;\mathrm{VMC} \;\&\; \mathrm{AV18})$
- CSB effect in *ab initio* is ×0.1 of that in DFT?!?!

O(1) MeV fm³

O(10) MeV fm³

Open problem

Summary: Naito, Colò, Liang, Roca-Maza, and Sagawa. Nuovo Cim. C 47, 52 (2024)

Tomoya Naito (RIKEN/U. Tokyo)

- ISB effects on nuclear properties depends on ISB strengths
- Phenomenological determination—Referring experimental data
 - $s_0 = -26.3 \text{ MeV fm}^3$ (IAE of ²⁰⁸Pb)
 - $s_0 \simeq -10 \,\mathrm{MeV} \,\mathrm{fm}^3$ (MDE and TDE)
- Ab initio determination

-CSB strength s₀ extracted from *ab initio* calculation

- $s_0 \simeq -2 \,\text{MeV}\,\text{fm}^3 \,(\Delta E_{\text{tot}} \text{ of } {}^{48}\text{Ca-}{}^{48}\text{Ni}, \,\text{CC \& }\chi\text{EFT})$
- $s_0 \simeq -3 \text{ MeV fm}^3$ (ΔE_{tot} of ${}^{10}\text{Be}{}^{-10}\text{C}$, VMC & AV18)
- CSB effect in *ab initio* is ×0.1 of that in DFT?!?!
 Open problem

• We need to determine ISB strength microscopically!

 $\label{eq:solution} \begin{array}{c} \mbox{Method: Naito, Colò, Liang, Roca-Maza, and Sagawa. Phys. Rev. C 105, L021304 (2022)} \\ \hline s_0-value: Roca-Maza, Colò, and Sagawa. Phys. Rev. Lett. 120, 202501 (2018) \\ s_0-value: Bączyk, Dobaczewski et al. Phys. Lett. B 778, 178 (2018) \\ CC \& χ EFT: Novario, Lonardoni, Gandolfi, and Hagen. Phys. Rev. Lett. 130, 032501 (2023) \\ VMC \& AV18: Wiringa. Private communication \\ \end{array}$

Summary: Naito, Colò, Liang, Roca-Maza, and Sagawa. Nuovo Cim. C 47, 52 (2024)

O(10) MeV fm³

O(1) MeV fm³

Simplest Model Systems for ONS Anomaly

- The simplest model towards ONS anomaly is "SNM + *p/n*"
- Only the nuclear interaction is considered
- Nucleon mass in medium depends on density due to chiral symmetry breaking and its restoration
 → Δ_{np} = M_n - M_p also depends on ρ
- Therefore, the energy difference except mass diff. can be regarded as "Okamoto-Nolen-Schiffer anomaly" $\Delta E = \delta \Delta_{np} (\rho = 0)$

QSR Approach for Δ_{np}

- In-medium self-energy Σ_{τ} can be calculated by QSR $\Delta_{np} (\rho) = \omega_n - \omega_p \simeq \Sigma_n^{\rm S} - \Sigma_p^{\rm S}$
- Using the Borel sum and QSR,

$$\Delta_{np}(\rho) = C_1 \left(\frac{\langle \overline{q}q \rangle_{\rho}}{\langle \overline{q}q \rangle_0}\right)^{1/3} - C_2 \qquad C_1 = -a\gamma \qquad \gamma = \frac{\langle \overline{d}d \rangle_0}{\langle \overline{u}u \rangle_0} - 1$$

(ω_{τ} : Time-component of 4-momentum, Σ_{τ}^{S} : Scalar self-energy, $C_{1} = 5.24^{+2.48}_{-1.21}$ MeV)

Hatsuda, Høgaasen, and Prakash. Phys. Rev. Lett. 66, 2851 (1991)

Estimation of In-Medium Chiral Condensation

$$\begin{split} & \frac{\langle \overline{q}q \rangle_{\rho}}{\langle \overline{q}q \rangle_{0}} \simeq 1 + k_{1} \frac{\rho}{\rho_{0}} + k_{2} \left(\frac{\rho}{\rho_{0}}\right)^{5/3} \\ & k_{1} = -\frac{\sigma_{\pi N} \rho_{0}}{f_{\pi}^{2} m_{\pi}^{2}} \qquad k_{2} = -k_{1} \frac{3k_{\text{F0}}^{2}}{10m_{N}^{2}} \\ & \sigma_{\pi N}: \pi\text{-}N \text{ sigma term, } f_{\pi}: \text{ pion decay const.} \end{split}$$

Goda and Jido. Phys. Rev. C 88, 065204 (2013)

Tomoya Naito (RIKEN/U. Tokyo)

Estimation of Δ_{np}

• Eventually, the ONS anomaly $\delta_{\text{QSR}} = \Delta_{np} (\rho = 0) - \Delta_{np} (\rho)$ is

$$\delta_{\text{QSR}} = C_1 \left[1 - \left(\frac{\langle \overline{q}q \rangle_{\rho}}{\langle \overline{q}q \rangle_0} \right)^{1/3} \right] \\ = C_1 \left[\frac{\sigma_{\pi N}}{3f_{\pi}^2 m_{\pi}^2} \rho - \left(\frac{3\pi^2}{2} \right)^{2/3} \frac{\sigma_{\pi N}}{10f_{\pi}^2 m_N^2 m_{\pi}^2} \rho^{5/3} + \dots \right]$$

Sagawa, Naito, Roca-Maza, and Hatsuda. Phys. Rev. C 109, L011302 (2024)

Effective Interaction Approach

• We introduce Skyrme-type CSB interaction

$$v_{\text{Sky}}^{\text{CSB}}(\mathbf{r}) = \left\{ s_0 \left(1 + y_0 P_{\sigma} \right) \delta(\mathbf{r}) + \frac{s_1}{2} \left(1 + y_1 P_{\sigma} \right) \left[\mathbf{p}^{\dagger 2} \delta(\mathbf{r}) + \delta(\mathbf{r}) \mathbf{p}^2 \right] + s_2 \left(1 + y_2 P_{\sigma} \right) \mathbf{p}^{\dagger} \cdot \delta(\mathbf{r}) \mathbf{p} \right\} \frac{\tau_{1z} + \tau_{2z}}{4}$$

• Contribution of v_{Sky}^{CSB} to nuclear EoS is

$$\frac{E^{\text{CSB}}}{A} = \left[\frac{\tilde{s}_0}{8}\rho + \frac{1}{20}\left(\frac{3\pi^2}{2}\right)^{2/3}(\tilde{s}_1 + 3\tilde{s}_2)\rho^{5/3}\right]\frac{\rho_n - \rho_p}{\rho}$$

$$\tilde{s}_0 = s_0(1 - y_0), \ \tilde{s}_1 = s_1(1 - y_1), \ \tilde{s}_2 = s_1(1 + y_2)$$

Therefore,

$$\delta_{\text{Skyrme}} \simeq -\frac{\tilde{s}_0}{4}\rho - \frac{1}{10}\left(\frac{3\pi^2}{2}\right)^{2/3}(\tilde{s}_1 + 3\tilde{s}_2)\rho^{5/3}$$

since $\left(\rho_n - \rho_p\right)/\rho \simeq (N - Z)/A$

Sagawa, Naito, Roca-Maza, and Hatsuda. Phys. Rev. C 109, L011302 (2024)

QCD Sum Rule Approach for CSB EDF

Comparison of δ Obtained by Two Methods

$$\delta_{\text{QSR}} \simeq C_1 \left[\frac{\sigma_{\pi N}}{3f_{\pi}^2 m_{\pi}^2} \rho - \left(\frac{3\pi^2}{2}\right)^{2/3} \frac{\sigma_{\pi N}}{10f_{\pi}^2 m_N^2 m_{\pi}^2} \rho^{5/3} \right]$$

$$\delta_{\text{Skyrme}} \simeq -\frac{\tilde{s}_0}{4} \rho - \frac{1}{10} \left(\frac{3\pi^2}{2}\right)^{2/3} (\tilde{s}_1 + 3\tilde{s}_2) \rho^{5/3}$$

These two results should be identical; therefore

$$\tilde{s}_0 \simeq -\frac{4}{3} \frac{C_1 \sigma_{\pi N}}{f_{\pi}^2 m_{\pi}^2}$$

$$= -15.5^{+8.8}_{-12.5} \text{ MeV fm}^3$$

$$\tilde{s}_1 + 3\tilde{s}_2 \simeq \frac{1}{m_N^2} \frac{C_1 \sigma_{\pi N}}{f_{\pi}^2 m_{\pi}^2}$$

$$= 0.52^{+0.42}_{-0.29} \text{ MeV fm}^5$$

 $\sigma_{\pi N}$ has the large uncertainty $\sigma_{\pi N}$ = 45 ± 15 MeV (conservative estimation)

Sagawa, Naito, Roca-Maza, and Hatsuda. Phys. Rev. C 109, L011302 (2024)

Tomoya Naito (RIKEN/U. Tokyo)

QCD Sum Rule Approach for CSB EDF

Application for Actual Skyrme Hartree-Fock Calculation

- "Extra" contribution is not enough to describe ΔE
 - Higher-order correction for the Coulomb interaction
 - Change of kinetic energy due to $m_p \neq m_n$
- QCD-CSB interaction describe ΔE quite nicely
 - \rightarrow ONS anomaly may be solved?

Sagawa, Naito, Roca-Maza, and Hatsuda. Phys. Rev. C 109, L011302 (2024)

Origin of CIB interaction

- CIB originates from $M_{\pi^0} \neq M_{\pi^{\pm}}$ of one-pion exchange int. (OPEP)
- OPEP up to the 2nd order of chiral expansion, OPEP is written by

$$\begin{aligned} V_{\text{OPEP}}(\boldsymbol{q}, pp) &= f^2 V(M_{\pi^0}, \boldsymbol{q}) \\ V_{\text{OPEP}}(\boldsymbol{q}, nn) &= f^2 V(M_{\pi^0}, \boldsymbol{q}) \\ V_{\text{OPEP}}(\boldsymbol{q}, pn) &= -f^2 V(M_{\pi^0}, \boldsymbol{q}) + (-1)^{T+1} 2f^2 V(M_{\pi^{\pm}}, \boldsymbol{q}) \\ V(M_{\pi}, \boldsymbol{q}) &= -\frac{4\pi}{M_{\pi^{\pm}}^2} \frac{(\boldsymbol{\sigma}_1 \cdot \boldsymbol{q})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{q})}{q^2 + M_{\pi}^2} \end{aligned}$$

Epelbaum and Meißner. Phys. Rev. C 72, 044001 (2005)

HF calculation using OPEP

- OPEP includes spin-spin and tensor terms
 → HF exp. value of tensor term vanishes in even-even systems
- We only consider the spin-spin terms
- We calculate HF exp. value and perform density matrix expansion
- OPEP gives similar value to SAMi-ISB for SNM
- Note: In-medium effect is not included

Conclusion

- CSB and CIB terms contribute to ΔR_{np} of ²⁰⁸Pb in -0.02 fm (12 MeV in *L* value)
- CSB is related to chiral symmetry breaking and its restoration
- QCD sum rule approach gives CSB EDF
- OPEP & DME gives CIB EDF
 → Next step: in-medium effect
- Perspectives

pairing, deformation, reveal the open problem, (Q)RPA calc., ...

- Ultimate goal
 - "Complete & accurate" nuclear EDF
 - Can we understand "medium effect" from QCD?

Conclusion

- CSB and CIB terms contribute to ΔR_{np} of ²⁰⁸Pb in -0.02 fm (12 MeV in *L* value)
- CSB is related to chiral symmetry breaking and its restoration
- QCD sum rule approach gives CSB EDF
- OPEP & DME gives CIB EDF
 → Next step: in-medium effect
- Perspectives

pairing, deformation, reveal the open problem, (Q)RPA calc., ...

- Ultimate goal
 - "Complete & accurate" nuclear EDF
 - Can we understand "medium effect" from QCD?

Thank you for attention!!