

Effect of two-body current on magnetic dipole moments

Collaborators

- TU Darmstadt: C. Brase, K. Hebeler, A. Schwenk, R. Seutin
- TRIUMF: J. D. Holt
- University of Illinois: X. Cao
- Massachusetts Institute of Technology: R. G. Ruiz
- Johannes Gutenberg University of Mainz: S. Bacca
- University of Barcelona: J. Menendez

- EM observables can be used
 - to investigate nuclear structure (shell structure, shape, ...)
 - to test theories
- To test our theories, we need:
 - (precise) experimental data
 - reasonable starting nuclear Hamiltonian(s)
 - controllable many-body method(s)

higher-order contribution of EM operators (main focus of this talk)

 $egin{aligned} H|\Psi
angle &= E|\Psi
angle \ O_{
m EM}^{
m exp.} \sim \langle\Psi|\mathcal{O}_{
m EM}|\Psi
angle \end{aligned}$

Magnetic dipole moment:
$$\langle \mu
angle = \sqrt{rac{J}{(J+1)(2J+1)}} \langle J || \mu || J
angle$$

- Magnetic dipole operator: $m{\mu}=rac{e\hbar}{2m_p}\sum_i \left(g_i^lm{l}_i+g_i^sm{\sigma}_i
ight)$ Point-nucleon approximation

• Neighbors of doubly magic:
$$|J\rangle \approx |\text{Core}:0^+\rangle \otimes |j_p\rangle, \ j_p = J$$

Schmidt limit

$$\langle \mu \rangle = \frac{e\hbar}{2m_p} \langle l_p j_p || g_i^l \boldsymbol{l}_i + g_i^s \boldsymbol{\sigma}_i || l_p j_p \rangle = j_p \left[g_l \mp (g_l - 2g_s) \frac{1}{2l_p + 1} \right], \ \left(j_p = l_p \pm \frac{1}{2} \right)$$

T. Schmidt 1937

- Good agreement with data.
 - The deviation from the Schmidt value indicates how much the 0+ core is broken.

筑波大学

計算科学研究センター

 $\operatorname{sp} g^{\operatorname{free}}$

Expt.

 $sp g^{eff}$

VS-IMSRG

Expt. USDA-EM1

USDB-EM1

VS-IMSRG

A

39

37

Ab initio IMSRG calculations

³⁹Ca

CP is included non-perturbatively!

literature

N = 20

+0.124

(+0.3915073(1)) 24

+0.469

-0.035

+0.677

+0.675

+0.290

37C 0.6841236(4) [25]

A. Klose et al., Phys. Rev. C 99, 061301 (2019).

Z = 20

+1.148+1.0217(1) [23]

+0.930

+1.349

+0.770

+0.754

+1.055

³⁷Ca (+0.7453(72))

³⁹K

A. R. Vernon et al., Nature 607, 260 (2022).

6

Nuclear ab initio calculation

		2N Force	3N Force	4N Force	
	${f LO}\ (Q/\Lambda_\chi)^0$	\times			
	$\frac{\mathbf{NLO}}{(Q/\Lambda_\chi)^2}$	Xeld			
	$\frac{\mathbf{NNLO}}{(Q/\Lambda_{\chi})^3}$		-+- 		
	${f N^3 LO} {(Q/\Lambda_\chi)^4}$		+} 4 >4 X+-	†- ∧ -†	
	${f N}^4 {f LO} \ (Q/\Lambda_\chi)^5$			- • •X	

Nuclear many-body problem

- Green's function Monte Carlo
- No-core shell model
- Nuclear lattice effective field theory
- Self-consistent Green's function
- Coupled-cluster
- In-medium similarity renormalization group
- Many-body perturbation theory

Nuclear interaction from chiral EFT

Weinberg, van Kolck, Kaiser, Epelbaum, Glöckle, Meißner, Entem, Machleidt, ...

- Lagrangian construction
 - Chiral symmetry
 - Power counting
- Systematic expansion
 - Unknown LECs
 - Many-body interactions
 - Estimation of truncation error

Figure is from E. Epelbaum, H. Krebs, and P. Reinert, Front. Phys. 8, 1 (2020).

Nuclear currents from chiral EFT

- Nuclear observables (EM properties, beta decay, ...) are measured through the interaction between a nucleus and external field.
- Chiral EFT allows us a systematic expansion for charge and current operators.

Nuclear currents from chiral EFT

- 筑波大学 計算科学研究センター **Center for Computational Sciences**
- Nuclear observables (EM properties, beta decay, ...) are measured through the interaction between a nucleus and external field.
- Chiral EFT allows us a systematic expansion for charge and current operators. Single-nucleon Two-nucleon Three-nucleon 7 I i **≡** Q-3 3 - ³ H ∞ 2 ····-···· ··· ··· ··· ¹⁰B Q-1 1 ⁶Li **₽₽**₩ (^Nಗ) ಗ Q^0 0 Q1 -1⁷Be ⁹Be∎🌺 depend on d8.9.18.21.22 parameter-free depend on CT (known) 002 -2 ³He G. Chambers-Wall et al., arXiv: 2407.04744. parameter-free -3 GFMC la* N3LO VMC la* N3LO Experiment VMC IIb* N3LO O VMC IIb* LO GFMC la* LO ☆ depend on $C_{2,4,5,7}$ depend on C₁ and L₁₂ (known Vector (EM observables, ...)

What about in heavier systems?

Nuclear currents from chiral EFT

- ^{筑波大学} 新算科学研究センター Center for Computational Sciences
- Nuclear observables (EM properties, beta decay, ...) are measured through the interaction between a nucleus and external field.
- Chiral EFT allows us a systematic expansion for charge and current operators.

$$r_{ch}^{2} = -\frac{6}{Z} \frac{1}{(4\pi)^{3/2}} \lim_{Q \to 0} \frac{d}{dQ^{2}} \int d\hat{Q}\tilde{\rho}(Q)$$

$$LO \ 2BC \ appear \ at \ Q^{1} \ order \ (N^{3}LO)$$

$$Q_{20} = -\frac{15}{8\pi} \lim_{Q \to 0} \frac{d^{2}}{dQ^{2}} \int d\hat{Q}Y_{20}(\hat{Q})\tilde{\rho}(Q)$$

$$M_{10} = -i\frac{3}{8\pi} \lim_{Q \to 0} \frac{d}{dQ} \int d\hat{Q} \left\{ [\boldsymbol{Q} \times \nabla_{\boldsymbol{Q}}] Y_{10}(\hat{\boldsymbol{Q}}) \right\} \cdot \tilde{\boldsymbol{j}}(\boldsymbol{Q})$$

or
$$\boldsymbol{M} = -\frac{i}{2} \sqrt{\frac{3}{4\pi}} \lim_{Q \to 0} \nabla_{\boldsymbol{Q}} \times \tilde{\boldsymbol{j}}(\boldsymbol{Q})$$

^{xix大学} Valence-space in-medium similarity renormalization groups 計算科学研究センター Center for Computational Sciences

^{Xix大学} Valence-space in-medium similarity renormalization groups 計算科学研究センター Center for Computational Sciences

Magnetic dipole moments

- Magnetic moment from IMSRG.
 - 1.8/2.0 (EM) interaction
- Single-particle analytical limits do not always explain the experimental data.
- IMSRG gives better agreements, but not perfect.
 - Suppression from many-body correlation

Magnetic dipole moments

- Magnetic moment from IMSRG.
 - 1.8/2.0 (EM) interaction
- Single-particle analytical limits do not always explain the experimental data.
- IMSRG gives better agreements, but not perfect
- 2BC globally improves the magnetic moments.
 - Enhancement from 2BC

Is ⁴⁰Ca magic?

- 2BC makes agreement worse.
- Activating the ⁴⁰Ca core explains the magnetic moments better.
- The radii are not explained. Further investigations are needed!

 $s_{1/2}d_{3/2}f_{7/2}p_{3/2}(\beta = 3)$ —∎— pf \neg − $s_{1/2}d_{3/2}f_{7/2}p_{3/2}(β = 4)$

42

44

^ACa

46

48

16

筑波大学

計算科学研究センター **Center for Computational Sciences**

Mass dependence of 2B contribution

• The size of 2BC contribution is larger in heavier systems.

Mass dependence of 2B contribution

- The size of 2BC contribution is larger in heavier systems.
- The simplest configuration limit is 0⁺ core + 1 particle (or hole) $\langle J||\mu||J
 angle \sim \sum \int f(j_p, j_q, I) \langle pq: I||\mu||pq: I
 angle$ $a \in \text{core}$ I
- $|\mathbf{r}_p \mathbf{r}_q| \lesssim 1-2$ fm because of pion-exchange potential

The peak position moves to larger R for heavier systems.

 $\mu^{\rm 2B} = \mu^{\rm 2B}_{\rm intr} + \mu^{\rm 2B}_{\rm Sachs}$

Dominant in heavy systems

TM et al., Phys. Rev. Lett. 132, 232503 (2024).

計算科学研究センター **Center for Computational Sciences**

筑波大学

 $\mu_{\mathrm{Sachs}}^{\mathrm{2B}} \propto \sum_{i < j} (\boldsymbol{R}_{ij} \times \boldsymbol{r}_{ij}) V^{\mathrm{OPE}}(r_{ij})$

18

2BC effect on M1 transition

M1 transition in pf-shell nuclei

2BC slightly enhances the major

0

1.8/2.0(EM)

 $\Delta NNLO_{GO}(394)$

 $\Delta NNLO_{GO}(450)$

NNLO_{sat}

B(M1)'s.

ESPM

12

 $\rightarrow 1^+)$ (μ_N^2)

 $B(M1:0^+$

Recent CC study found similar results

CCSD(1B)

 (γ, n)

(e, e')

B. Acharya et al., Phys.Rev.Lett. 132, 232504 (2024).

CCSD(1+2B)

Exp. W. Steffen et al., Nucl. Phys. A 404, 413 (1983); D. I. Sober et al., Phys. Rev. C 31, 2054 (1985).

VS-IMSRG(2), 1.8/2.0 (EM)

Summary

Magnetic dipole moments

- ♦ For most of doubly-closed shell nuclei +/- 1 systems, the 2BC improves the agreements.
- ◆ 2BC effect becomes large for heavier systems due to the 2B CM dependence of the operator.
- M1 transitions
 - 2BC effects are small in all the test cases.

```
◆ For <sup>48</sup>Ca B(M1 0+—> 1+; 10.23 MeV), the 34 NI interactions yield ~ 5 - 8 \muN<sup>2</sup>.
```

*Uncertainty quantification is required to make a conclusion

- Future works:
 - 2BC effect with finite momentum transfer Q
 - Uncertainty quantification

Backup slides

Normal ordering wrt a single Slater determinant

^{筑波大学} 新算科学研究センター Center for Computational Sciences

Initial Hamiltonian is expressed with respect to nucleon vacuum

$$H = \sum_{pq} t_{pq} a_p^{\dagger} a_q + \frac{1}{4} \sum_{pqrs} V_{pqrs} a_p^{\dagger} a_q^{\dagger} a_s a_r + \frac{1}{36} V_{pqrstu} a_p^{\dagger} a_q^{\dagger} a_r^{\dagger} a_u a_t a_s$$

Hamiltonian normal ordered with respect to a single Slater determinant

$$H = E_0 + \sum_{pq} f_{pq} \{a_p^{\dagger} a_q\} + \frac{1}{4} \sum_{pqrs} \Gamma_{pqrs} \{a_p^{\dagger} a_q^{\dagger} a_s a_r\} + \frac{1}{36} W_{pqrstu} \{a_p^{\dagger} a_q^{\dagger} a_r^{\dagger} a_u a_t a_s\}$$

$$E_{0} = \sum_{pq} t_{pq} \rho_{pq} + \frac{1}{2} \sum_{pqrs} V_{pqrs} \rho_{pr} \rho_{qs} + \frac{1}{6} \sum_{pqrstu} V_{pqrstu} \rho_{ps} \rho_{qt} \rho_{ru}, \quad \Gamma_{pqrs} = V_{pqrs} + \sum_{tu} V_{pqtrsu} \rho_{tu}$$

$$f_{pq} = t_{pq} + \sum_{rs} V_{prqs} \rho_{rs} + \frac{1}{2} \sum_{rstu} V_{prsqtu} \rho_{rt} \rho_{su}, \qquad \qquad W_{pqrstu} = V_{pqrstu}$$

• Normal ordered two-body (NO2B) approximation: $\frac{1}{4} \sum_{pqrs} \Gamma_{pqrs} \{a_p^{\dagger} a_q^{\dagger} a_s a_r\}$

Many-body problem: similarity transformation methods

Similarity transformation

|ref> |1p1h> |2p2h>

筑波大学

計算科学研究センター Center for Computational Sciences

• How can we find Ω operator?

Coupled-cluster method (CCM), in-medium similarity renormalization group (IMSRG), ...

Model-space convergence

- NN+3N Hamiltonian (harmonic oscillator basis)
- Parameters:
 - hw
 - emax=max(2n+I)*
 - ◆ E_{3max}=max(e₁+e₂+e₃).

 As emax and E3max increases, the observable should not depend on all the parameters.

E_{3max} convergence in heavy nuclei

[S. Binder et al., Phys. Rev. C 87, 021303 (2013).]

TM, S. R. Stroberg, P. Navrátil, K. Hebeler, and J. D. Holt, Phys. Rev. C 105, 014302 (2022).

Radii

Convergence of ²⁰⁹Bi

$$\begin{split} E(L_{\text{eff}}) &= E_{\infty} + A_{\infty} \exp(-2k_{\infty}L_{\text{eff}}) \\ L_{\text{eff}} &= \sqrt{\frac{\sum_{nl} n_{nl}^{\text{occ}} a_{nl}^2}{\sum_{nl} n_{nl}^{\text{occ}} \kappa_{nl}^2}}, \ \kappa_{nl}^2 \approx \frac{a_{nl}^2}{2b^2(N_l + 7/2)} \\ b^2 &= \frac{\hbar}{m\omega} \\ N_l &= \begin{cases} e_{\max} & e_{\max} + l \equiv 0 \pmod{2} \\ e_{\max} - 1 & e_{\max} + l \equiv 1 \pmod{2} \\ n_{nl}^{\text{occ}} : \text{occupation number of an orbit specified by } n \text{ and } l \end{cases} \end{split}$$

 $a_{nl}: (n+1)$ -th zero of the spherical Bessel function

28

Magnetic moments of In isotopes

VS-IMSRG(2), 1.8/2.0 (EM), emax=14, E3max=24, hw = 16 MeV

2B contribution with the simplest limit

• Expectation value: $\langle J||\mu||J
angle$

The simplest limit:
$$|JM\rangle = [|j_1 \dots j_{A-1} : 0^+\rangle \otimes |j_p m_p\rangle] \delta_{j_p J} \delta_{m_p M}$$

• The expectation value depends a particle in the core and last unpaired particle.

$$\begin{split} \langle J||\mu||J\rangle &\approx \delta_{Jj_p} \sum_{q \in \text{core}} \langle p0: j_p||\mu_{pq}||p0: j_p\rangle \\ &= \delta_{Jj_p} \sum_{q \in \text{core}} \sum_{I} \frac{2I+1}{(2j_p+1)(2j_q+1)} \langle ((pq)I, q: j_p||\mu_{pq}||(pq)I, q: j_p\rangle \\ &= \delta_{Jj_p} \sum_{q \in \text{core}} \sum_{I} \frac{2I+1}{2j_q+1} (-1)^{j_p+j_q+I+1} \left\{ \begin{array}{cc} j_p & I & j_q \\ I & j_p & 1 \end{array} \right\} \langle pq: I||\mu||pq: I\rangle \end{split}$$

2B contribution with the simplest limit

• The simplest limit: $|JM\rangle = [|j_1 \dots j_{A-1} : 0^+\rangle \otimes |j_p m_p\rangle] \delta_{j_p J} \delta_{m_p M}$

• A simpler expression:

$$\begin{split} \langle \mu \rangle &\sim \sum_{q \in \text{core}} \langle pq | \bar{\mu} | pq \rangle \\ \langle pq | \bar{\mu} | pq \rangle &= \delta_{Jj_p} \sqrt{\frac{1}{2J+1}} \mathcal{C}_{J0J}^{J1J} \sum_{I} \frac{2I+1}{2j_q+1} (-1)^{j_p+j_q+I+1} \left\{ \begin{array}{c} j_p & I & j_q \\ I & j_p & 1 \end{array} \right\} \\ &\times \frac{\sqrt{2I+1}}{\mathcal{C}_{J+m_q0J+m_q}^{I1I}} \left[\mathcal{C}_{Jm_qJ+m_q}^{j_pj_qI} \right]^2 \frac{1}{1+\delta_{n_pn_q} \delta_{l_pl_q} \delta_{j_pj_q} \delta_{t_{z,p}t_{z,q}}} \langle pq | \mu | pq \rangle \end{split}$$

Magnetic dipole operator

$$\begin{split} \boldsymbol{\mu} &= -\frac{i}{2} \nabla_{\boldsymbol{Q}} \times \begin{pmatrix} \boldsymbol{p}' \\ \boldsymbol{Q} \\ \boldsymbol{p} \end{pmatrix} \rightarrow \mu_{N} \sum_{i} \left(g_{i}^{s} \boldsymbol{\sigma}_{i} + g_{i}^{l} \boldsymbol{l}_{i} \right) \qquad (\boldsymbol{Q} \rightarrow 0) \\ \boldsymbol{\mu} &= -\frac{i}{2} \nabla_{\boldsymbol{Q}} \times \begin{pmatrix} \boldsymbol{p}'_{1} & \boldsymbol{p}'_{2} & \boldsymbol{p}'_{1} \\ \boldsymbol{p}_{1} & \boldsymbol{Q} \end{pmatrix} \stackrel{\boldsymbol{p}'_{2}}{\rightarrow} \stackrel{\boldsymbol{p}'_{1}}{\rightarrow} \stackrel{\boldsymbol{q}'_{1}}{\rightarrow} \stackrel{\boldsymbol{p}'_{2}}{\boldsymbol{p}_{2}} \end{pmatrix} \rightarrow \sum_{i < j} \boldsymbol{\mu}_{ij}^{\text{intr}} + \boldsymbol{\mu}_{ij}^{\text{Sachs}} \qquad (\boldsymbol{Q} \rightarrow 0) \\ \boldsymbol{\mu}_{ij}^{\text{intr}} &= -\mu_{N} \frac{g_{A}^{2} m_{\pi} m_{p}}{16 \pi f_{\pi}^{2}} (\boldsymbol{\tau}_{i} \times \boldsymbol{\tau}_{j})_{z} \left\{ \left(1 + \frac{1}{x_{ij}} \right) \frac{\left[(\boldsymbol{\sigma}_{i} \times \boldsymbol{\sigma}_{j}) \cdot \boldsymbol{x}_{ij} \right] \boldsymbol{x}_{ij}}{x_{ij}^{2}} - (\boldsymbol{\sigma}_{i} \times \boldsymbol{\sigma}_{j}) \right\} e^{-x_{ij}} \\ \boldsymbol{\mu}_{ij}^{\text{Sachs}} &= -\mu_{N} \frac{g_{A}^{2} m_{\pi} m_{p}}{48 \pi f_{\pi}^{2}} (\boldsymbol{\tau}_{i} \times \boldsymbol{\tau}_{j})_{z} (\boldsymbol{R}_{ij} \times \boldsymbol{x}_{ij}) V_{ij}(x_{ij}) \\ V_{ij}(x_{ij}) &= \left[S_{ij} \left(1 + \frac{3}{x_{ij}} + \frac{3}{x_{ij}^{2}} \right) + (\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}) \right] \frac{e^{-x_{ij}}}{x_{ij}} - \frac{1}{x_{ij}^{2}} (\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}) \delta(x_{ij}) \\ \boldsymbol{x}_{ij} &= m_{\pi} \mathbf{r}_{ij} \end{split}$$