RIKEN

KEK-JAPAN

The success and future perspectives for high-precision atomic mass measurements using MRTOF-MS at RIBF

Marco Rosenbusch for RIKEN/SLOWRI and the WNSC-IPNS-KEK collaboration RIKEN Nishina Center for Accelerator-based Science 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

- Little starter: a short overview of MRTOF setups at the RIBF facility
- MRTOF-MS and the new setup at BigRIPS/SLOWRI
- Essential tools to save our bread
- Timeline of the ZD MRTOF experiment
- Great recent results!
- How about future developments?

Masses for nuclear structure and astrophysics

Nuclear structure by finite difference formulae $S_{2n}(N,Z) = m(N-2,Z) - m(N,Z) + 2m_n$ $\Delta_{2n}(N,Z) = S_{2n}(Z,N) - S_{2n}(Z,N+2)$

Current MRTOF facilities at RIBF

H.Wollnik and M. Przewloka, Int. J. Mass Spectrom. Ion Proc. 96, 267 (1990)

Mass accuracy study (isobaric referencing):

Wideband mass accuracy?

- Yes, possible and formerly used with dedicated t₀ calibration
- However: we must be aware, MRTOF-MS is not fully electrostatic

ZD MRTOF-MS overview

New He gas-filled ion catcher (or also "radiofrequency gas cell" RFGC)

- Beam-energy degrader is used to slow down the beam
- If energy matches the stopping power of the gas, the ions will stop inside the volume

- Energy adaption available by pulsed drift tube
- In-trap ion separation available (two methods tested)
- Beta-TOF detection available

M. Rosenbusch et al., Nucl. Instr. Meth. A 1047, 167824 (2023)

Essential tools

Essential tools: In-MRTOF deflector

- Selective kick-out possible
- Selective protection of several masses now possible
- Proper design: Kick out of unwanted ions with weak (20 V) pulse

First MRTOF in-trap cleaning with deflector: Y. Toker *et al.*, J. Instrum. 4, P09001 (2009).

Development of deflectors:

T. Dickel *et al.*, Nucl. Instrum. Meth. 777, 172 (2015). P. Fischer *et al.*, Rev. Sci. Instrum. 89, 015114 (2018).

Usage of mirror endcaps: J. T. Johnson *et al.*, Anal. Chem. 91, 8789 (2019).

- Selecting various isobar groups at the same time
- Selecting the moments and number of pulses
- Calculating crossing time for all selected isotopes
- Defining "safety region" (distance from IMD), including asymmetry of motion (Down-Up / Up-Down)
- Generating pulse-train sequence

Up-Down

Writing memory of sequencer svncing to new sequence

logical NOR condition for *n* ion masses

Down-Up

Essential tools: In-MRTOF deflector

Range 1D-Optimizer: Isotopes stopped in gascell

- Easy-to-go degrader scanning
- Focusing on several isotopes simultaneously
- Background-free measurement

Marco Rosenbusch, SSNET24 conference, Orsay, France, 07.11.2024

Essential tools: α/β – TOF detector ToF-decay correlated mass spectroscopy

T. Niwase et al., Prog. Theo. Exp. Phys. 2023(3), 031H01 (2023), T. Niwase et al., Phys. Rev. C 104, 044617 (2021), T. Niwase et al., Nucl. Instrum. Meth. A 953, 163198 (2020)

MRTOF-MS setup

RI-beam delivery line

- Basic assembly from 2018
- Starting offline GC development in 2019
- GC coupled to MRTOF-MS spring/summer 2020
- Transport to ZD spectrometer fall 2020
- First commissioning with in-beam gamma in winter 2020
- First dedicated run on Ni isotopes winter 2021 / spring 2022
- Accelerator broken from winter 2022
- Development of subsequent spectroscopy during 2023
- Combined in-beam gamma, MRTOF-MS, and decay spec. 2024

- ~ 70 mass measurements in different regions of the nuclide chart
- Three nuclear masses measured for the first time
- Eleven nuclear masses improved in precision
- Total system efficiency measured (0.3% 1.5%)

W. Xian, S. Chen et al., Phys. Rev. C 109, 035804 (2024)

M. Rosenbusch et al., Nucl. Instr. Meth. A 1047, 167824 (2023)

D.S. Hou, A. Takamine et al., Phys. Rev. C 108, 054312 (2023)

S. limura, M. Rosenbusch et al., PRL 130, 012501 (2023)

Marco Rosenbusch, SSNET24 conference, Orsay, France, 07.11.2024

D.S. Hou, A. Takamine et al., Phys. Rev. C 108, 054312 (2023)

Mass measurements of ⁷³⁻⁷⁵Ni, and beta-TOF POP measurements

2023-2024 Development of a vacuum beam line for subsequent decay spectroscopy

TOF and beta-TOF signal added to same DAQ (CAEN waveform recorders)

Fri May 17 20:25:85 2024

Great recent results!

And it works!

Great recent results!

Little disclaimer:

Our pins mean: "Candidates"! They don't necessarily tell that it is already a proper (publishable) measurement. ;-)

	54	Sb 121.760	Sb 103 >1.5 μs	Sb 104	Sb 105 1.12 s	Sb 106 1.1 s
51		σ 5.2	p? β ⁺ ?	B+	β ⁺ βp ?	β ⁺ γ 1207; 811
Sn 118.710	Sn 100 β+ 3.4 γ	Sn 101 3 s ^{B⁺} Bp 2-3.5	Sn 102 3.8-s β ⁺ 3.2; 3.5 γ 320; 94; 69; 1063	Sn 1C3 7 ^ s β ⁺ γ 1356; 314; 1397; 1078 βρ; g; m	Sn 104 20 9 s β*2, γ 133; 913; 401; 1407 m; g	Sn 105 34 s β ⁺ γ 1282; 1466; 309; g; m βp 1–3
In 98 1.7 s 45 r + p 7 8 p 7	In 99 3.1 s β βp ?	In 100 5.9 s β ⁺ γ 100., γ95; 297 βp 2-4	In 101 16 s γ 252; 750; 421; 891	In 102 22.1 s β ⁺ 3.5 γ777, 601; 593 βp 1.5-3	In 103 34 s 60 s 1 ⁴ 188: 720: 740	In 104 15.7 s 1.8 m 15.7 s 1.8 m 4.3 17 (09) 658; 654; 878
Cd 97	Cd 98 9.2 s β ⁴ γ 347; 1176; 107; 61	Cd 99 16 S β ⁺ γ 343; 672; 1583 βρ; g; m	Cd 100 49.1 s β ⁺ γ937; ++0; 563 m	Cd 101 1.2 m β ⁺ γ98; 1723; 1259; 925 g; m	Cd 102 5 m ε; β ¹ γ481; 1037; 505; 415 m	Cd 103 7.3 m ε; β ⁺ 3.2 γ 1462; 1449; 1080; 387 g; m
Ag 96	Ag 97 25.3 s γ 686; 1295; 1256	Ag 98 β ⁺ γ 863; 679; 571	Ag 99 10.5 2.1 m β ⁺ 4.2 γ 264; 832; 806	Ag 100 2.3 m 2.0 m 4 3.4; 7 666; 7 51; 1694 751; 773	Ag 101 3.1.s. 11.1 m 2.7: 4 7 261; 588; 667; 176	Ag 102 8 m 13 m β ⁺ 40 β ⁺ 2.3 γ 557: 719: γ557: 836: 1835 1745
Pd 95	Pd 96 20 m «; β. γ 125; 762; 500; 1099 m	Pd 97 3.1 m β*3. γ265; 475; 793 9	Pd 98 17.7 m •: B1 • y 112; 107 9	Pd 99 21.4 m β ⁺ 2. γ 136;; 673 m	Pd 100 3.7 d e no β ⁺ γ84; 75; 126 g	Pd 101 8.47 h β+0.5 γ296; 590; 270; m
Hh 94 γ 1431: 756: 1073:βρ 146	Rh 95 .8 s 1.96 m 5.0 m 31; λy 543 β ⁺ 3.2 γ 784 1352	Rh 96 1.5 m 9.9 m ^{hγ} (52): σ ⁻ β* 3.3 γ 633; 7 633; 1099; 685; 1692 632	Rh 97 44 m 31 m 4422 1/7 259 879	Rh 98 3.5 m 8.7 m β* 3.5 γ 652; β* 3.5 7652 γ 652	Rh 99 4.7 h 16 d β*0.7 β*0.7; γ 341; 1.1 618; γ 528; 1261 353; 90	Rh 100 4.7 m 20.8 h γ 32; 74 β+2.6 γ 540; 2376; 387) 2376; 1553

Great recent results!

Marco Rosenbusch, SSNET24 conference, Orsay, France, 07.11.2024

Finding ways for more fruitful decay spectroscopy tagged on masses

We need to increase the efficiency

Making the electrostatic system more electrostatic

Outreach: Mass spectrometry in space with NASA

William B Brinckerhoff

Search for signs of former life:

- Certain molecules can only be formed by living beings
- Identification by mass spectrometers
- MRTOF-MS technology is robust and able to survive in space environments

Summary

- The ZD MRTOF-MS became one of the most successful projects for mass measurements of the recent years!
 → 68 isotopes published!
- Background problems in case of low production rates are tackled by efficient use of an IMD system, and beta-correlated mass spectroscopy
- From test setup to ready-to-use device in about four years of time line
- Development of combined runs with in-beam gamma campaigns
 powerful proposals
- Development of through-beam experiments for simultaneous decay spectroscopy

香港大學 THE UNIVERSITY OF HONG KONG

IMP

KISS collaboration

Thanks to:

- SHE mass collaboration
- ZD MRTOF collaboration

The SHE Mass facility and status of ^{257,258}Db mass measurements

Actinide and SHE mass measurement overview

- Production of transuranium isotopes is a major challenge
- Available data is still very scarce
- Only a few projects presently join the efforts of HPMS

The SHE Mass facility and status of ^{257,258}Db mass measurements SHE-Mass facility overview

- System efficiency ~5%
 - 25%~30% stopping+extraction
 - ~20% transport
- MRTOF ~300k MRP in the first measurement
- Recently increased to 750k MRP

signal

α-TOF

α-decay

signal

detector

Ejection

mirror

The SHE Mass facility and status of ^{257,258}Db mass measurements

The KISS facility and the discovery of a new uranium isotope

Schematic view of KISS-MRTOF

- Beam : ²³⁸U 10.75 MeV/nucleon ~30pnA
- Target : ¹⁹⁸Pt target (enriched to 91.63%) ~30pnA

The KISS facility and the discovery of a new uranium isotope

High-precision mass measurements of n-rich Ga-Br isotopes

- Theoretical work by S. Nikas
- Pinning down reaction rates for neutron capture
- Comparing r-process abundance using new data
- Dynamic evolution of Sr yield motivated by GW170817

W. Xian, S. Chen et al., under review at PRC

High-precision mass measurements of n-rich Mo isotopes

Parasitic experiment of HiCARI (in-beam gamma) Campaign: W. Korten

D. Hou *et al.*, now accepted by PRC!!!

TABLE I. Measured radioactive isotopes, the reference ion, measured mass excess $ME_{\rm MRTOF}$, mass excess from literature AME2020 $ME_{\rm AME2020}$, mass deviation calculated as $\Delta m = ME_{\rm MRTOF}$ - $ME_{\rm AME2020}$. Extrapolated values of AME2020 are denoted by #, and the total number of the detected ions $N_{\rm ion}$ in this work.

		ME_{MRTOF}	$ME_{\rm AME2020}$	Δm	$N_{ m ion}$
Species	Ref. ion	$({ m keV}/c^2)$	(keV/c^2)	(keV/c^2)	(Counts)
¹¹¹ Ag	¹¹¹ Tc	-88195.22(15.40)	-88215.48(1.46)	20.23(15.47)	115
¹¹¹ Pd	¹¹¹ Tc	-86010.80(14.17)	-85985.89(0.73)	-24.91(14.19)	125
111 Rh	¹¹¹ Tc	-82318.53(11.28)	-82303.87(6.85)	-14.66(13.19)	262
¹¹¹ Ru	¹¹¹ Tc	-76791.50(9.16)	-76785.33(9.69)	-6.17(13.33)	743
¹¹¹ Mo	¹¹¹ Tc	-59939.88(8.47)	-5995981(1258)	-0.07(15.16)	1300
112 Sn	112 Tc	-88667.21(14.43)	-85, 15, 5(0.29)	-12.16(14.44)	83
112 Pd	112 Tc	-86323.23(23.68)	8.221.04(6.55)	-2.19(24.57)	34
$^{112}\mathrm{Ru}$	112 Tc	-75626.83(6.55)	-(5630.87(9.60))	4.05(11.62)	493
¹¹² Mo	¹¹² Tc	-57469.80(7.51)	-57480.00(200.00)#	10.21(200.14)	283
¹¹⁰ Ag	110 Tc	-86994.56(40.56)	-87026.83(16.64)	32.26(43.84)	16
¹¹³ Pd	¹¹³ Tc	-83574.42(47.75)	-83590.50(6.95)	16.08(48.26)	18
¹¹³ R.h	¹¹³ Tc	-78783.08(15.9	-78766.94(7.13)	-16.13(17.45)	80
$^{113}\mathrm{Ru}$	¹¹³ Tc	-71866.53(6.33)	-71867.82(38.28)	1.29(38.80)	1051

moderate efficiency: 0.5%

High-precision mass measurements of n-rich Mo isotopes

Learning how to extrapolate...

- BML mass model using machine learning
- New data included into BML code in this study