

Physics results and perspectives

Cyclotrons and their experimental equipment

A strong program with the large variety spectrometers/detectors :

- VAMOS++ and the fission revival
- LISE and the « tandem » mode
- MUST2/MUGAST campaign
- ACTAR-TPC active target
- INDRA+FAZIA
- AGATA@GANIL.2

New SPIRAL1 beams

But an increase of accelerator failures

=>Cyclotron refurbishing program CYREN

GANIL

Damping of shell effects in nuclear fission (E850, J. Taieb et al)

²³⁸U beam (6MeV/u) + ¹²C target \rightarrow Actinide fissioning systems

VAMOS

- Isotopic identificaton fo fission fragments
- Full fission fragment distribution
- Fission fragment velocity

Evolution of fission yields with the excitation energy

- PISTA (Silicon Telescope)
 - Selection of the incoming channel (A, Z, Ex)
 - Fission probability

Fission

Fission

Fission

(E849, D. Ramos et al)

²³²Th beam (6MeV/u) + ¹²C target \rightarrow New fissioning systems around Th

Clustering

(E870 V. Alcindor)

Cluster structure of the gs of light exotic nuclei beyond alpha clustering

Scientific goal

Test of recent generalized density fonctional theory predicting that the light clusters d, t, ³He and ⁴He are all formed at approximately 1/10 of the nuclear saturation density, a condition typically reached in the surface region of nuclei. Also prediction of favorable triton formation in n-rich matter.

https://people.physics.anu.edu.au/~ecs103/chart/

Experimental method

- Cluster removal from ^{10,12}Be on CH₂ and CD₂ targets -> (p,X) and (d,X) reactions
- Detection of light ejectiles (X = α ,⁶Li) with MUGAST and the heavy residue with LISE ZDD

Preliminary results

- On line observation of alpha and triton structuration in ¹⁰Be : (d,⁶Li) and (p, α) reactions
- Good hope to observe triton structuration in ¹²Be

(E819S H. Savajols et al.)

- ⁶He¹⁺ SPIRAL1 world record beam intensity (2×10⁸ pps)
- Neutron multidetector TETRA with 50% efficiency

PHYSICAL REVIEW LETTERS 132, 132501 (2024)

Upper limit at 4x10⁻¹⁰ (95% C.L.) ¹² ^{10⁻⁹} ^{10⁻¹⁰} ^{10⁻¹⁰</sub> ^{10⁻¹⁰} ^{10⁻¹⁰</sub> ^{10⁻¹⁰} ^{10⁻¹⁰</sub> ^{10⁻¹⁰} ^{10⁻¹⁰</sub> ^{10⁻¹⁰</sub> ^{10⁻¹⁰} ^{10⁻¹⁰} ^{10⁻¹⁰} ^{10⁻¹⁰} ^{10⁻¹⁰</sub> ^{10⁻¹⁰}}}}}}}

Deposited energy threshold (keV)

Exclusion Diagram

Dark matter

 $n \rightarrow dark matter$ Fornal and Grinstein, PRL120(2018)191801

⁶He

GANIL

Is there a dark decay of neutrons in ⁶He ?

8

GANIL : a constant upgrade to meet user needs

SPIRAL1 upgrade

GANIL

• The charge breeder

GANIL is putting a strong effort on SPIRAL1 in-beam tests

50 new isomers/isotopes With intensities suitable for acceleration

- 58 primary beams from ¹²C to ²³⁸U
- Graphite target (so far)

SPIRAL2 and the new experimental rooms

NFS (NEUTRONS FOR SCIENCE)

Accélérateur linéaire (LINAC)

DESIR (Decay, Excitation and storage of radioactive ions)

A new accelerator ramping up:

First operation experimental area and the first neutrons at GANIL/SPIRAL2: NFS first campaigns and results

Super Separator Spectrometer

DESIR project

Second injector (NEWGAIN)

ION SOURCE

Beams : 33 MeV protons 40 MeV deutons <14,5 MeV/nucleon ions lourds

S³ (SUPER SEPARATOR SPECTROMETER)

Experiments @ SPIRAL2

GANIL

E838 21, E. Clément, EXOGAM in TOF hall

Nuclear structure

Radioisotope

Structure of ⁵⁶Ni using ⁵⁸Ni(n,3n) reaction

12 EXOGAM clovers placed at 8.6 meters from the production target around Ni target

Tests REPARE, G. De France, converter room Production of At in NFS converter room with He beam

 \rightarrow Hardware, soft, beam synchro, vacuum, handling, production yield could be tested \rightarrow but no shipment to ARRONAX...

New beam time in September 2024 : production of At (1 GBq in 3 targets) and shipment to ARRONAX of 2 targets, but At also detected at the SPIRAL2 chimney, outside GANIL authorization (no impact on environment, of the order of nSv)

Experiments @ SPIRAL2

E858_22 D. Tarrio, MEDLEY

GARROS: neutron-induced light charged particles emission with MEDLEY Applications : Energy - electronic SEU Improvement of reaction models

n - induced activation

n - induced reaction

E835_21 V. Blideanu (DES)

Measurement of the n-induced activation in materials: improvement of nuclear reaction models and decay data libraries for radiation therapy electron accelerators

Fission

Cea

Multichance probabilities Probability JEFF-3.3 JEFF-3.3 - GEF CGMF CGMI CGMF SCONE GEE - GEE + SCONE + SCONE Third Second Neutron energy (MeV)

> E856_22 G. Belier et al (DAM)

Study of neutron induced reactions on ²³⁹Pu

²³⁹Pu fission chamber leaked : stop of experiment and heavy procedures for dismounting and decontamination

Super Separator Spectrometer

Super Separator Spectrometer

• High selectivity > 10^{13} - High efficiency 50 % - In flight mass separation = 500

• Versatility & unique instrumentation (SIRIUS – LEB)

Super Separator Spectrometer

- > All major equipments installed
- Cryogenic system tests with 6 SMTs succesfull
- One SMT presents failures : on-going work to repair
- Electric dipole : follow-up of actions to increase high-voltage
- First beam on target : November 21st 2024 !!
- Optical commissioning end 2025
- ➢ S³-SIRIUS (decay spectroscopy of VHE-SHE)
- ➢ S³-LEB (in gas jet laser, mass and decay spectroscopy)

GANIL

- ➢ S³-LEB moved from LPC to S³ hall
- New laser lab taking shape
- Perspective online commissioning

2026: Start physics commissioning of S³

- ¹¹⁶Sn(⁴⁰Ar, 4n)¹⁵¹Er: Single-particle states and high-spin isomers around the N = 82 shell closure
- Production of actinium (⁴⁰Ar + ¹⁷⁵Lu and ²⁰Ne + ¹⁹⁷Au)
- Production of N = Z nuclei (⁵⁰Cr + ⁵⁸Ni)

Some pictures on DESIR building site

- Building permit received in June 2023
- Building site inauguration November 10th 2023
- Building infrastructure well advanced
- Building reception 2025
- First test with beam end 2027

Structuration and organization of DESIR experiments

New injector for SPIRAL2: NEWGAIN

Floorplan, design intensities and time line

>> NEWGAIN

GANiL

FRANCE 203

Emergency Exit		m nsities	injector1 2023	NEWGAII	(injector2) ≥ 2030
LIVIEZ Future Low Energy Physics Cave		lons	Intensity (pµA) Phoenix V3 RFQ A/Q≤3	Intensity (pµA) Phoenix V3 RFQ A/Q≤7	Intensity (pµA) SC Ion Source RFQ A/Q≤7
SC source LBE13 Existing facility A/q=3 source			80	*	375
			>15	>40	>40
			16	70	45
			3.6	70	45
			2.3	*	*
			2.9	10	20
			1.2	10	20
Cave Entrance		⁸⁴ Kr	0.1	10	8
			0.01	7	>10
			<<0.001	0.1	6
			Measured Estimate		ed * -> no estimation
>NEWGAIN White Book >NEWGAIN time line					
https://www.ganil-spiral2.eu/scientists/ganil-spiral-2-facilities/accelerators/newgain/ 2020 2021	2022	2023	3 2024 2	025 2026	2027 2028
Construct				iction Phase	first beam

GANIL 2030

Neutrons for Science (NFS) started operation in 2021. Neutrons produced from protons and deuterons accelerated from the LINAC: mainly fission, but also low-energy excitations, nuclear data,...

> SPIRAL2 linac incl. NEWGAIN A/Q=7 injector

NEWGAIN, Injector 2: A/Q =3-7 Increasing beam intensities of heavy (A > 40) and very heavy (Xe, Pb, U) nuclei

SPIRAL1 facility incl. CIME cyclotron

LINAC commissioning 2019-2024

cyclotrons – by the end of the decade

Original cyclotrons chain

GANIL beyond 2030

GANIL

International expert committee, chaired by Michel Spiro: vision for the future of GANIL (report provided to CNRS and CEA in December 2021)

Strategy to be defined based on different recommendations and options suggested by the expert committee: new building for production of neutron-rich exotic nuclei, production of radioisotopes, new reacceleration system -> from Coulomb barrier up to 100 MeV/nucleon,

On this basis, GANIL direction asked Hanna Franberg and Stéphane Grevy to prepare a document where a few possible scenarios are identified, with: -the description of the physics cases associated with each step -a budget estimation

CEA and IN2P3 will use this document to establish a strategy

Operation perspectives

18 annual weeks of GANIL cyclotrons operation until 2031 Increasing beam-time for SPIRAL2

Experiments @ SPIRAL2

E838_21, E. Clément, EXOGAM in TOF hall

Nuclear stucture

Radioisotope

Structure of ⁵⁶Ni using ⁵⁸Ni(n,3n) reaction

12 EXOGAM clovers placed at 8.6 meters from the production target around Ni target

Tests REPARE, G. De France, converter room

Production of At in NFS converter room with He beam

 \rightarrow Hardware, soft, beam synchro, vacuum, handling, production yield could be tested \rightarrow but no shipment to ARRONAX...

New beam time in September 2024 : production of At (1 GBq in 3 targets) and shipment to ARRONAX of 2 targets, but At also detected at the SPIRAL2 chimney, outside GANIL authorization (no impact on environment, of the order of nSv)

PHC

Preliminary

E869 F. Galtarossa (INFN Legnaro)

Nuclear structure

Experimental method

Scientific goal

•

• One-neutron removal in ³⁶S and ³⁴Si on CH₂ target -> (p,d) reaction

Test the spin-orbit component of proton-neutron interaction

Study the evolution of neutron orbitals in ³⁵S and ³³Si

- Detection of the light particles with MUST2 and heavy residues (³⁵S, ³³Si) in LISE ZDD
- EXOGAM2 to characterize excited states

Preliminary results

- Encouraging in spite of acquisition problems and machine failure (stop of the experiment)
- => experiment will be rescheduled in 2025

NuPECC Long range Plan

Recommendations for nuclear physics infrastructures (heavy ions)

The NuPECC Long Range Plan 2024 resulted in the following main recommendations for infrastructures of importance for nuclear physics:

- The first phase of the international **FAIR** facility is expected to be operational by 2028, facilitating experiments with SIS100 using the High-Energy Branch of the Super-FRS, the CBM cave and the current GSI facilities. Completing the full facility including the **APPA**, **CBM**, **NUSTAR** and **PANDA** programs will provide European science with world-class opportunities for decades and is highly recommended.
- At GANIL/SPIRAL2 the Super-Separator Spectrometer S³ is in an advanced stage of completion and the low-energy DESIR facility and heavy-ion injector NEWGAIN, will be operational from 2027/28. The refurbishing of the cyclotrons will ensure their operation for the next decades. Timely completion and full exploitation of these GANIL/SPIRAL2 projects is recommended. The plan for a future evolution of the facility towards a very high-intensity reaccelerated RIB facility of up to 100 MeV/u should be actively pursued.
- Nuclear physics opportunities at CERN constitute a world-leading research programme. The construction of ALICE 3 as part of the HL-LHC plans is strongly recommended. Continued support for exploitation and new developments are recommended to maximise the scientific output of ISOLDE, n_TOF, SPS fixed-target program and AD/ELENA. As the roadmap for the post-LHC future of CERN is developed, a strategy should be prepared to secure future opportunities for continuing world-leading nuclear-physics programmes that are unique to CERN.
- At ELI-NP studies will focus on addressing key topics, such as laser-driven ion and electron acceleration. Implementing the gamma beam system to achieve the full completion of the facility to allow breakthrough results in the field of nuclear photonics is of high importance and is strongly recommended.
- Timely completion of the SPES facility and continuing coordinated efforts in developing the ALTO, IGISOL, ISOLDE, SPES, and SPIRAL ISOL facilities in Europe, will be key to maintaining their world-leading position in many areas of radioactive isotope science and are strongly recommended. Extending these efforts towards future facilities, such as ISOL@MYRRHA, TATTOOS@PSI, and RIB@IFIN, together with the development of common instrumentation, will secure the European leading position for radioisotope production, separation, and acceleration techniques, and create new avenues for the future and should therefore be actively pursued.
- The exploitation of large-scale stable beam facilities, such as FAIR/GSI, GANIL/SPIRAL2, IFIN, JYFL-ACCLAB, LNL, LNS, NLC (SLCJ and IFJ-PAN), and smaller ones, such as tandems, underground facilities and AMS systems, should be maximised. It is recommended that synergies between all these facilities, irrespective of size, be reinforced. Developments of novel and more intense beams and capabilities are also recommended to open new opportunities for basic science and applications.
- It is strongly recommended to complete the **AGATA** gamma tracking array to its full configuration as a key instrument for studying atomic nuclei in both stable and radioactive ion beam facilities.