

Tardy results from EURICA@RIBF and the isospin dependence of effective charges

Andrea Jungclaus

Instituto de Estructura de la Materia, CSIC, Madrid, Spain

Decay spectroscopy: The EUroball-RIKEN Cluster Array

Decay spectroscopy: The EUroball-RIKEN Cluster Array

An important remnant of Jan's PhD thesis ...

... and the explanation ten years later !

Accurate experimental transition rates in ¹³⁰Cd

Accurate experimental transition rates in ⁹⁸Cd and ¹³⁰Cd

Why is this important?

Effective charges in different regions of the chart

Effect of polarization is similar for both neutrons and protons, i.e., isovector contributions to the effective charges are small. However, the assumption of <u>constant</u> effective charges is an approximation !

Effective charges in the pf shell

⁵⁰Ca, ⁵¹Sc

 $p_{3/2}$ dominated

N/Z = 1.5

 $e_{\pi} \sim 1.5e$

 $e_v = 0.5e$

PRL 93, 222501 (2004)

PHYSICAL REVIEW LETTERS

week ending 26 NOVEMBER 2004

PRL 102, 242502 (2009)

PHYSICAL REVIEW LETTERS

week ending 19 JUNE 2009

Effective Charges in the *f p* Shell

R. du Rietz,¹ J. Ekman,¹ D. Rudolph,¹ C. Fahlander,¹ A. Dewald,² O. Möller,² B. Saha,² M. Axiotis,³ M. A. Bentley,⁴ C. Chandler,⁴ G. de Angelis,³ F. Della Vedova,⁵ A. Gadea,³ G. Hammond,⁴ S. M. Lenzi,⁵ N. Mărginean,³ D. R. Napoli,³ M. Nespolo,⁵ C. Rusu,³ and D. Tonev³

¹Department of Physics, Lund University, S-22100 Lund, Sweden ²Institut für Kernphysik der Universität zu Köln, D-50937 Köln, Germany ³Instituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy ⁴School of Chemistry and Physics, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom ⁵Dipartimento di Fisica dell'Università and INFN, Sezione di Padova, I-35141 Padova, Italy (Received 16 August 2004; published 22 November 2004)

Following the heavy-ion fusion-evaporation reaction ${}^{32}S + {}^{24}Mg$ at 95 MeV beam energy the lifetimes of analogue states in the $T_{-} = \pm 1/2 A = 51$ mirror nuclei ⁵¹Fe and ⁵¹Mn have been measured using the Cologne plunger device coupled to the GASP γ -ray spectrometer. The deduced $B(E2; 27/2^- \rightarrow 23/2^-)$ values afford a unique opportunity to probe isoscalar and isovector polarization charges and to derive effective proton and neutron charges, ε_n and ε_n , in the fp shell. A comparison between the experimental results and several different large-scale shell-model calculations yields $\varepsilon_n \sim 1.15e$ and $\varepsilon_n \sim 0.80e$.

DOI: 10.1103/PhysRevLett.93.222501 PACS numbers: 21.10.Tg, 21.60.Cs, 27.40.+z 40 ⁵¹Fe, ⁵¹Mn $f_{7/2}$ dominated 20 N~Z $e_{\pi} \sim 1.15e$ $e_{v} \sim 0.80e$

Lifetime Measurements of the Neutron-Rich N = 30 Isotones ⁵⁰Ca and ⁵¹Sc: Orbital Dependence of Effective Charges in the *f p* Shell

J. J. Valiente-Dobón,^{1,*} D. Mengoni,² A. Gadea,^{1,3} E. Farnea,⁴ S. M. Lenzi,² S. Lunardi,² A. Dewald,⁵ Th. Pissulla,⁵ S. Szilner,⁶ R. Broda,⁷ F. Recchia,¹ A. Algora,^{3,8} L. Angus,⁹ D. Bazzacco,⁴ G. Benzoni,¹⁰ P. G. Bizzeti,¹¹ A. M. Bizzeti-Sona,¹¹ P. Boutachkov,¹² L. Corradi,¹ F. Crespi,¹³ G. de Angelis,¹ E. Fioretto,¹ A. Görgen,¹⁴ M. Gorska,¹² A. Gottardo,¹ E. Grodner,¹ B. Guiot,¹ A. Howard,¹⁵ W. Królas,⁷ S. Leoni,¹³ P. Mason,¹ R. Menegazzo,⁴ D. Montanari,¹³ G. Montagnoli,² D. R. Napoli,¹ A. Obertelli,¹⁴ T. Pawłat,⁷ G. Pollarolo,¹⁶ B. Rubio,³ E. Şahin,¹ F. Scarlassara,² R. Silvestri,¹ A. M. Stefanini,¹ J. F. Smith,⁹ D. Steppenbeck,¹⁵ C. A. Ur,⁴ P. T. Wady,⁹ J. Wrzesiński,⁷

E. Maglione,² and I. Hamamoto¹⁷

¹Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro, Italy ²Dipartimento di Fisica dell'Università and INFN Sezione di Padova, Padova, Italy ³Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain ⁴Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova, Italy ⁵Institut für Kernphysik der Universität zu Köln, Köln, Germany ⁶Ruder Bošković Institute, Zagreb, Croatia

⁷Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland ⁸Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen, Hungary ⁹School of Engineering and Science, University of Paisley, Paisley, Scotland, United Kingdom ¹⁰Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Milano, Italy ¹¹Dipartimento di Fisica dell'Università and INFN Sezione di Firenze, Firenze, Italy ¹²Helmholtzzentrum für Schwerionenforschung (GSI), Darmstadt, Germanv ¹³Dipartimento di Fisica dell'Università and INFN Sezione di Milano, Milano, Italy ¹⁴CEA Saclay, IRFU/Service de Physique Nucléaire, Gif-sur-Yvette, France ¹⁵Schuster Laboratory, University of Manchester, Manchester, United Kingdom ¹⁶Dipartimento di Fisica Teorica, Università di Torino, Via Pietro Giuria I, I-10125 Torino, Italy ¹⁷Department of Mathematical Physics, Lund Institute of Technology at University of Lund, Lund, Sweden (Received 2 December 2008; published 16 June 2009; corrected 23 July 2009)

The lifetimes of the first excited states of the N = 30 isotones ⁵⁰Ca and ⁵¹Sc have been determined using the Recoil Distance Doppler Shift method in combination with the CLARA-PRISMA spectrometers. This is the first time such a method is applied to measure lifetimes of neutron-rich nuclei populated via a multinucleon transfer reaction. This extends the lifetime knowledge beyond the $f_{7/2}$ shell closure and allows us to derive the effective proton and neutron charges in the f p shell near the doubly magic nucleus ⁴⁸Ca, using large-scale, shell-model calculations. These results indicate an orbital dependence of the core polarization along the f p shell.

DOI: 10.1103/PhysRevLett.102.242502

PACS numbers: 27.40.+z, 21.10.Tg, 21.60.Cs, 23.20.-g

Isospin or orbital dependence?

Uniqueness of the 8⁺ seniority isomers in ^{98,130}Cd

Unique opportunity to study the evolution of the proton <u>effective charge</u> e_{π} along an entire major neutron shell (1.04 < N/Z < 1.71)!

8⁺ and 6⁺ in 98,130 Cd pure $0g_{9/2}$ -2, 4⁺ >99%

intruder orbitals

Effective charges for 98,132 Cd from 0ħ ω SM calculations

¹³⁰Cd: NNS110 interaction

0j_{15/2} $\begin{array}{c} 2d_{3/2} \\ 0i_{11/2} \end{array}$ $2d_{5/2}$ *n*=6 $1g_{9/2}$ 126 112 2p_{1/2} 2p_{3/2} $1f_{5/2}$ $\begin{array}{c} 0i_{13/2} \\ 1f_{7/2} \\ 0h_{9/2} \end{array}$ n=5 $^{130}Cd \nu$ 82 70 ${{0h_{11/2}}\atop{1d_{3/2}}}2s_{1/2}$ $^{130}Cd~\pi$ 1d $1d_{5/2}$ n=4⁹⁸Cd π,ν $0g_{7/2}$ $0g_{9/2}$ 40 ¹p_{1/2} 1p_{3/2} *n*=3 $0f_{5/2}$ 28 $-0f_{7/2}$ 20 _0d_{3/2} 15 0d $1s_{1/2}$ n=2 $0d_{5/2}$ $\Delta n=0$ '0ħω .0p_{1/2} n=10p $0p_{3/2}$ $0s_{1/2}$ n=0

Full harmonic oscillator shells, include all $\Delta n=0$ excitations ("0ħ ω calculations").

M. Górska, Physics 4, 364 (2022)

H. Naidja, F. Nowacki, and K. Sieja, Acta Phys. Pol. B 46, 669 (2015)

What is missing in $0\hbar\omega$ shell-model calculations ?

A. Jungclaus et al. PRL 99, 132501 (2007)

Full harmonic oscillator shell, includes all $\Delta n=0$ excitations (called "0ħ ω calculation").

Best we can do ...

However, $\Delta n=2$ excitations are still outside the model space !

Giant Quadrupole resonances (GQR)

 $E_x \approx 2 \hbar \omega, \, e.g., \approx \! 16 \! - \! 17$ MeV for $^{100,132} Sn$

The effective charges extracted from $0\hbar\omega$ shell-model calculations <u>account for the</u> <u>neglect of the coupling to the GQR.</u>

Theoretical predictions of the isospin dependence

NUCLEAR STRUCTURE

Volume II: Nuclear Deformations

BM

$$e_{pol}^{std}(E2, \Delta E = 0) = \frac{Ze}{A} \chi(\tau = 0, \Delta E = 0) \left(1 + \frac{V_1}{4V_0} \frac{N - Z}{A} \tau_z\right)$$

isovector
$$-\frac{e}{2} \chi(\tau = 1, \Delta E = 0) \left(\tau_z - \frac{N - Z}{A}\right) \qquad (6-386a)$$
$$= e \left(\frac{Z}{A} - 0.32 \frac{N - Z}{A} + \left(0.32 - 0.3 \frac{N - Z}{A}\right) \tau_z\right) \qquad (6-386b)$$
$$+1 \text{ for } \nu$$
$$-1 \text{ for } \pi$$

Aage Bohr The Niels Bohr Institute, University of Copenhagen

Ben R. Mottelson

First edition published in 1975 by W. A. Benjamin, Inc. This edition copyright © 1998 by World Scientific Publishing Co. Pte. Ltd.

PHYSICAL REVIEW C 100, 024317 (2019)

ab-initio

Core-polarization effects and effective charges in O and Ni isotopes from chiral interactions

Francesco Raimondi^{1,2} and Carlo Barbieri¹ ¹Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom ²ESNT, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

orbital-dependent proton and neutron effective charges $e_{\pi},\,e_{\nu}$

⁷⁸Ni maybe not fully converged

- harmonic oscillator model
- one collective GQR state exhausting 100% of the EWSR
- further simplifying assumptions to describe the coupling between the two modes (IS and IV)

Effective charges for 98,132 Cd from 0ħ ω SM calculations

From proton and neutron effective charges to isoscalar and isovector effective charges:

$$e_{\pi} = 1 + e_{IS} - e_{IV}$$
$$e_{\nu} = e_{IS} + e_{IV}$$

Empirically extracted vs. calculated effective charges

- e_{IS} decreases <u>slower</u> and e_{IV} decreases <u>faster</u> than expected
- In general, too small values are obtained in the ab-initio calculations.
- Empirically extracted charges are rather consistent.

Strong isovector effects close to N=Z !

Effective charges in recent large-scale SM calculations

PHYSICAL REVIEW LETTERS **121**, 062501 (2018) $e_{\pi} = 1.25e, e_{\nu} = 0.75e$

Novel Shape Evolution in Sn Isotopes from Magic Numbers 50 to 82

Tomoaki Togashi,¹ Yusuke Tsunoda,¹ Takaharu Otsuka,^{2,1,3,4,5,*} Noritaka Shimizu,¹ and Michio Honma⁶
 ¹Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
 ²Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
 ³RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
 ⁴Instituut voor Kern- en Stralingsfysica, KU Leuven, B-3001 Leuven, Belgium
 ⁵National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
 ⁶Center for Mathematical Sciences, University of Aizu, Ikki-machi, Aizu-Wakamatsu, Fukushima 965-8580, Japan

Increase of B(E2) around ¹¹⁰Sn due to shape evolution driven by proton excitations from the $g_{9/2}$ orbital.

Empirically extracted vs. calculated effective charges

'ad-hoc' values close to the average values extracted from empirical dependence on neutron excess !

Relevance of isospin-dependent effective charges

PHYSICAL REVIEW C 87, 031306(R) (2013)

Transition probabilities near ¹⁰⁰Sn and the stability of the N, Z = 50 shell closure

T. Bäck,^{1,*} C. Qi,¹ B. Cederwall,¹ R. Liotta,¹ F. Ghazi Moradi,¹ A. Johnson,¹ R. Wyss,¹ and R. Wadsworth² ¹Royal Institute of Technology, SE-10691 Stockholm, Sweden ²Department of Physics, University of York, YO10 5DD York, United Kingdom (Received 12 April 2012; revised manuscript received 28 February 2013; published 22 March 2013)

Increase of B(E2) around ¹¹⁰Sn due to shape evolution driven by proton excitations from the $g_{9/2}$ orbital.

T. Togashi et al., Phys. Rev. Lett. 121, 062501 (2018)

How would the use of isospin-dependent effective charges affect the trend in these MCSM calculations ?

Twelve years after the experiment, finally thanks to ...

PHYSICAL REVIEW LETTERS 132, 222501 (2024)

Featured in Physics

Excited-State Half-Lives in ¹³⁰Cd and the Isospin Dependence of Effective Charges

A. Jungclaus,¹ M. Górska,² M. Mikołajczuk,^{2,3} J. Acosta,¹ J. Taprogge,^{1,4,5} S. Nishimura,⁵ P. Doornenbal,⁵ G. Lorusso,⁵ G. S. Simpson,⁶ P.-A. Söderström,^{5,*} T. Sumikama,⁷ Z. Xu,⁸ P. Kumar,^{9,2} G. Martínez-Pinedo,^{2,9} F. Nowacki,¹⁰
P. Van Isacker,¹¹ H. Baba,⁵ F. Browne,^{12,5} N. Fukuda,⁵ R. Gernhäuser,¹³ G. Gey,^{6,14,5} N. Inabe,⁵ T. Isobe,⁵ H. S. Jung,^{15,†} D. Kameda,⁵ G. D. Kim,¹⁶ Y.-K. Kim,^{16,17} I. Kojouharov,² T. Kubo,⁵ N. Kurz,² Y. K. Kwon,¹⁶ Z. Li,¹⁸ H. Sakurai,^{5,8} H. Schaffner,² Y. Shimizu,⁵ K. Steiger,¹³ H. Suzuki,⁵ H. Takeda,⁵ Zs. Vajta,^{19,5} H. Watanabe,⁵ J. Wu,^{18,5} A. Yagi,²⁰ K. Yoshinaga,²¹ G. Benzoni,²² S. Bönig,²³ K. Y. Chae,²⁴ J.-M. Daugas,²⁵ F. Drouet,⁶ A. Gadea,²⁶ S. Ilieva,²³ F. G. Kondev,²⁷ T. Kröll,²³ G. J. Lane,²⁸ A. Montaner-Pizá,²⁶ K. Moschner,²⁹ F. Naqvi,³⁰ M. Niikura,⁸ H. Nishibata,²⁰ A. Odahara,²⁰ R. Orlandi,^{31,32} Z. Patel,³³ Zs. Podolyák,³³ and A. Wendt²⁹

Experimental side:

Jan Taprogge Shunji Nishimura Pieter Doornenbal Giuseppe Lorusso Gary Simpson

Theoretical side:

Magda Górska

Pawan Kumar Gabriel Martínez-Pinedo Frederic Nowacki Piet Van Isacker

