International Conference on Shapes and Symmetries in Nuclei: from Experiment to Theory

Orsay, 4 - 8 November 2024

Abnormal Bifurcation of the Double Binding Energy Differences and Proton-Neutron Pairing: Nuclei Close to N = Z line from Ni to Rb

Yiping Wang 王一平

School of Physics, Peking University

WYP, Y. K. Wang, F. F. Xu, P. W. Zhao, and J. Meng, PRL 132 (2024) 232501

Discussions

Summary and Outlook

Pairing correlations

Proposal

"There is a possible analogy between the excitation spectra of nuclei and those of the superconducting metallic state."

Bohr, Mottelson, Pines, PR 110 (1958) 936

Experimental evidence

neutron-neutron (*nn*) and proton-proton (*pp*) pairing

Data from National Nuclear Data Center Nilsson & Ragnarsson, Shapes and Shells in Nuclear Structure (1995)

Proton-neutron pairing correlations

□ In atomic nuclei, the proton-neutron (*pn*) pairing correlations may also exist.

Novel pairing phenomenon not found elsewhere in nature

$$T = 1; S = 0; L = 0$$

Isovector Pairing

np

$$T = 0; S = 1; L = 0$$

Isoscalar Pairing

- □ Issues of special interest:
 - Existence of *pn* pairing condensates;
 - Coexistence of nn, pp and pn pairing condensates;
 - Different roles played by isovector and isoscalar pairing correlations.

Frauendorf & Macchiavelli, PPNP 78 (2014) 24

Theoretical studies of *pn* **pairing correlations**

Theoretical approaches for the study of *pn* pairing correlations

Exactly Solvable Model

Dukelsky et al., PRL 96 (2006) 072503; Lerma et al., PRL 99 (2007) 032501 Pan, Draayer, PRC 66 (2002) 044314; Romero, Dobaczewski, Pastore, APPB 49 (2018) 347

Shell Model

- Cranked Shell Model Monte Carlo Approach •
- Lanczos Method •
- **Projected Shell Model** •

Phenomenological Mean Field Method

- BCS (Woods-Saxon pot.) + Lipkin-Nogami •
- Hartree-Bogoliubov (Nilsson pot.) •
- Hartree-Fock-Bogoliubov + Excited Vampir Approach •

Density Funtional Theory (DFT)

- Cranked Skyrme Hartree-Fock-Bogoliubov •
- Skyrme Hartree-Fock + Quartet Condensation Model •
- Negrea, Sandulescu, Gambacurta, PRC 105 (2022) 034325 Cranked Relativistic Hartree-Bogoliubov + Lipkin-Nogami •

Dean et al., PLB 399 (1997) 1

Poves & Martinez-Pinedo, PLB 430 (1998) 203

Sun, EPJA 20 (2004) 133

Satuła et al., PLB 393 (1997) 1

Bentley et al., PRC 89 (2014) 034302

A. Petrovici et al., NPA 647 (1999) 197

Afanasjev & Frauendorf, PRC 71 (2005) 064318

Terasaki et al., PLB 437 (1998) 1

Experimental signals of *pn* **pairing correlations**

N = Z Nuclei

ideal place to find pn pairing signals

"with enhanced correlations between neutrons and protons that occupy orbitals with the same quantum numbers"

• Additional binding of N = Z nuclei

• Delayed alignment in *N* = *Z* nuclei

Cederwall et al., Phys. Rev. Lett 124 (2020) 062501

• pn pair transfer cross-section

Le Crom et al., Phys. Lett. B 829 (2022) 137057

Abnormal bifurcation of δV_{pn} for N = Z nuclei

 \Box State-of-the-art mass measurement reveals an abnormal δV_{pn} bifurcation.

Federman, Pittel, Phys. Lett. B 69 (1977) 385 Federman, Pittel, Phys. Lett. B 77 (1978) 29

$$\begin{split} \delta V_{pn}^{\text{o-o}}(N,Z) &= \frac{\partial^2 B}{\partial N \partial Z} = B(N,Z) - B(N-1,Z) - B(N,Z-1) + B(N-1,Z-1) \\ \delta V_{pn}^{\text{e-e}}(N,Z) &= \frac{\partial^2 B}{\partial N \partial Z} = \frac{1}{4} \left[B(N,Z) - B(N-2,Z) - B(N,Z-2) + B(N-2,Z-2) \right] \\ \text{Van Isacker et al., PRL 74 (1995) 4607} \end{split}$$

Abnormal bifurcation of δV_{pn} for N = Z nuclei

 \Box State-of-the-art mass measurement reveals an abnormal δV_{pn} bifurcation.

$$\begin{split} \delta V_{pn}^{\text{o-o}}(N,Z) &= \frac{\partial^2 B}{\partial N \partial Z} = B(N,Z) - B(N-1,Z) - B(N,Z-1) + B(N-1,Z-1) \\ \delta V_{pn}^{\text{e-e}}(N,Z) &= \frac{\partial^2 B}{\partial N \partial Z} = \frac{1}{4} \left[B(N,Z) - B(N-2,Z) - B(N,Z-2) + B(N-2,Z-2) \right] \\ \text{Van Isacker et al., PRL 74 (1995) 4607} \end{split}$$

□ Frequently used mass models (macroscopic-microscopic models, shell model, and DFTs) fail to describe the δV_{pn} bifurcation.

□ Frequently used mass models (macroscopic-microscopic models, shell model, and DFTs) fail to describe the δV_{pn} bifurcation.

□ Frequently used mass models (macroscopic-microscopic models, shell model, and DFTs) fail to describe the δV_{pn} bifurcation.

□ Frequently used mass models (macroscopic-microscopic models, shell model, and DFTs) fail to describe the δV_{pn} bifurcation.

□ What is the missing piece in these models? *maybe pn pairing correlations*.

DFT + Shell-Model-Like Approach (SLAP)

The nuclear DFT starts from a universal density functional and has achieved great successes in describing many nuclear phenomena.

a promising framework to microscopicly consider pn pairing correlations

Vautherin, Brink, PRC 5 (1972) 626 Meng (Ed.), *Relativistic Density Functional for Nuclear Structure* (2016)

Shell-Model-Like Approach *an important tool to treat pairing correlations*

- Advantages:
 Yang, Zeng, Acta Physica Sinica 20 (1964) 846; Zeng, Cheng, NPA 405 (1983) 1
 Volya et al., PLB 509 (2001) 37
 - good particle number;

Particle-Number-Conserving Method

treating the blocking effects exactly.

Exact Pairing Method

Different Versions: only nn and pp pairing correlations considered

- Cranking Nilsson Model + SLAP Zeng et al., PRC 50 (1994) 1388; He et al., NPA 817 (2009) 45; Zhang et al., NPA 816 (2009) 19
- Nonrelativistic DFTs + SLAP Pillet et al., NPA 697 (2002) 141; Liang et al., PRC 92 (2015) 064325
- Relativistic DFTs (RDFT) + SLAP Meng et al., FPC 1 (2006) 38; WYP, Meng, PLB 841 (2023) 137923; Xu et al., PRL 133 (2024) 022501

•

. . .

a) A new version of RDFT + SLAP is developed, which allows a microscopic treatment of the *nn*, *pp* and *pn* pairing correlations simultaneously.

b) The developed approach is applied to investigate the abnormal δV_{pn} bifurcation for the N = Z nuclei from Ni to Rb.

RDFT-SLAP: Many-body Hamiltonian

In RDFT-SLAP, the many-body Hamiltonian reads

 $\hat{H} = \hat{H}_0 + \hat{H}_{\text{pair}}.$

D One-body part:
$$\hat{H}_0 = \sum_{k>0} \left[\varepsilon_k^{\pi} (a_k^{\dagger} a_k + a_{\bar{k}}^{\dagger} a_{\bar{k}}) + \varepsilon_k^{\nu} (b_k^{\dagger} b_k + b_{\bar{k}}^{\dagger} b_{\bar{k}}) \right].$$

 $\varepsilon_k^{\pi(\nu)}$: single-proton (neutron) energies obtained from the Dirac equation,

$$[-i\boldsymbol{\alpha}\cdot\boldsymbol{\nabla} + \beta(m+S) + V]\psi_k = \varepsilon_k\psi_k.$$

$$S(\boldsymbol{r}) = \alpha_S\rho_S + \beta_S\rho_S^2 + \gamma_S\rho_S^3 + \delta_S\Delta\rho_S,$$

$$V(\boldsymbol{r}) = \alpha_V\rho_V + \gamma_V\rho_V^3 + \delta_V\Delta\rho_V + \tau_3\alpha_{TV}\rho_{TV} + \tau_3\delta_{TV}\Delta\rho_{TV} + e\frac{1-\tau_3}{2}A^0,$$

D Pairing part:
$$\hat{H}_{\text{pair}} = \sum_{T_z=0,\pm 1} \hat{H}_{\text{pair}}^{T_z}, \qquad \hat{H}_{\text{pair}}^{T_z} = -G \sum_{k,k'>0}^{k\neq k'} P_{k,T_z}^{\dagger} P_{k',T_z}.$$

The *pp*, *pn* and *nn* pair creation operators are respectively:

$$P_{k,-1}^{\dagger} = a_k^{\dagger} a_{\bar{k}}^{\dagger}, \qquad P_{k,0}^{\dagger} = \frac{1}{\sqrt{2}} (b_k^{\dagger} a_{\bar{k}}^{\dagger} + a_k^{\dagger} b_{\bar{k}}^{\dagger}), \qquad P_{k,1}^{\dagger} = b_k^{\dagger} b_{\bar{k}}^{\dagger}.$$

RDFT-SLAP: Many-body Wave function

Nuclear many-body wave functions:

$$\left|\Psi\right\rangle = \sum_{i,\{s_k\}} C_i^{\{s_k\}} \left| \mathrm{MPC}_i^{\{s_k\}} \right\rangle.$$

 $C_i^{\{s_k\}} : \text{expansion coefficients}$ $|\text{MPC}_i^{\{s_k\}}\rangle = |l_1 l_2 \cdots l_N m_1 m_2 \cdots m_Z\rangle = b_{l_1}^{\dagger} b_{l_2}^{\dagger} \cdots b_{l_N}^{\dagger} a_{m_1}^{\dagger} a_{m_2}^{\dagger} \cdots a_{m_Z}^{\dagger} |0\rangle$

Occupation probabilities for the single-particle states:

$$n_k^{\pi(\nu)} = \sum_{i,\{s_k\}} |C_i^{\{s_k\}}|^2 P_i^{k,\pi(\nu)}, \qquad P_i^{k,\pi(\nu)} = \begin{cases} 1, & \psi_k^{\pi(\nu)} \text{ is occupied in } \operatorname{MPC}_i^{\{s_k\}}, \\ 0, & \text{ otherwise.} \end{cases}$$

Nucleon densities calculated by the occupation probabilities:

$$\rho_{S}(\boldsymbol{r}) = \sum_{k} n_{k} \bar{\psi}_{k}(\boldsymbol{r}) \psi_{k}(\boldsymbol{r}), \qquad \rho_{V}(\boldsymbol{r}) = \sum_{k} n_{k} \psi_{k}^{\dagger}(\boldsymbol{r}) \psi_{k}(\boldsymbol{r}),$$
$$\rho_{TV}(\boldsymbol{r}) = \sum_{k} n_{k} \psi_{k}^{\dagger}(\boldsymbol{r}) \tau_{3} \psi_{k}(\boldsymbol{r}), \qquad \rho_{c}(\boldsymbol{r}) = \sum_{k} n_{k} \psi_{k}^{\dagger}(\boldsymbol{r}) \frac{1 - \tau_{3}}{2} \psi_{k}(\boldsymbol{r}).$$

which in turn determines S and V in the Dirac equation.

Numerical Details

- Density functional: PC-PK1 P. W. Zhao et al., PRC 82 (2010) 054319
- Major shells of the 3DHO bases: 10
- □ Energy truncation for MPC space: 16 MeV
- □ Pairing strength: G = 0.8 MeV

Data from M. Wang et al., CPC 45 (2021) 030003 ; F. G. Kondev et al., CPC 45 (2021) 030001

Descriptions of Binding Energies

The pairing correlations are important for these nuclei near the N = Z line, in particular the *pn* pairing correlations.

Interpretation of δV_{pn} bifurcation

$$\begin{split} \delta V_{pn}^{\text{o-o}}(N,Z) &= \frac{\partial^2 B}{\partial N \partial Z} = B(N,Z) - B(N-1,Z) - B(N,Z-1) + B(N-1,Z-1) \\ \delta V_{pn}^{\text{e-e}}(N,Z) &= \frac{\partial^2 B}{\partial N \partial Z} = \frac{1}{4} \left[B(N,Z) - B(N-2,Z) - B(N,Z-2) + B(N-2,Z-2) \right] \\ \text{Van Isacker et al., PRL 74 (1995) 4607} \end{split}$$

The *pn* pairing correlations would significantly enhance the δV_{pn} for odd-odd N = Z nuclei, and thus result in the δV_{pn} bifurcation.

Interpretation of δV_{pn} bifurcation

$$\begin{split} \delta V_{pn}^{\text{o-o}}(N,Z) &= \frac{\partial^2 B}{\partial N \partial Z} = B(N,Z) - B(N-1,Z) - B(N,Z-1) + B(N-1,Z-1) \\ \delta V_{pn}^{\text{e-e}}(N,Z) &= \frac{\partial^2 B}{\partial N \partial Z} = \frac{1}{4} \left[B(N,Z) - B(N-2,Z) - B(N,Z-2) + B(N-2,Z-2) \right] \\ \text{Van Isacker et al., PRL 74 (1995) 4607} \end{split}$$

The *pn* pairing correlations would significantly enhance the δV_{pn} for odd-odd N = Z nuclei, and thus result in the δV_{pn} bifurcation.

How to understand the pn pairing effects on δV_{pn}

Compared with ${}^{64}\text{Ge}$, there are more MPCs with low excitation energies contributing nonzero *pn* pairing energy $E_{\text{pair}}^{\text{pn}}$ for ${}^{66}\text{As}$.

Summary

RDFT + SLAP calculations with *nn*, *pp* and *pn* pairing correlations:

- **D** provide a good description of the masses for nuclei near N = Z line
- **D** provide an excellent interpretation of the δV_{pn} bifurcation
- reveal a clear signal for the existence of *pn* pairing correlations
 Outlook

The newly developed method and its extensions can also be used for:

- $\Box \quad \delta V_{pn} \text{ for nuclei in other mass regions}$
- **D** Rotational properties for N = Z nuclei
- Possible signals of isoscalar pairing correlations

Thank you for your attention!