Low-lying collective states in N≈40 nuclei in nuclear-DFT-based quadrupole collective Hamiltonian

Kouhei Washiyama (CCS, Univ. Tsukuba, Japan)

Collaborator: Kenichi Yoshida (RCNP, Osaka Univ., Japan)

Spectroscopy in neutron-rich N=40 nuclei Five-dimensional collective Hamiltonian Analysis in N=40 nuclei Excited 0+ state

Spectroscopy in neutron-rich N=40 nuclei

M.L. Cortés et al., PLB 800, 135071 (2020)

Shape coexistence, Shape fluctuation

Mean-field description is not enough Description beyond mean field is necessary Correlation beyond mean field generates low 0⁺ states

To describe low-lying states in N=40 nuclei by using a model beyond mean field to treat large-amplitude shape fluctuation

Quadrupole collectivity and beyond-mean-field approach

Five-dimensional collective Hamiltonian (5DCH) method

$$\mathcal{H} = T_{\text{vib}} + T_{\text{rot}} + V(\beta, \gamma) \quad \text{Vibrational mass}$$

$$T_{\text{vib}} = \frac{1}{2} D_{\beta\beta}(\beta, \gamma) \dot{\beta}^2 + D_{\beta\gamma}(\beta, \gamma) \dot{\beta} \dot{\gamma} + \frac{1}{2} D_{\gamma\gamma}(\beta, \gamma) \dot{\gamma}^2$$

$$T_{\text{rot}} = \frac{1}{2} \sum_{k=1}^{3} \mathcal{J}_k(\beta, \gamma) \omega_k^2 \qquad \text{Inertia}$$

Quantize Hamiltonian

$$\hat{H}\Psi_{\alpha IM}(\beta,\gamma,\Omega) = E_{\alpha I}\Psi_{\alpha IM}(\beta,\gamma,\Omega)$$

 $E_{\alpha I}$, transition probability B(E2)

Inertia (Quadrupole collectivity

5DCH based on nuclear DFT

Prochniak et al., NPA730 (2004) 59; Niksic et at., PRC79 (2009) 034303; Delaroche et al., PRC81 (2010) 014303, etc.

Calculation set up for the CHFB + LQRPA

$$\begin{aligned} \mathcal{H} &= T_{\text{vib}} + T_{\text{rot}} + V(\beta, \gamma) \\ T_{\text{vib}} &= \frac{1}{2} D_{\beta\beta}(\beta, \gamma) \dot{\beta}^2 + D_{\beta\gamma}(\beta, \gamma) \dot{\beta} \dot{\gamma} + \frac{1}{2} D_{\gamma\gamma}(\beta, \gamma) \dot{\gamma}^2 \\ T_{\text{rot}} &= \frac{1}{2} \sum_{k=1}^{3} \mathcal{J}_k(\beta, \gamma) \omega_k^2 \\ V(\beta, \gamma) \text{ Potent} \end{aligned}$$

 $0 < \beta < 0.6$

 $0 < \gamma < 60^{\circ}$

~100 mesh points

 $\Gamma(\beta,\gamma)$ Potential energy surface in the $\beta-\gamma$ plane Constrained HFB in three-dimensional coordinate Skyrme SkM*, volume pairing, box size (23.2 fm)³

 $D_{\beta\beta}, D_{\beta\gamma}, D_{\gamma\gamma}, \mathcal{J}_k$ Inertial functions Local QRPA with Skyrme DFT on each β,γ deformation Improved description for the inertial functions

Washiyama, Hinohara, Nakatsukasa, Phys. Rev. C 109, L051301(2024)

Local QRPA Hinohara et al., PRC82(2010)064313, PRC84(2011)061302; 85(2012)024323 Sato, Hinohara, NPA849 (2011) 53 Yoshida, Hinohara, PRC83 (2011) 061302

Result: potential energy surface in N=40 isotones

Mean-field level, Spherical \rightarrow Prolate \rightarrow Spherical

SkM* Volume pairing

7/14

Washiyama & Yoshida, in preparation

Systematics on the 2₁ energy in N=40

5DCH: five-dimensional collective Hamiltonian Shell model : Lenzi et al., PRC82,054301 (2010)

Good on energy and $R_{4/2} = E(4_1)/E(2_1)$ Large deviation in ⁶⁸Ni (good description by shell model)

Shell model space Proton: pf shell Neutron: 0f5/2, 1p3/2, 1p1/2, 0g9/2, 1d5/2

Washiyama & Yoshida, in preparation

B(E2): Reduced transition probability $B(E2; 2_1^+ \rightarrow 0_1^+) = |\langle 2_1^+ || \hat{Q}_2 || 0_1^+ \rangle|^2 / 5$

Good in ⁶⁴Cr, ⁶⁶Fe Large deviation in ⁶⁸Ni (good description by shell model)

Discussion: Quadrupole collectivity in ⁶⁰Ca

⁶⁰Ca
$$R_{0/2} = 0.96$$

⁶⁸Ni $R_{0/2} = 1.19$
Spherical vibrator $\omega = 4_1, 2_2, 0_2$
 $R_{0/2} = 2.0$
 $\omega = 2_1$
 0_1

What is the origin of low $R_{0/2}$ in 60 Ca, 68 Ni ?

Discussion: Role of inertial functions in the 0₂ state

Spherical vibrator

Constant mass: ignore $\beta - \gamma$ dependence

$$D_{\beta\beta}(\beta,\gamma) = D_{\gamma\gamma}(\beta,\gamma)/\beta^2 = D, \quad D_{\beta\gamma} = 0$$
$$D_1(\beta,\gamma) = D_2(\beta,\gamma) = D_3(\beta,\gamma) = D$$

 $\mathcal{J}_k(\beta,\gamma) = 4\beta^2 \sin^2(\gamma - 2\pi k/3) D_k(\beta,\gamma)$

D is determined by fitting 2₁ energy

Local QRPAConstant $R_{0/2} = 0.96$ 1.75

Low R0/2 ratio is not induced by the potential but induced by the dynamical correlations associated with the inertial functions in the kinetic energy.

Dynamical shape coexistence

Discussion: Role of shoulder in the potential

Large component

A shoulder in the potential affects $R_{0/2}$ ratio ?

Dynamical shape coexistence (V + kinetic energy) induces low $R_{0/2}$

Neutron-rich N=40 isotones from 60 Ca to 68 NI

Collective Hamiltonian method beyond mean field

```
Good description in E(2_1^+)
```

```
Second 0<sup>+</sup> state in <sup>60</sup>Ca and <sup>68</sup>NI
```

Dynamical shape coexistence (low kinetic energy and shoulder in PES) makes $\rm R_{0/2}$ low

Correlation beyond mean field generates low 0^+_2 state

This research used computational resources of OFP & Wisteria/BDEC-01 Odyssey (Univ. Tokyo), provided by the Multidisciplinary Cooperative Research Program in CCS, Univ. Tsukuba.

Vibrational kinetic energy to the 0₂ state

$$\langle \hat{T}_{\rm vib} \rangle = \iint d\beta d\gamma |G(\beta,\gamma)|^{1/2} \sum_{K=\rm even} \Phi^*_{IK\alpha}(\beta,\gamma) \hat{T}_{\rm vib} \Phi_{IK\alpha}(\beta,\gamma)$$

Vibrational wave functions in 60Ca

Constant mass

Inertial functions: LQRPA vs. Cranking approx.

Ratio of LQRPA to Cranking

Vibrational mass, 60Ca

Vibrational kinetic energy to the 0₂ state

Low 0₂ energy and dynamical shape coexistence

Significant decrease from constant $E(0_2)$ to QRPA $E(0_2)$

Dynamical shape coexistence

Potential + inertial functions

Positive-parity low-lying spectra in ⁶⁴Cr

Level spacings \leftarrow different inertial functions

A. Gade et al., PRC103, 014314 (2021)

Washiyama & Yoshida, in preparation

Discussion : low-lying 0₂ state in N=40 isotones

 $R_{0/2} = E(0_2) / E(2_1)$

Low 0_2^+ energy \rightarrow What is the origin?

Result: positive-parity low-lying spectra

Inertial functions play an important role

Relation between QRPA and inertial functions

QRPA: linear response to an external field

Response (strength, frequency)

Inertia associated with quadrupole moments

 $D_{etaeta}, \, D_{eta\gamma}, \, D_{\gamma\gamma}$

Result: potential energy surface in Cr isotopes

Systematics on B(E2; $0_1 \rightarrow 2_1$)

Good in ⁶⁴Cr (N=40) Underestimate in ⁵⁸Cr (N=34) Good in ⁶⁴Cr, ⁶⁶Fe Overestimate in ⁶⁸Ni

Low 0₂ energy and dynamical shape coexistence

Cr isotopes

⁶²Cr: A. Gade et al., PRC103, 014314 (2021)

DFT + Cranking approximation

Skyrme, Gogny, Relativistic, etc.

Low computation cost

Neglect dynamical effects (time-odd terms)

Perturbative cranking approximation

$$\mathcal{M}^{\rm PC} = \frac{1}{2} [M^{(1)}]^{-1} M^{(3)} [M^{(1)}]^{-1}$$
$$M_{ij}^{(n)} = \sum_{\mu < \nu} \frac{\langle \phi(\beta, \gamma) | \hat{Q} | \mu \nu \rangle \langle \mu \nu | \hat{Q}^{\dagger} | \phi(\beta, \gamma) \rangle}{(E_{\mu} + E_{\nu})^{n}}$$

Prochniak et al., NPA730 (2004) 59; Niksic et at., PRC79 (2009) 034303; Delaroche et al., PRC81 (2010) 014303, etc.

Adiabatic TDDFT

Dobaczewski, Skalski, NPA369,123(1981)

Ground state information No dynamical effect

- Q : Quadrupole moment operator
- ϕ : constrained HFB state
- E: quasiparticle energy

$$|\mu\nu\rangle = a^{\dagger}_{\mu}a^{\dagger}_{\nu}|\phi(\beta,\gamma)\rangle$$

DFT + Cranking approximation

Skyrme, Gogny, Relativistic, etc.

Low computation cost

Neglect dynamical effects (time-odd terms)

Local QRPA Hinohara et al., PRC82 (2010) 064313

Include dynamical effects by QRPA

High computation cost

P + Q force, $\beta - \gamma$ plane

Hinohara et al., PRC84 (2011) 061302; 85 (2012) 024323 Sato, Hinohara, NPA849 (2011) 53

Skyrme DFT, axial symmetry Yoshida, Hinohara, PRC83 (2011) 061302

Our Method: Local QRPA with Skyrme DFT on $\beta-\gamma$ plane

Prochniak et al., NPA730 (2004) 59; Niksic et at., PRC79 (2009) 034303; Delaroche et al., PRC81 (2010) 014303, etc.

Adiabatic TDDFT

Dobaczewski, Skalski, NPA369,123(1981)

Adiabatic SCC (self-consistent collective coordinate) Matsuo, Nakatsukasa, Matsuyanagi, PTP103 (2000)

Pairing and collectivity: Special case in 60Ca?

Discussion: Pairing and quadrupole collectivity

When the pairing strength increases,

Potential would become soft against quadrupole deformation

 Quadrupole collectivity would be increased

Deformation would become small

Quadrupole collectivity would be reduced

Yamagami & Giai, Phys. Rev. C 69, 034301 (2004)

Spherical QRPA calculations for the first excited state $I^{\pi} = 2_1^+$ in the N=20 gap in ³²Mg

When the pairing strength increases,

Two competing effects:

- Increase pairing gap & quasiparticle (QP) energy
 → increase excitation energies if correlation is small
- 2. More 2QP configurations to the excited state and larger correlation
 → decrease excitation energy

Discussion: Pairing and quadrupole collectivity

Yamagami & Giai, Phys. Rev. C 69, 034301 (2004)

- 2. More 2QP configurations to the excited state and larger correlation
 - \rightarrow decrease excitation energy

Result: Pairing and quadrupole collectivity

2₁ energy

B(E2; $2_1 \rightarrow 0_1$) value

When the pairing strength increases, both 2_1 energy and B(E2) increases.

Discussion: Role of parameters in the model

Simple harmonic oscillator and constant mass model assuming small amplitude limit (cf. Bohr-Mottelson)

$$V(\beta,\gamma) = \frac{1}{2}C\beta^2$$

$$D_{\beta\beta} = D_{\gamma\gamma}/\beta^2 = D_1 = D_2 = D_3 = D$$
$$D_{\beta\gamma} = 0$$

$$D_{\beta\beta} = D_{\gamma\gamma}/\beta^{2} = D_{1} = D_{2} = D_{3} = D$$

$$D_{\beta\gamma} = 0$$
Excitation energy
$$\omega = \sqrt{\frac{C}{D}}$$

$$\omega = \sqrt{\frac{C}{D}}$$
Transition probability
$$B(E2; 2_{1} \rightarrow 0_{1}) = \left(\frac{3ZeR^{2}}{4\pi}\right)^{2} \frac{1}{2\sqrt{CD}}_{R=1.2A^{1/3} \text{ fm}}$$

$$\propto \frac{1}{D\omega}$$

Result: Curvature and mass

Mass v.s. pairing strength

Stronger pairing, smaller $C \approx 10\%$ change

Stronger pairing, smaller *D* 20%-50% change

Large change of mass = Large change of quadrupole collectivity

Local QRPA at each CHFB state $\delta\langle\phi(s)|[\hat{H}_{M}(s),\hat{Q}^{i}(s)] - \frac{1}{i}\hat{P}^{i}(s)|\phi(s)\rangle = 0$ $\delta\langle\phi(s)|[\hat{H}_{M}(s),\frac{1}{i}\hat{P}^{i}(s)] - C_{i}(s)\hat{Q}^{i}(s)|\phi(s)\rangle = 0$ *s* : deformation parameters

▶ Low-lying collective modes
 Eigen-frequency \$\hat{Q}^i\$, \$\hat{P}^i\$, \$C_i = \Omega_i^2\$
 ▶ M(s) ▶ D_{\beta\beta}, D_{\beta\gamma}, D_{\gamma\gamma}\$

$$\frac{\partial s_m}{\partial q^i} = \langle \phi(\beta, \gamma) | [\hat{s}_m, \frac{1}{i} \hat{P}_i] | \phi(\beta, \gamma) \rangle$$
$$M_{mn}(\beta, \gamma) = \sum_{i=1,2} \frac{\partial q^i}{\partial s_m} \frac{\partial q^i}{\partial s_n}$$
$$s_1 = r^2 Y_{20}, \quad s_2 = r^2 (Y_{22} + Y_{2-2}) / \sqrt{2}$$

Hinohara et al., PRC82 (2010) 064313

$$\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} Q^i \\ -Q^{i*} \end{pmatrix} = \frac{1}{i} \begin{pmatrix} P^i \\ -P^{i*} \end{pmatrix}$$
$$\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} P^i \\ -P^{i*} \end{pmatrix} = iC_i \begin{pmatrix} Q^i \\ -Q^{i*} \end{pmatrix}$$

"local" indicates that QRPA is solved at each deformation

Finite amplitude method

(FAM) Nakatsu Avogac

Nakatsukasa et al., PRC76 (2007) 024318 Avogadro & Nakatsukasa, PRC84, 014314

- ✓ Small computational cost
- ✓ equivalent to QRPA response

Quadrupole collectivity and beyond-mean-field approach

Five-dimensional collective Hamiltonian (5DCH) method

$$\mathcal{H} = T_{\text{vib}} + T_{\text{rot}} + V(\beta, \gamma) \quad \text{Vibrational mass}$$

$$T_{\text{vib}} = \frac{1}{2} D_{\beta\beta}(\beta, \gamma) \dot{\beta}^2 + D_{\beta\gamma}(\beta, \gamma) \dot{\beta} \dot{\gamma} + \frac{1}{2} D_{\gamma\gamma}(\beta, \gamma) \dot{\gamma}^2$$

$$T_{\text{rot}} = \frac{1}{2} \sum_{k=1}^{3} \mathcal{J}_k(\beta, \gamma) \omega_k^2$$
Moment of inertia

 $V(\beta, \gamma)$ Constrained DFT $D_{\beta\beta}, D_{\beta\gamma}, D_{\gamma\gamma}, \mathcal{J}_k$ DFT + Local QRPAInertia \bigoplus Quadrupole collectivity

LQRPA includes dynamical residual effects Previous works ignore them (Cranking approximation for inertia)

Washiyama, Hinohara, Nakatsukasa, Phys. Rev. C 109, L051301(2024)

Quadrupole collectivity and beyond-mean-field approach

Quantize 5DCH, collective Schrödinger equation

$$\hat{H}\Psi_{\alpha IM}(\beta,\gamma,\Omega) = E_{\alpha I}\Psi_{\alpha IM}(\beta,\gamma,\Omega)$$

I : Angular momentum *M* : Its z-component in the laboratory frame Ω : Euler angles (laboratory \leftrightarrow body-fixed frame)

Excitation energies $E_{\alpha I}$, transition probability B(E2) between states

Computational cost

Time consuming part is computing $D_{\beta\beta}$, $D_{\beta\gamma}$, $D_{\gamma\gamma}$ in the β , γ plane

Computational time is ~60000 hours in 100 β , γ mesh points, which was efficiently parallelized with OpenMP + MPI in Wisteria/BDEC-01 Odyssey (Univ. Tokyo)

Skyrme energy density functional (EDF)

Skyrme EDF

$$\mathcal{E}_{Sk} = \int d^3r \sum_{t=0,1} \mathcal{H}_t(\mathbf{r}) \quad \text{zero-range interaction}$$
Bender, Heenen, Reinhard, Rev. Mod. Phys. 75, 121 (2003)
Perlińska et al., PRC69, 014316 (2004)

$$\mathcal{H}_t = C_t^{\rho}[\rho_0]\rho_t^2 + C_t^{\Delta\rho}\rho_t\Delta\rho_t + C_t^{\tau}\rho_t\tau_t + C_t^{\nabla:J}\rho_t\nabla\cdot J_t - C_t^T\sum_{\mu,\nu=x}^z J_{t,\mu\nu}J_{t,\mu\nu} - \frac{1}{2}C_t^F[(\sum_{\mu=x}^z J_{t,\mu})^2 + \sum_{\mu,\nu=x}^z J_{t,\mu\nu}J_{t,\nu\mu}] \\
+ C_t^s[\rho_0]s_t^2 + C_t^{\nabla s}(\nabla \cdot s_t)^2 + C_t^{\Delta s}s_t \cdot \Delta s_t - C_t^{\tau}j_t^2 + C_t^{\nabla\cdot J}s_t \cdot \nabla \times j_t + C_t^Ts_t \cdot T_t + C_t^Fs_t \cdot F_t$$

$$\rho_q(r) = \rho_q(r,r')|_{r=r'}, \quad \tau_q(r) = \nabla \cdot \nabla' \rho_q(r,r')|_{r=r'}, \quad J_{q,\mu\nu}(r) = -\frac{i}{2}(\nabla - \nabla')\rho_q(r,r')|_{r=r'}, \quad F_{\mu,q} = \frac{1}{2}\sum_{\nu=x}^z (\nabla_{\mu}\nabla_{\nu}' + \nabla'_{\mu}\nabla_{\nu})s_{q,\nu}(r,r')|_{r=r'}$$
Pairing EDF
$$\rho_t = \rho_n + \rho_p \quad \rho_q(r,r') = \sum_{\sigma=\pm 1} \rho_q(r\sigma,r'\sigma) \\\rho_{t=1} = \rho_n - \rho_p \quad s_q(r,r') = \sum_{\sigma,\sigma'=\pm 1} \rho_q(r\sigma,r'\sigma')\langle\sigma'|\hat{\sigma}|\sigma\rangle$$

Pairing EDF

$$\mathcal{E}_{\text{pairing}} = \int d^3 r \sum_{q=p,n} \mathcal{H}_q(\boldsymbol{r})$$

$$\mathcal{H}_q(\boldsymbol{r}) = \frac{V_q}{4} \left[1 - \frac{\rho_0(\boldsymbol{r})}{\rho_c} \right] \tilde{\rho}_q(\boldsymbol{r}) \tilde{\rho}_q^*(\boldsymbol{r})$$