

Effective E2 operators: patterns and puzzles across the nuclear landscape

Andrew Stuchbery

Department of Nuclear Physics & Accelerator Applications The Australian National University

Outline: Focus on E2 effective charges

- Introduction: snapshot of general concepts
- An empirical survey based on B(E2)s in doubly magic nuclei \pm 2 like nucleons
 - E0 transitions and shape mixing in ⁴⁰Ca implications
 - [The ²¹⁰Po puzzle consequence of octupole collectivity?]
 - Concluding remarks

What I won't cover:

- Theoretical approaches to evaluating effective charges (Summary in Jungclaus PRL 132, 222501(2004) see e.g. Ring and Schuck p.389; Bohr & Mottelson, etc.)
- EL transitions for L>3; see talk by AJ Mitchell on the E6 transition in ⁵³Fe
- DFT models for odd-A nuclei that do not use effective charges; see talk by Jacek Dobaczewski
 - M1 effective operators

 $\mu = (g_l + \delta g_l)l + (g_s + \delta g_s)s + g_p[Y_2, s]$

How I got here...

The last RIB measurement at HRIBF ORNL Feb 2012

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 88, 051304(R) (2013)

Electromagnetic properties of the 2⁺₁ state in ¹³⁴Te: Influence of core excitation on single-particle orbits beyond ¹³²Sn

A. E. Stuchbery,¹ J. M. Allmond,² A. Galindo-Uribarri,^{3,4} E. Padilla-Rodal,⁵ D. C. Radford,³ N. J. Stone,^{4,6} J. C. Batchelder,⁷ J. R. Beene,³ N. Benczer-Koller,⁸ C. R. Bingham,^{3,4} M. E. Howard,⁸ G. J. Kumbartzki,⁸ J. F. Liang,³ B. Manning,⁸ D. W. Stracener,³ and C.-H. Yu³

- ¹³⁴Te: 2 protons added to ¹³²Sn
- Lowest 0⁺, 2⁺, 4⁺, 6⁺ states are predominantly $\pi(0g_{7/2})^2$
- Extra collectivity in the 2⁺ state can be explained by coupling the $\pi(0g_{7/2})^2$ configuration to the 2⁺, 4041-keV excitation of the ¹³²Sn core

B(E2) ratios for the j^2 configuration and experimental B(E2) values in W.u.

j	J_i	$\tfrac{B(E2;J_i\rightarrow J_i-2)}{B(E2;2\rightarrow 0)}$	⁵⁰ Ti	$^{54}\mathrm{Fe}$	^{92}Mo	²¹⁰ Po
7/2	$\begin{array}{c} 6 \\ 4 \\ 2 \end{array}$	0.4545455 0.9977324 1.000000	$\begin{array}{c} 3.14(13) \\ 5.5(12) \\ 5.3(2) \end{array}$	3.25(5) 6.3(13) 10.6(4)		
9/2		$\begin{array}{c} 0.3181818\\ 0.7946600\\ 1.148990\\ 1.000000\end{array}$			$\begin{array}{l} 1.311(22) \\ 3.26(11) \\ < 24 \\ 8.4(5) \end{array}$	$\begin{array}{c} 1.10(5) \\ 3.00(12) \\ 4.53(15) \\ 0.56(12) \end{array}$

"Doubly magic" + 2 protons with *j*=7/2

Extra collectivity in 2⁺ may reduce g factor towards Z/A ~ 0.4

 $g(2_1^+)/g(6_1^+) = 0.93(11)$ $g(2_1^+)/g(6_1^+) = 0.77(5)$ $g(2_1^+)/g(6_1^+) = 0.90(11)$

"Doubly magic" + 2 protons with *j*=9/2

Further discussion & More details

Opinion

To Shell Model, or Not to Shell Model, That Is the Question

Andrew E. Stuchbery ^{1,*} and John L. Wood ²

Physics **2022**, *4*, 697–773. https://doi.org/10.3390/physics4030048

Special Issue: "The Nuclear Shell Model 70 Years after Its Advent: Achievements and Prospects"

John Wood

Hopkins Falls in background

November 2022

Australian National e_{eff} doubly magic nuclei ± 2 like nucleons

Effective charges required to bring contemporary shell model calculations into agreement with experiment

Nuclide	Basis ^a	Interaction	B(E2) (W.u.)		ep	<i>e</i> _n	
			Experiment	Shell Model	_		
¹⁶ O core:							
^{14}C	q	pewt [50,51]	1.8 ± 0.3	5.42	0.86 ± 0.07	_	
¹⁸ O	sd	usdb [52]	3.32 ± 0.09	1.16 ^c	_	0.76 ± 0.01	
¹⁸ Ne	sd	usdb [52]	17.7 ± 1.8	10.64 c	1.75 ± 0.09	_	
⁴⁰ Ca core:							
³⁸ Ar	sd	usdb [52]	3.4 ± 0.16	3.36 ^c	1.37 ± 0.03	_	
³⁸ Ca	sd	usdb [52]	2.5 ± 0.6	0.37 ^c	_	1.17 ± 0.14	
⁴² Ca	f7	f7cdpn [53]	9.5 ± 0.4	0.64	_	1.92 ± 0.04	
	fp	gx1a [54,55]	9.5 ± 0.4	0.77	_	1.76 ± 0.04	
⁴² Ti	f7	f7cdpn [53]	16 ± 4	5.80	2.49 ± 0.31	_	
	fp	gx1a [54,55]	16 ± 4	6.94	2.28 ± 0.28	_	
⁴⁸ Ca core:	-	0 1 1					
⁴⁶ Ar	sdpf	sdpfmu [56]	4.4 ± 0.4	$7.77^{\ d}$	_	_	
⁴⁶ Ca	f7	f7cdpn [53]	3.63 ± 0.3	0.60	_	1.23 ± 0.05	
	fp	gx1a [54,55]	3.63 ± 0.3	0.94	_	0.98 ± 0.04	
⁵⁰ Ca	ho	ho [57]	0.68 ± 0.02	0.83	_	0.45 ± 0.01	
	fp	gx1a [54,55]	0.68 ± 0.02	0.84	_	0.45 ± 0.01	
⁵⁰ Ti	ho	ho [57]	5.46 ± 0.19	5.05	1.56 ± 0.03	_	
⁵⁰ Ti	fp	gx1a [54,55]	5.46 ± 0.19	9.19	_	_	
⁵⁶ Ni core:	-						
⁵⁴ Fe	f7	f7cdpn [53]	11.1 ± 0.3	4.76	2.29 ± 0.03	_	
	fp	gx1a [54,55]	11.1 ± 0.3	13.08	_	_	
⁵⁴ Ni	f7	f7cdpn [53]	10 ± 2	0.53	_	2.17 ± 0.22	
	fp	gx1a [54,55]	10 ± 2	6.69	_	_	
⁵⁸ Ni	ho	ho [57]	10.0 ± 0.4	0.83	_	1.73 ± 0.03	
	fp	gx1a [54,55]	10.0 ± 0.4	9.28	_	_	
¹³² Sn core:	-	-					
¹³⁰ Sn	jj55	sn100 [33]	1.18 ± 0.25	0.76	_	0.62 ± 0.06	
¹³⁴ Sn	jj56	jj56cdb [33]	1.42 ± 0.25	0.94	_	0.62 ± 0.05	
¹³⁴ Te	jj55	sn100 [33]	5.12 ± 0.21	4.00	1.70 ± 0.03	_	
²⁰⁸ Pb core:							
²⁰⁶ Pb	jj56	khhe [58]	2.8 ± 0.09	0.79	_	0.94 ± 0.02	
²¹⁰ Pb	jj67	khpe [58]	1.4 ± 0.4	0.55	_	0.80 ± 0.11	
²¹⁰ Po	jj67	khpe [58]	$1.83\pm0.28~^{e}$	3.51	1.08 ± 0.08	—	

 $B(E2) = \frac{(e_p A_p + e_n A_n)^2}{2I_i + 1}$

From Physics 2022, 4, 697

Effective charge and polarization effect

Textbook example: ¹⁷O

Q = -0.026 b

 \Rightarrow Odd neutron in d_{5/2} polarizes the ¹⁶O core (to assume an oblate shape).

Origin: coupling to particle-hole excitations of the core, including GQR

The deformation of the core gives the odd-nucleon an effective charge:

 $\begin{aligned} e^{eff}(n) &= (\delta e_n)e\\ e^{eff}(p) &= \left(1 + \delta e_p\right)e \end{aligned}$

Only core protons can contribute, so a first estimate is

$$\delta e_p = \delta e_n \approx Z/A$$

Shapes and Shells, Nilsson and Ragnarsson

	Nucleus (doubly magic +1)			
	¹⁷ ₈ O ₉	¹⁷ ₉ F ₈	²⁰⁹ 83Bi ₁₂₆	
Orbital	d _{5/2}	d _{5/2}	h _{9/2}	
Q ^{exp} (barn)	-0.026	-0.10	-0.46	
$\langle Q^{\text{one proton}} \rangle$ (barn)	-0.051	-0.051	-0.30	
$e^{\text{eff}} = Q^{\text{exp}} / \langle Q^{\text{one proton}} \rangle$	0.51	2.0	1.5	
$\alpha = \left(e^{\widetilde{\text{eff}}} - e_{(\mathbf{n},\mathbf{p})}\right) / \left(Ze_{\mathbf{p}}/A\right)$	1.1	1.8	1.3	

 $B(E2:1/2^+ \rightarrow 5/2^+) \Longrightarrow \delta e_n = 0.534(3)e$

BM:
$$\delta e = e(\frac{Z}{A} - 0.32\frac{N-Z}{A} + (0.32 - 0.3\frac{N-Z}{A}\tau_z))$$

Expect that $\delta e_n > \delta e_p$

The default effective charges in many shell model calculations are $\delta e_p = \delta e_n = 0.5$

But we expect that $\delta e_n > \delta e_p$ because only core protons contribute, so a valence proton can only interact via T = 1 interactions, whereas a valence neutron has T = 0 and T = 1 contributions *and* the T = 0 *NN* interaction is stronger than T = 1.

Examples from fits to data:

sd shell USDB interaction: $\delta e_p = 0.36$ and $\delta e_n = 0.45$

⁵¹Fe and ⁵¹Mn mirror pair: $\delta e_p \sim 0.15$ and $\delta e_n \sim 0.8$ Du Rietz et al. PRL 93, 222501 (2004)

¹³²Sn region (N < 82): $\delta e_p = 0.7$ and $\delta e_n = 0.8$ Gray et al., PRL 124, 032502 (2020)

⁹⁸Cd and ¹³⁰Cd: $\delta e_p \sim 0.2 vs \ 0.35$ and $\delta e_n \sim 0.8 vs \ 0.5$ Jungclaus et al., PRL 132, 222501 (2024)

In principle the effective charges are orbit dependent

The effective charge changes with the number of valence nucleons (Andrea's talk)

The effective charge depends on the size of the basis space

Empirical values of effective charges are a measure of what is missing in the model calculation

Polarization charge = "clean" polarizing effect of the odd nucleon on the core

Effective charges near N=Z doubly magic nuclei

Effective charge $e_n \simeq 0.5$ handles ¹⁷O but fails for ¹⁸O due to additional correlations

Nuclide	Basis ^{<i>a</i>} Interaction		B(E2) (W.u.)		ep	en	
			Experiment	Shell Model	_		
¹⁶ O core:							
^{14}C	p	pewt [50,51]	18 ± 0.3	5 42	0.86 ± 0.07		
¹⁸ O	sd	usdb [52]	3.32 ± 0.09	1.16 ^c	_	0.76 ± 0.01	
¹⁸ Ne	sd	usdb [52]	17.7 ± 1.8	10.64 c	1.75 ± 0.09	_	
⁴⁰ Ca core:							
³⁸ Ar	sd	usdb [52]	3.4 ± 0.16	3.36 ^c	1.37 ± 0.03	_	
³⁸ Ca	sd	usdb [52]	2.5 ± 0.6	0.37 ^c	_	1.17 ± 0.14	
⁴² Ca	f7	f7cdpn [53]	9.5 ± 0.4	0.64	_	1.92 ± 0.04	
	fp	gx1a [54,55]	9.5 ± 0.4	0.77	_	1.76 ± 0.04	
⁴² Ti	f7	f7cdpn [53]	16 ± 4	5.80	2.49 ± 0.31	_	
	fp	gx1a [54,55]	16 ± 4	6.94	2.28 ± 0.28	_	

Australian National University Effective charges near N=Z doubly magic nuclei

Effective charge $e_n \simeq 0.5$ handles ¹⁷O but fails for ¹⁸O due to additional correlations

Similarly for ⁴¹Ca and ⁴²Ca: $Q(7/2^-; {}^{41}Ca) \Rightarrow e_n = 0.58(2)$ $B(E2; 2 \rightarrow 0; {}^{42}Ca) \Rightarrow e_n \simeq 1.8(4)$

Nu	clide	Basis ^a	Interaction	B(E2) (W.u.)		e _p	<i>e</i> _n
				Experiment	Shell Model	-	
¹⁶ O	core:						
	¹⁴ C	р	pewt [50,51]	1.8 ± 0.3	5.42	0.86 ± 0.07	_
	¹⁸ O	sd	usdb [52]	3.32 ± 0.09	1.16 ^c	—	0.76 ± 0.01
	¹⁸ Ne	sd	usdb [52]	17.7 ± 1.8	10.64 c	1.75 ± 0.09	_
^{40}C	a core:						
	³⁸ Ar	sd	usdb [52]	3.4 ± 0.16	3.36 ^c	1.37 ± 0.03	—
	³⁸ Ca	sd	usdb [52]	2.5 ± 0.6	0.37 ^c	—	1.17 ± 0.14
	⁴² Ca	f7	f7cdpn [53]	9.5 ± 0.4	0.64	—	1.92 ± 0.04
		fp	gx1a [54,55]	9.5 ± 0.4	0.77	_	1.76 ± 0.04
	⁴² Ti	f7	f7cdpn [53]	16 ± 4	5.80	2.49 ± 0.31	_
		fp	gx1a [54,55]	16 ± 4	6.94	2.28 ± 0.28	_

Excited states in ¹⁶O and ⁴⁰Ca

Both ¹⁶O and ⁴⁰Ca have multiparticle-multihole deformed first-excited states

Probe this shape coexistence by E0 measurements

Can we get a clean measure of the polarization charge if shape-mixing is present?

Super-e: IC & Pair spectrometer @ ANU

EO measurements at ANU (Tibor Kibédi)

□ Few E0 previous observations

²⁴Mg, ⁴⁰Ca: observation of SD to GS E0
 ^{50,52}Cr, ^{54,56,58}Fe, ^{58,50,62}Ni

Evitts et al., PLB **779** (2018) 396; PRC **99** (2019) 024306 Eriksen et al., Proc. INPC2016 (2016) 069 Dowie et al., EPJ Web of Conferences **232** (2020) 1, PLB **811** (2020) 135855 Ideguchi et al., PRL **87** 222501 (2001 **Electronic factors:** Dowie et al., At. Data Nucl. Data Tab. **131** (2020) 101283

Figure from K. Heyde & J.L. Wood

ANU Super-e pair spectrometer

Review: EO transitions and shapes

Dimensionless E0 strength:

$$\rho(E0) = \frac{\langle f | M(E0) | i \rangle}{eR^2}$$

Experimental E0 transition probability:

$$W(E0) = \frac{1}{\tau(E0)} = W_{ic}(E0) + W_{\pi}(E0)$$

Where:
$$W_{ic}(E0) + W_{\pi}(E0) = \rho^{2}(E0) \times [\Omega_{ic}(E0) + \Omega_{\pi}(E0)]$$

Internal conversion Pair production Electronic factors
Dowie et al., ADNDT **131** (2020) 101283

$$\rho_{if}^2 \cdot 10^3 = \alpha^2 \beta^2 (\Delta \langle r^2 \rangle)^2 \cdot 10^3 \frac{Z^2}{R^4}$$

Strong E0 transitions \Rightarrow strong mixing between states with different shapes

See: Kibédi, Garnsworthy, Wood, Prog. Nucl. Part. Phys. 123 (2022) 103930

Shape co-existence in ⁴⁰Ca

PHYSICAL REVIEW LETTERS 128, 252501 (2022)

Electric Monopole Transition from the Superdeformed Band in ⁴⁰Ca

E. Ideguchi (井手口 栄治),^{1,*} T. Kibédi,² J. T. H. Dowie,² T. H. Hoang,¹ M. Kumar Raju,^{1,3} N. Aoi (青井 考),¹ A. J. Mitchell,⁶,² A. E. Stuchbery,⁹,² N. Shimizu (清水 則孝),^{4,†} Y. Utsuno (宇都野 穣),^{5,4} A. Akber,² L. J. Bignell,² B. J. Coombes,⁷ T. K. Eriksen,⁹,² T. J. Gray,⁹,² G. J. Lane,⁹,² and B. P. McCormick,⁹

Shape co-existence in ⁴⁰Ca

Figure credit: Eiji Ideguchi

- Significant mixing between 3 co-existing shapes
- Ground state of this doubly magic nucleus is not spherical?
- How does this impact on empirical effective charges?

3-state mixing in ⁴⁰Ca

Microscopic shell model calculations focused on E0 transition strengths (didn't calculate shapes)

Schematic 3-state mixing to fit 0⁺excitation energies and ρ^2 values assuming $\beta_{sph} = 0$, $\beta_{ND} = 0.3$, $\beta_{SD} = 0.6$

Matrix:
$$\begin{bmatrix} 409 & 1105 & 70 \\ 1105 & 2990 & 277 \\ 70 & 277 & 5167 \end{bmatrix}$$

Eigenvectors:

 $\begin{aligned} |0_{1}^{+}\rangle &= 0.94|0_{sph}\rangle - 0.34 |0_{ND}\rangle + 0.05|0_{SD}\rangle \\ |0_{2}^{+}\rangle &= -0.35|0_{sph}\rangle - 0.93 |0_{ND}\rangle + 0.15|0_{SD}\rangle \\ |0_{3}^{+}\rangle &= 0.006|0_{sph}\rangle + 0.15 |0_{ND}\rangle + 0.99|0_{SD}\rangle \end{aligned}$

$$\Rightarrow \beta_{gs} \approx 0.037 \text{ or } Q_0 \sim + 0.09 \text{ eb}$$

- Microscopic shell model calculations focused on E0 transition strengths (didn't calculate shapes)
- But E0 transitions imply shape mixing in ⁴⁰Ca ground state making it *prolate*
- Empirically estimate $\beta \sim 0.04$, hence $Q_0 \sim +0.09$ eb $\Rightarrow Q(7/2^-; {}^{41}Ca) \sim +0.04$?
- No!! Experimentally $Q(7/2^+; {}^{41}Ca) = -0.066(2)$ eb

•
$$|^{41}Ca; 7/2^{-}\rangle \sim 0.94 |vf_{7/2}\rangle - 0.34 |vf_{7/2} \otimes deformed core\rangle$$

• $|^{41}Ca; 7/2^{-}\rangle \sim 0.94 |vf_{7/2}\rangle - 0.34 |vf_{7/2} \otimes deformed core\rangle$
Lowest Nilsson orbits
with $f_{7/2}$ parentage
 $3/2[321]$
 $Q(I) = \frac{3K^2 - I(I+1)}{(I+1)(2I+3)}Q_0$
 $I = 7/2$ and $K = 1/2$ or $K = 3/2$

Australian

National University

- Experimentally $Q(7/2^+; {}^{41}Ca) = -0.066(2)$ eb
- $|{}^{41}Ca; 7/2^{-}\rangle \sim 0.94 |\nu f_{7/2}\rangle 0.34 |\nu f_{7/2} \otimes deformed \ core\rangle$

Assume this looks like the I = 7/2 member of the $\frac{1}{2}[330]$ Nilsson band.

For $\beta = 0.3$, $Q_0 \sim 0.78$ eb and hence $Q(7/2) = -Q_0/3 \sim -0.26$ eb.

Contribution to the g.s. moment could be about $0.34^2 \times -0.26 \sim -0.03$ eb (**negative!**)

This is likely an overestimate as the mixing strength from ⁴⁰Ca is no longer applicable; mixing is with an excited band member – not the K = 1/2 band head!

- Experimentally $Q(7/2^+; {}^{41}Ca) = -0.066(2)$ eb
- $|{}^{41}Ca; 7/2^{-}\rangle \sim 0.94 |\nu f_{7/2}\rangle 0.34 |\nu f_{7/2} \otimes deformed \ core\rangle$

Assume this looks like the I = 7/2 member of the 3/2[321] Nilsson band.

For $\beta = 0.3$, $Q_0 \sim 0.78$ eb and hence $Q(7/2) = -Q_0/5 \sim -0.16$ eb.

Contribution to the g.s. moment could be about $0.34^2 \times -0.16 \sim -0.02$ eb (**negative!**)

This is likely an overestimate as the mixing strength from ⁴⁰Ca is no longer applicable; mixing is with an excited band member – not the K = 3/2 band head!

Need microscopic calculations of the quadrupole moment(s) and charge radii, etc. in ^{40,41}Ca treating the shape mixing on an equal footing.

Meanwhile observe that in ⁴¹Ca the ground-state spectroscopic quadrupole moment can have a negative contribution from prolate shape-coexistence in the core

⁴²Ca next:

The level of mixing in ⁴¹Ca is much reduced compared with that found in ⁴²Ca where the spherical $\nu f_{7/2}^2$ states and the deformed states have the same spinparity sequence: 0⁺, 2⁺, 4⁺, 6⁺

Two-state mixing analysis E2s in ⁴²Ca

⁴²Ca effective charges vs spin

Transition	δe_n
$2^+ \rightarrow 0^+$	1.76(4)
$4^+ \rightarrow 2^+$	1.60(12)
$6^+ \rightarrow 4^+$	0.70(1)

- Effective charge is smallest for highest member of the $vf_{7/2}^2$ multiplet
- Also, g factor is closest to shell model for that state

Australian National University

⁴²Ca levels: spherical and deformed

Other N=Z doubly magic nuclei: ⁵⁶Ni

⁵⁶Ni: core excitations included in fp model space

Nuclide	Basis ^a	Interaction	B(E2) (W.u.)		ep	en	
			Experiment	Shell Model	_		
⁵⁶ Ni core:							
⁵⁴ Fe	f7	f7cdpn [53]	11.1 ± 0.3	4.76	2.29 ± 0.03	—	
	fp	gx1a [54,55]	11.1 ± 0.3	13.08	_	_	
⁵⁴ Ni	f7	f7cdpn [53]	10 ± 2	0.53	_	2.17 ± 0.22	
	fp	gx1a [54,55]	10 ± 2	6.69	-	—	
⁵⁸ Ni	ho	ho [57]	10.0 ± 0.4	0.83	_	1.73 ± 0.03	
	fp	gx1a [54,55]	10.0 ± 0.4	9.28	-		

Satisfactory agreement for gx1a interactions and $\delta e_p = \delta e_n = 0.5$

Deformed band in ⁵⁶Ni based on 3rd 0+ state

State	Ex exp (MeV)	Ex theory (MeV)
0_{1}^{+}	0	0
0_{2}^{+}	3.957	3.608
0_{3}^{+}	5.004	4.941

¹⁰⁰Sn: core excitations implied by B(E2) data and large basis MCSM calculations

MCSM from PRL 121, 062501 (2018)

Australian

National University Australian National Jniversity Isoscalar and isovector effective charges

- Noted isoscalar and isovector polarization effects above
- Expect polarization charges δe_n and δe_p to vary with neutron number for given Z
- Define isoscalar and isovector polarization charges: $e_{IS} = \frac{1}{2}(\delta e_n + \delta e_p)$ and $e_{IV} = \frac{1}{2}(\delta e_n \delta e_p)$
- Plot versus (N Z)/A

c.f. Andrea's talk – this session 98,130 Cd $\pi g_{9/2}^2$ isomers

- New results in n-rich *fp* shell from FRIB: (^{49-51,55}Ca, ^{51,54}Sc, ⁵⁴Ti)
 Ogunbeku, Allmond, Gray et al.
- Emerging trend $e_{IV} = \frac{1}{2}(\delta e_n \delta e_p) \rightarrow 0$ in n-rich nuclei. Neutrons more affected by shape coexistence near N = Z?

Ogunbeku, Allmond, Gray et al.

Outline: Focus on E2 effective charges

- Introduction: snapshot of general concepts
- An empirical survey based on B(E2)s in doubly magic nuclei \pm 2 like nucleons
 - E0 transitions and shape mixing in ⁴⁰Ca implications
 - The ²¹⁰Po puzzle consequence of octupole collectivity?
- Concluding remarks

0+

⁴⁸Ca

The ²¹⁰Po puzzle

0+

¹³²Sn

0

0

0+

Octupole coupling?

"single-particle" states in ²⁰⁹Bi are mixed:

4868

4086

3197

2615

0

34

²⁰⁸Pb

The ²¹⁰Po puzzle

Octupole coupling?

"single-particle" states in ²⁰⁹Bi are mixed:

$$\begin{split} \widetilde{|h_{9/2}\rangle} &= 0.998 |h_{9/2}\rangle - 0.06 |i_{13/2} \otimes 3^-\rangle \\ \widetilde{|f_{7/2}\rangle} &= 0.95 |f_{7/2}\rangle + 0.31 |i_{13/2} \otimes 3^-\rangle \\ \widetilde{|i_{13/2}\rangle} &= 0.91 |i_{13/2}\rangle + 0.37 |f_{7/2} \otimes 3^-\rangle + 0.19 |h_{9/2} \otimes 3^-\rangle \end{split}$$

Nuclear Physics A555 (1993) 355-368 North-Holland

NUCLEAR PHYSICS A

Multiparticle-octupole coupling and magnetic moments of $h_{9/2}^n$ isomers in N = 126 isotones

A.E. Stuchbery, A.P. Byrne, G.D. Dracoulis, B. Fabricius and T. Kibédi

Need to explicitly include the octupole coupling to get the $11^- \rightarrow 8^+ B(E3)$ strengths correct, especially to the 8^+_1 state.

Wavefunctions and B(E3) rates for states in the even N = 126 isotones

Nucleus		I [#]	Amplitude		ude	$B(E3; 11^- \rightarrow 8^+)$ $(e^2 \cdot fm^6 \times 10^3)$		SM	
	"	<i>.</i>	h"	h ⁿ⁻¹ f	$(\mathbf{h}^{n-1}\mathbf{i})_{J+3}\otimes 3^{-1}$	theory	exp.	$\delta e_p = 0.5$	
²¹⁰ Po	2	61	0.985	0.149	0.087				
		81	0.979	0.188	0.082	10.6	9.4 (4) ^a) —	0 <u>90</u>	
		82+	0.204	-0.942	-0.267	52	49 (3) ^a)	0.00	
²¹² Rn	4	61	0.972	-0.211	-0.103			21	
		81	0.964	-0.249	-0.096				
		82	0.266	0.929	0.256				
²¹⁴ Ra	6	61	0.971	-0.214	-0.104				
		8+	0.957	-0.271	-0.102	9.9	8.34 (24) ^b)		
		82	0.289	0.921	0.260	50	59.0 (16) ^b)		

The ²¹⁰Po puzzle: octupole coupling & E2s

Nicolaura		J_i^{π} -	Amplitude			
Nucleus	n		h"	h ⁿ⁻¹ f	$(\mathbf{h}^{n-1}\mathbf{i})_{J+3}\otimes 3^{-}$	
²¹⁰ Po	2	6 ⁺	0.985	0.149	0.087	
		81	0.979	0.188	0.082	
		82	0.204	-0.942	-0.267	

Octupole components have little effect on the $8^+ \rightarrow 6^+ B(E2)$.

They will have even less effect on the $2^+ \rightarrow 0^+ B(E2)$.

We need to check the experiment!

Coulex of a ²¹⁰Po beam.

	Experimental	and theoretical	B(E2) tran	sition rates ^a)	
`	B(E2; 8 ⁺	$\rightarrow 6^+$) or $B(E2)$	$e^2 \cdot \mathrm{fm}^4$)		
nucieus -	pure config.	МРОС	shell	exp.	
²¹⁰ Po	84	76	84	81 (4)	
²¹¹ At	168	171	171	136 (14) or 200 (29)	
²¹² Rn	9	13	14	9.8 (8)	
²¹³ Fr	0	0.12	9	3.63 (15)	Mid-shell seniority
²¹⁴ Ra	9	5	0.4	0.103 (5)	cancellation: $h_{9/2}^5$

37

Outline: Focus on E2 effective charges

- Introduction: snapshot of general concepts
- An empirical survey based on B(E2)s in doubly magic nuclei \pm 2 like nucleons
 - E0 transitions and shape mixing in ⁴⁰Ca implications
 - The ²¹⁰Po puzzle consequence of octupole collectivity?
- Concluding remarks

- The concept of the polarization charge is well defined... but...
- In practical terms the effective charge is a measure of what is missing in the model
- So getting a "clean" measure of the polarization charge is often a challenge.
- Some tips:
 - \circ Study doubly magic nuclei ±1 nucleon if possible
 - Be aware that prolate shape coexistence in the core can manifest as negative Q (oblate) if I is big and K is small
 - For nuclei with 2 valence nucleons (or holes) seek a pure high-*j* orbit and
 - Avoid the 2⁺ state it will couple to every 2⁺ state of the core! If there is a low-excitation deformed intruder configuration the mixing will be strong.
 - Focus on the highest-spin states of the j² configuration. These are less likely to mix with collective core states

Two relevant approved experiments (ISOLDE):

- Coulex of ¹³³Sb (Effective charges near ¹³²Sn)
 G. Georgiev, Mitch Almond, AES
- Coulex of ²¹⁰Po (Resolve puzzling BE2 or find novel physics)
 G. Georgiev, G. Rainovski, AES

Experiments to characterize shape coexistence and shape mixing & impact on effective charges:

- Multistep Coulex of ³⁸Ar and ⁴²Ti shape mixing like ⁴²Ca?
- E0 transitions in ^{42,44}Ca, ⁵⁶Ni

More to come on trends in n-rich nuclei

Emerging trend $e_{IV} = \frac{1}{2}(\delta e_n - \delta e_p) \rightarrow 0$ in n-rich nuclei.

Australian

lational Iniversitv

Ogunbeku, Allmond, Gray et al. in preparation

Acknowledgments & Thanks

John Wood - discussions

Tibor KibediEiji IdeguchiElectron spectroscopy 40Ca

Mitch Allmond – discussions and preliminary results from FRIB

END