Exploring quadrupole and octupole collectivity in ¹⁰⁶**Cd via unsafe Coulomb excitation**

D. Kalaydjieva^{1,2}, M. Siciliano^{1,3,4}, <u>M. Zielińska¹,</u> J.J. Valiente-Dobón⁵, A. Goasduff⁴, D. Bazzacco⁵, G. Benzoni⁶, T. Braunroth⁷, N. Cieplicka-Oryńczak^{6,8}, E. Clément⁹, F.C.L. Crespi^{6,10}, G. de France⁹, M. Doncel¹¹, S. Ertürk¹², C. Fransen⁷, A. Gadea¹³, G. Georgiev¹⁴, A. Goldkuhle⁷, U. Jakobsson¹⁵, G. Jaworski^{4,16}, W. Korten¹, I. Kuti¹⁸, P.R. John^{5,17}, A. Lemasson⁹, H. Li¹⁵, A. Lopez-Martens¹⁴, T. Marchi⁴, D. Mengoni^{5,17}, C. Michelagnoli^{9,19}, T. Mijatović²⁰, C. Müller-Gatermann^{3,7}, D.R. Napoli⁴, J. Nyberg²¹, M. Palacz¹⁶, R.M. Pérez-Vidal^{4,13}, B. Sayği^{4,22,23}, D. Sohler¹⁸, S. Szilner²⁰, D. Testov^{5,17,24}

¹ Irfu, CEA, Université Paris-Saclay, France; ² University of Guelph, Canada; ³ Argonne National Laboratory, United States; ⁴ INFN, Laboratori Nazionali di Legnaro, Italy; ⁵ INFN, Sezione di Padova, Italy; ⁶ INFN, Sezione di Milano, Italy; ⁷ Institut für Kernphysik, Universität zu Köln, Germany; ⁸ Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland; ⁹ GANIL, Caen, France; ¹⁰ Dipartimento di Fisica, Università di Milano, Italy; ¹¹ Universidad de Salamanca, Spain; ¹² Ömer Halisdemir Üniversitesi, Niğde, Turkey; ¹³ Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Spain; ¹⁴ IJC Lab, Université Paris-Saclay, France; ¹⁵ Department of Physics, Royal Institute of Technology, Stockholm, Sweden; ¹⁶ Heavy Ion Laboratory, University of Warsaw, Poland; ¹⁷ Dipartimento di Fisica e Astronomia, Università di Padova, Italy; ¹⁸ ATOMKI, Debrecen, Hungary; ¹⁹ Institut Laue-Langevin, Grenoble, France; ²⁰ Ruđer Bošković Institute and University of Zagreb, Croatia; ²¹ Department of Physics and Astronomy, Uppsala University, Sweden; ²² Ege Üniversitesi, İzmir, Turkey; ²³ Department of Physics, Sakarya University, Turkey; ²⁴ Joint Institute for Nuclear Research, Dubna, Russia

Where is the border between "safe" and "unsafe" Coulomb excitation?

• Cline's "safe energy" criterion: purely electromagnetic interaction if thedistance between nuclear surfaces is greater than 5 fm

$$
D_{min} = 1.25 \cdot (A_p^{1/3} + A_t^{1/3}) + 5.0 \quad [fm]
$$

- empirical criterion based on systematic studies of inelastic and transfercross-sections at beam energies of few MeV/AW.J. Kernan et al. / Transfer reactions (e.g. W.J. Kernan et al., Nucl. Phys. ^A 524, (1991) ³⁴⁴) $164.163.162$ $Dy(^{116}Sn.$ $118.117.116$ $Sn)^{162}$ Dy
- one-neutron sub-barrier transfer recentlyobserved in Coulomb excitation of ⁴²Ca on ²⁰⁸ ${\sf Pb}$ (K. Hadyńska-Klęk et al, PRC 97, 024326 (2018))
- •• for light reaction partners $(^{12}C, ^{16}O...)$ deviations from Cline's criterion observedalready at 6.5 fm separation

Why should we care?

- oscillatory behaviour around the pure Coulomb-excitation cross section due to the nuclear-electromagnetic interference
- deviation from the pure Coulomb-excitation cross section increases with thescattering angle
- multipolarity also plays an important role: much larger effect for E3 than E2
- large increase of the excitation cross section! possible application for RIB studiesor higher-lying states?

FRESCO calculations: D. Kalaydjieva, N. Keeley. Data from P. Garrett, MZ et al, PRC 106, 064307 (2022) (¹⁰²Ru + ¹²C at 53 MeV)

Experiment

• inelastic scattering data on 106 Cd: byproduct of a RDDS lifetime measurement following multinucleon transfer in the 106 Cd + 92 Mo reaction at 7 MeV/A

 M. Siciliano et al., Phys. Lett. B 806, 135474 (2020)M. Siciliano et al., Phys. Rev. C 104, 034320 (2021)

• VAMOS at grazing angle (25 $^{\circ}$); lowest observed scattering angle (19.4 $^{\circ}$) corresponding to 107% of Cline's safe energy

Experiment

• population of 21 excited states observed (up to spin 6⁺) – comparable with Kasia's AGATA experiment on ¹¹⁰Cd

- ¹⁰⁶Cd ions identified in VAMOS with 19.4^o $\leq \theta_{\textsf{LAB}} \leq 30^{\circ}$ (Cline's criterion fulfilled for $\theta_{\textsf{LAB}} \leq 18^{\textsf{o}}$)
- we apply gates on θ_{LAB} with 1^o width to study the dependence of the excitation cross sections on scattering angle
- $\bullet\,$ due to complicated acceptance of the spectrometer as a function of $\theta,$ we normalise the measured γ -ray intensities to that of the $2^+_1 \rightarrow 0^+_1$ transition

- where are the oscillations? the experimental points line up even for angles where the nuclear surfaces almost touch!
- let's try to assume pure Coulomb-excitation process and see if we can reproduce the measured γ -ray intensities using known spectroscopic data (lifetimes, branching and mixing ratios...)

Level scheme used in the analysis: observed transitions

- level spin-parities taken from ENSDF
- assumptions required if there is no firm spin and/or parity assignment (2254 keV, keV, 2711 keV, 2718 keV, 2824 keV states)

Level scheme used in the analysis: observed transitions

- mostly one- or two-step excitation
- placement of the 1217-keV transition in the level scheme taken from A. Linnemann, PhD thesis, University of Cologne, ²⁰⁰⁵: in agreement with its observation in thepresent experiment and with the systematics of heavier Cd isotopes

Level scheme used in the analysis: additional spectroscopic data

- branching ratios mostly taken from the most recent γ - γ coincidence measurement: $(\mathsf{p},\mathsf{p}'\gamma)$ T. Schmidt, PhD thesis, University of Cologne, 2019
- mixing ratios mostly taken from ENSDF; if they are missing for a $J^+ \rightarrow J^+$
trepaition parts \Box ? assumed transition – pure E2 assumed
- we note discrepancies in the literature for many branching and mixing ratios

Level scheme used in the analysis: additional spectroscopic data

• quadrupole moments: weighted averages of results from D. Rhodes et al., PRC 103, L051301 (2021) and T.J. Gray et al., PLB ⁸³⁴ ¹³⁷⁴⁴⁶ (2021)

Level scheme used in the analysis: E3 transitions

• initially we assume that only one E3 matrix element is responsible for population of each negative-parity state

Level scheme used in the analysis

• initially we assume that only one E3 matrix element is responsible for population of each negative-parity state

• now that we have ^a set of electromagnetic matrix elements corresponding toliterature data, can we describe our measured transition intensities?

- reasonable agreement with literature data for 4^+_1 (weighted average of measured lifetimes)
- lifetime of the 6^+_2 state deduced from the same data as our transition intensities (M. Siciliano et al., Phys. Rev. ^C 104, ⁰³⁴³²⁰ (2021) is not consistent with themeasured intensity ratios

• much better agreement for the 6^{+}_{2} state if we assume:

- $\langle 6_2^+ \|E2\|4_1^+ \rangle$ matrix element from Coulomb excitation (D. Rhodes et al., Phys. Rev. ^C 103, L051301 (2021))
- or $6\frac{+}{2}$ lifetime from $(n,n'\gamma)$ (A. Linnemann, PhD thesis, University of Cologne, 2005 but here the uncertainty is very large ($\tau = 0.26^{+0.44}_{-0.14}$ ps) $\tau = 0.26^{+0.44}_{-0.14} \text{ ps}$)

• finally, we can try to fit a set of matrix elements to the first few points of the cross-section distribution, and compare the resulting lifetimes:

 4^+_1 – GOSIA fit: 1.23(7) ps weighted average of lifetimes: 1.32(12) ps

 6^{+}_{2} – GOSIA fit: 0.48(3) ps M. Siciliano et al., Phys. Rev. C 104, 034320 (2021): 1.22(15) ps D. Rhodes et al., Phys. Rev. C 103, L051301 (2021): 0.54(8) ps

Preference for certain branching or mixing ratios

different decay patterns in the literature: ENSDF: 51% to 4 $^+_1$, 49% to 2 $^+_1$ T. Schmidt, PhD thesis, University of Cologne, 2019: 63% to 2 $^+_1$, 25% to 4 $^+_1$, 9% to 2 $^+_2$, 3% to 4 $^+_2$

lifetime: 2.12 $^{+0.21}_{-0.17}$ ps (GOSIA fit) 2.34(17) ps (M. Siciliano, PRC 104, ⁰³⁴³²⁰ (2021)) two mixing ratios in ENSDF: δ =3.2(4) and δ =-0.11(4)

lifetime: 0.45 $^{+0.19}_{-0.14}$ ps (GOSIA fit) 0.19(3) ps (A. Linnemann PhD)

Things that did not work

can the divergence for $\theta >$ 22 $^{\circ}$ be due to direct population via E4? strong E4 in this mass region known from inelastic scattering: M.Pignanelli, NPA 540, 27 (1992).

lifetime: 0.18(3) ps (GOSIA fit) 1.1(1) ps (M. Siciliano, PRC 104, 034320) $<$ 0.36 ps ((n,n' γ), A. Linnemann PhD)

the observed population of the 5^+_1 state would require B(E2; $5^+_1 \rightarrow 4^+_2$) over 300 W.u.
no eluce from a surhare also this line no clues from γ - γ where else this line could be placed

lifetime: 9(1) ps (GOSIA fit) 870(290) ps (ENSDF)

Shape coexistence in Cd isotopes: BMF predictions

- similar shape-coexisting structures as in $110,112$ Cd are predicted in 106 Cd
- in-band transition strength in the oblate structure predicted to increase withdecreasing N, while the B(E2; $0^+_3 \rightarrow 2^+_2$) value decreases

SCCM calculations: T.R. Rodriguez

Shape coexistence in Cd isotopes: experimental results

- decay of the presumably oblate 0_3^+ state agrees well with the SCCM prediction, but the in-band transition strength has ^a very different trend
- larger B(E2; $2^+_5 \rightarrow 0^+_3$) (similar to that in the ground-state band) if the branching
ratio from A Linnemann BbD (Cologne, 2005) is assumed instead of the more proci ratio from A. Linnemann PhD (Cologne, 2005) is assumed instead of the more precise value from T. Schmidt PhD (Cologne, 2019)

¹⁰⁶Cd: D. Kalaydjieva, PhD thesis, 2023; ¹¹⁰Cd: preliminary values (K. Wrzosek-Lipska) in gray

Proposed reorganisation of the level scheme

- new K=2 3⁺ and 4⁺ and K=4 4⁺ band members proposed that have expected decay patterns and excitation energies consistent with the systematics
- $\bullet\,$ closely spaced 6 $^+$ states suggested to result from a strong mixing of the rotational band member with ^a seniority state
- non-observation of the 2252-keV state in the present data supports its 3⁺ spin-parity (Coulomb excitation of odd-spin positive parity states is strongly hindered)

Negative-parity states

- oscillatory behaviour observed for the 3^+_1 and 5^{-}_{2} excitation cross sections
- initally only ^a single E3 matrix element is assumed to be responsible for thepopulation of each of the 3 $^-_1$, 5 $^-_1$, 5 $^-_2$ and $1^{\text{-}}_1$ states

Negative-parity states

- it is necessary to introduce ^a morecomplicated coupling scheme todescribe populations of the $5_1^-, 5_2^$ and 1 $_1^-$ states
- additional E3 transitions change thepopulations by ^a few percent, even if values of many tens of W.u. areassumed

Negative-parity states

- it is necessary to introduce ^a morecomplicated coupling scheme todescribe populations of the $5_1^-, 5_2^$ and 1 $_1^-$ states
- additional E3 transitions change thepopulations by ^a few percent, even if values of many tens of W.u. areassumed
- E2 transitions to the $3₁⁻$ state prove to be very important
- we do not know the relevant branching ratios, but we can extract the correlation between the <mark>E3</mark> and E2 strength involved in the population of the negative parity states

Negative-parity states: structure results

• B(E3; $3^{-}_{1} \rightarrow 0^{+}_{1}$) = 11(4) W.u. in agreement with D. Rhodes et al., PRC 103, L051301 (2021) **(red) b**ut in disagreement with the <mark>evaluated value of 34(9) W.u.</mark> (T. Kibedi and T. Spear, At. Data Nucl. DataTables 80, ³⁵ (2002))

Negative-parity states: structure results

• B(E3; $3^{-}_{1} \rightarrow 0^{+}_{1}$) = 11(4) W.u. in agreement with D. Rhodes et al., PRC 103, L051301 (2021) but in disagreement withthe evaluated value of 34(9) W.u. (T. Kibedi and T. Spear, At. Data Nucl. DataTables 80, ³⁵ (2002))

• if one assumes B(E2; $5^{-}_{2} \rightarrow 3^{-}_{1}$) =
 $B(59, 47, 37)$ $B(59, 2^{+} \rightarrow 0^{+})$ B(E2; 1 $^-$ → 3 $^-$) = B(E2; 2 $^+_1$ → 0 $^+_1$), we obtain B(E3; 5 $^{-}_{2}$ → 2⁺) = 7.8(1.3) W.u. and B(E3; 1 $^-_1 \rightarrow 2^+_1$) = 13(3) W.u, equal
within example to B(E3: 3= 0.0⁺⁾ within error bars to B(E3; 3 $_1^ \rightarrow$ 0 $_1^+$)

• $5₂$ seems to be either a member of a rotational structure built on the 3^+_1 state or result from quadrupole-octupolevibrational coupling

Negative-parity states: structure results

→ 2⁺
agreement with D. Rhodes et al., PRC 103, L051301 (2021) **(red) b**ut in disagreement with the <mark>evaluated value of 34(9) W.u.</mark> (T. Kibedi and T. Spear, At. Data Nucl. DataTables 80, ³⁵ (2002))

> • if one assumes B(E2; $5^{-}_{2} \rightarrow 3^{-}_{1}$) =
 $B(F3, 4^{-}_{1} \rightarrow 3^{-}_{1})$ B(E2; 1 $^-$ → 3 $^-$) = B(E2; 2 $^+_1$ → 0 $^+_1$), we obtain B(E3; 5 $^{-}_{2}$ → 2⁺) = 7.8(1.3) W.u. and B(E3; 1 $^-_1 \rightarrow 2^+_1$) = 13(3) W.u, equal
within exter have to B(E3: 3= 0.0⁺) within error bars to B(E3; 3 $_1^ \rightarrow$ 0 $_1^+$)

• $5₂$ seems to be either a member of a rotational structure built on the 3^+_1 state or result from quadrupole-octupole vibrational coupling, which is alsoconsistent with energy systematics

Conclusions and outlook

- for the strongly populated states in 106 Cd we have shown that assuming pure Coulomb-excitation process we can well reproduce the experimentally measuredtransition intensities and extract E2 strengths that are in 1 σ agreement with literature values
- there are numerous discrepancies in the level scheme of 106 Cd that make conclusions for higher-lying states more difficult: a new β -decay measurement approved at TRIUMF
- we obtained, in particular, new experimental information on the presumably oblate 0_3^+ and 2_5^+ states, as well as on the 3_1^- and 5_2^- states
- this method can be applied to analyse byproduct data of lifetime measurementsusing multinucleon transfer (in particular, to obtain information on states that werebeyond sensitivity region of the lifetime measurement – here e.g. 2^{+}_{4} , 2^{+}_{5})
- the observed large increase in excitation cross section would also be beneficial for experiments with radioactive beams