

Exploring the Isomeric Decay of ^{180m}Ta with the MAJORANA DEMONSTRATOR:

New Insights from the Second Year of Data

Ralph Massarczyk (LANL)

LA-UR-24-31756

A bit of (ancient) history...

In greek mythology **Tantalus** offended the gods...

... so he was punished to be **trapped** in a pond under a fruit tree.

He could **not** reach **up** to eat.

He could **not** lean **down** to drink.

Tantalus trapped as punishment.

Illustration from www.symmetrymagazine.org/article/majorana-demonstrator-finds-tantalizing-new-purpose

A bit of (modern) history...

Level scheme of ^{180m}Ta

Ta used in the experiment

For nuclear physics **Tantalum** (named 1802) is one of the rarest elements and has two isotopes...

... one of them (^{180m}Ta) is **trapped** in an isomeric state while the ground state decays.

It can **not** go to a **higher** state due to energy.

It can **not** go down to a **lower** state due to spins

- The origin of Tantalum in the universe :
 - Study helps to understand the observed abundance of ^{180m}Ta within a wider nucleosynthesis framework
 - Understand which candidate processes are strong enough to produce Ta (*v*-interactions, thermal excitation in early universe)
- Longest lived metastable state never observed to decay
 - Most extreme case to study nuclear structure spin traps
 - Theory varies on predictions for half-life
 - Variety of transitions possible:
 β-decay, electron capture (EC), internal conversion,
 γ-transition, α-decay
 - Ground-state ¹⁸⁰Ta is unstable ($T_{1/2} \sim 8$ hours)

Decay scheme of ^{180m}Ta with possible decay channels (red) and detection signatures (blue)

4

- The origin of Tantalum in the universe :
 - Study helps to understand the observed abundance of ^{180m}Ta within a wider nucleosynthesis framework
 - Understand which candidate processes are strong enough to produce Ta (*v*-interactions, thermal excitation in early universe)

- <u>The origin of Tantalum in the universe</u> :
 - Study helps to understand the observed abundance of ^{180m}Ta within a wider nucleosynthesis framework
 - Understand which candidate processes are strong enough to produce Ta (*v*-interactions, thermal excitation in early universe)
- Longest lived metastable state never observed to decay
 - Most extreme case to study nuclear structure spin traps
 - Theory varies on predictions for half-life
 - Variety of transitions possible:
 β-decay, electron capture (EC), internal conversion,
 γ-transition, α-decay
 - Ground-state ¹⁸⁰Ta is unstable ($T_{1/2} \sim 8$ hours)

Decay scheme of ^{180m}Ta with possible decay channels (red) and detection signatures (blue)

- <u>The origin of Tantalum in the universe</u> :
 - Study helps to understand the observed abundance of ^{180m}Ta within a wider nucleosynthesis framework
 - Understand which candidate processes are strong enough to produce Ta (*v*-interactions, thermal excitation in early universe)
- Longest lived metastable state never observed to decay
 - Most extreme case to study nuclear structure spin traps
 - Theory varies on predictions for half-life
 - Variety of transitions possible:
 β-decay, electron capture (EC), internal conversion,
 γ-transition, α-decay
 - Ground-state ¹⁸⁰Ta is unstable ($T_{1/2} \sim 8$ hours)

Decay scheme of ^{180m}Ta with possible decay channels (red) and detection signatures (blue)

- The origin of Tantalum in the universe :
 - Study helps to understand the observed abundance of ^{180m}Ta within a wider nucleosynthesis framework
 - Understand which candidate processes are strong enough to produce Ta (*v*-interactions, thermal excitation in early universe)
- Longest lived metastable state never observed to decay
 - Most extreme case to study nuclear structure spin traps
 - Theory varies on predictions for half-life
 - Variety of transitions possible: β -decay, electron capture (EC), internal conversion, y-transition, α -decay
 - Ground-state ¹⁸⁰Ta is unstable ($T_{1/2} \sim 8$ hours)
- <u>Search for Dark Matter interaction</u>
 - Additional energy from the isomer allows reaction with particles that would not interact otherwise
 - Candidates: Strongly Interacting DM, Inelastic DM

Decay scheme of ^{180m}Ta with possible decay channels (red) and detection signatures (blue)

What is needed for a measurement...

History of Tantalum decay measurements with predictions (dashed lines), from arxiv 2305.17238

- Large exposure (material and time)
- Detector with excellent energy resolution
- If possible multiple detectors, that can detect coincidences
- A clean, ultra low-background system and environment

Perfect use of MJD facility after enriched detector removal

Tantalum – a rare element (isotope)

- 1 2 ppm of earth's crust is Ta
- 99.98% is ¹⁸¹Ta
- Best previous measurement used ~1kg of ^{nat}Ta (~0.2 g of ^{180m}Ta)
- All the ¹⁸⁰Ta is metastable:

the only naturally occurring long-lived isomer

MAJORANA DEMONSTRATOR 🚳

Searching for neutrinoless double-beta decay of ⁷⁶Ge in HPGe detectors, probing additional physics beyond the standard model, and informing the design of the next-generation LEGEND experiment

Source & Detector:

U.S. DEPARTMENT OF

- Array of p-type, point contact detectors 30 kg of 88% enriched ⁷⁶Ge crystals
- Included 6.7 kg of ⁷⁶Ge inverted coaxial, point contact detectors in final run
- Enriched detectors removed in 2021 for LEGEND
- 14 kg of natural Ge crystals

Office of

Science

- Excellent Energy Resolution: 2.5 keV FWHM @ 2039 keV
- Low Analysis Threshold: 1 keV
- Low Background: 2 modules within a compact graded shield and active muon veto using ultra-clean materials
- Final Result, (PRL 130, 062501, 2023)
 - 65 kg-yr exposure
 - Median $T_{1/2}$ Sensitivity: 8.1 × 10²⁵ yr (90% C.I.)
 - Limit: T_{1/2} > 8.3 × 10²⁵ yr (90% C.I)

Reconfiguring of the DEMONSTRATOR

• Detectors and Ta arranged to maximize efficiency

Reconfiguring of the DEMONSTRATOR

- Detectors and Ta arranged to maximize efficiency
- **17.4 kg installed** ~ 2 g ^{180m}Ta, (*x10 more than best previous measurement*)
- 23 active detectors (before only one or two HpGe setups)
- Operating since May 2022

(left) cleaning and installation in the MJD strings

(right) schematic arrangement of detectors, green, and Ta, grey, and photograph of the full detector array

Installation

Data Overview and Analysis

- Data Set of 859 days (84.0% live)
- Background contributions from:
 - natural radioactivity within the Tantalum disks (< 0.5 mBq/kg_{Ta})
 - surface activation in Ta
 - ¹⁸²Ta (T_{1/2} = 114 days)
 - ¹⁷⁵Hf (T_{1/2} = 70 days)
- Background improving over time

Data Overview and Analysis

- Data Set of 859 days (84.0% live)
- Background contributions from:
 - natural radioactivity within the Tantalum disks (< 0.5 mBq/kg_{Ta})
 - surface activation in Ta
 - ¹⁸²Ta (T_{1/2} = 114 days)
 - 175 Hf (T_{1/2} = 70 days)
- Background improving over time

n: 101 /2-) 5.2 m	¹⁷⁶ W	¹⁷⁷ W	¹⁷⁸ W	¹⁷⁹ W	¹⁸⁰ W	¹⁸¹ W	¹⁸² W	¹⁸³ W	¹⁸⁴ W
	¹⁷⁵ Ta z: 73 n: 102 Jπ 7/2+ T _{1/2} :10.5 h	¹⁷⁶ Ta	¹⁷⁷ Ta	¹⁷⁸ Ta	¹⁷⁹ Ta	¹⁸⁰ Ta	¹⁸¹ Ta	¹⁸² Ta	¹⁸³ Ta
i.	¹⁹² Hf	¹⁷⁵ Hf z: 72 n: 103 Jπ 5/2(-) T _{1/2} :70 d 2	¹⁷⁶ Hf	¹⁷⁷ Hf	¹⁷⁸ Hf	¹⁷⁹ Hf	¹⁸⁰ Hf	¹⁸¹ Hf	¹⁸² Hf
J	¹⁷³ Lu	¹⁷⁴ Lu	¹⁷⁵ Hf Hafnium Jn T _{1/2} or <u>F</u> Delta (keV) Bind/A (keV)	n 103 z 72 5/2(-) 70 d 2 -54481.763 23 8060 7625 13	⁷⁷ Lu	¹⁷⁸ Lu	¹⁷⁹ Lu	¹⁸⁰ Lu	¹⁸¹ LU
) I	¹⁷² Yb	¹⁷³ Yb	Mass (μAMU) Qα (keV) Qβ (keV) Qec (keV)	174941511.424 2 2400.1392 23 -2073.1103 28 683.915 26	25 ⁷⁶ Yb	¹⁷⁷ Yb	¹⁷⁸ Yb	¹⁷⁹ Yb	I80Yb
n	¹⁷¹ Tm	¹⁷² Tm	Sn (keV) Sp (keV) Decay Major radiatio Type keV β+	6200.4421 22 ec 100% ns %	⁷⁵ Tm	¹⁷⁶ Tm	¹⁷⁷ Tm	¹⁷⁸ Tm	
2	¹⁷⁰ Er	¹⁷¹ Er	γ 343.40 s 54.070 s	84 46.5	⁷⁴ Er	¹⁷⁵ Er	¹⁷⁶ Er		

A look in a few region of interests – full data

♦ U/Th decay chain

Multiplicity analysis

- Replaces search of individual signatures
- Efficiency lower
- Background much lower !

Updated results

- Current improvements
 - Efficiency (x 2-3) Ο
 - Mass (x 12) 0
 - Background 0
- multiplicity analysis allows high sensitivity search

$$\lambda_{total} = \lambda_{EC} + \lambda_{\beta^-} + \lambda_{\gamma} + \lambda_{IC} + \lambda_{\alpha} + \lambda_{DM}$$

	EC	β ⁻	¥	IC	α
Previous Limits	> 1.6 x 10 ¹⁸	> 1.1 x 10 ¹⁸	> 4.5 x 10 ¹⁴	> 4.5 x 10 ¹⁴	-
MJD - 2023	> 1.3 x 10 ^{19 **}	> 1.5 x 10 ^{19 **}	> 6.0 x 10 ¹⁷	> 2.9 x 10 ¹⁷	> 1.1 x 10 ^{19 **}
Full data (preliminary)	3.7 x 10 ¹⁹	4.3 x 10 ¹⁹	1.3 x 10 ¹⁸	5.9 x 10 ¹⁷	3.0 x 10 ¹⁹
Theory	10 ²³	10 ²⁰	10 ³¹	10 ¹⁸	10 ²⁵

Previous limits:

MAJORANA

Recent updates

- Before 1D spectral analysis
- Inclusion of correlated peak fits

Recent updates

- Before 1D spectral analysis
- Inclusion of correlated peak fits
- Investigation in ¹⁷⁵Hf and other short lived
- Optimize sensitivity by using 2D fits in energy and time
 - Background decaying component
 - Background constant component
 - Signal constant in time for Ta, or decaying for ¹⁷⁵Hf

2D fit of constant signal on background in presence of other peaks

Recent updates

- Before 1D spectral analysis
- Inclusion of correlated peak fits
- Investigation in ¹⁷⁵Hf and other short lived
- Optimize sensitivity by using 2D fits in energy and time
 - Background decaying component
 - Background constant component
 - Signal constant in time for Ta, or decaying for ¹⁷⁵Hf
- 20-30 % improvement over 1D fits

Makes use of all data

- Early data good background determination and statistics
- Later data: better signal to background ratio

Dark matter induced deexcitation

- No observation of ^{180m}Ta decay \rightarrow no DM-induced decay
- Improved sensitivities to strongly interacting DM (siDM)
- Additional sensitivities to more complex DM with multiple states
- and/or particles via inelastic scattering

Similar studies in other isomers

- Different approach
 - Short half life
 - High activity using a LANL in-house source
- Portable Ge detector, short measurement time (15m)
- Search for new transitions next to known transitions

Similar studies in other isomers

- Different approach
 - Short half life
 - High activity using a LANL in-house source
- Portable Ge detector, short measurement time (15m)
- Search for new transitions next to known transitions

$\chi + {}^{178m}\text{Hf} \rightarrow \chi^* + {}^{178}\text{Hf}_j$

PHYSICAL REVIEW LETTERS 131, 141801 (2023)

Editors' Suggestion

Dark Matter Constraints from Isomeric ^{178m}Hf

D. S. M. Alves¹, S. R. Elliotte^{1,*} R. Massarczyk^{0,1} S. J. Meijer^{0,1} and H. Ramani² ¹Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA ²Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA

(Received 7 June 2023; revised 10 August 2023; accepted 11 September 2023; published 5 October 2023)

We describe a first measurement of the radiation from a 178m Hf sample to search for dark matter. The γ flux from this sample, possessed by Lee Alemoe National Laboratory puckas chamietry, use measured

Summary

- Most sensitive search for half-life measurements in isomers world-wide
- Data improved previous measurements by 1-2 orders of magnitude
- Background continues to improve
- Expect final results at the end of project Spring 2025

Inelastic dark matter motivation

- What if the DM species evade direct detection ?
- Production in colliders possible, but very low
- No reason that there is no a whole DM zoo of particles or composite DM
- Based on Tucker-Smith & Weiner (2001) or Alves et al (2010)
- Requires additional "energy" in the system
 - Sufficiently fast DM interacts with standard detectors measuring nuclear recoils OR

Recoil energy as a function of incoming DM velocity for non-isomers

