

International Conference on Shapes and Symmetries in Nuclei: from Experiment to Theory November 4-8, 2024, Orsay, France

Entanglement and coherence of wobbling motion

Qibo Chen (陈启博) East China Normal University

Ref: Q. B. Chen and S. Frauendorf, arXiv:2410.08749 (2024)

Outline

Wobbling motion

- **Given SCS/Azimuthal and SSS plots**
- **Entanglement entropy**
- **Quantum coherence**
- **Summary**

Prediction of wobbling motion

• Rotation of a triaxial nucleus Bohr & Mottelson1975, Vol. II, page 190

$$\hat{H}_{\rm rot} = \frac{\hat{I}_m^2}{2\mathcal{J}_m} + \frac{\hat{I}_s^2}{2\mathcal{J}_s} + \frac{\hat{I}_l^2}{2\mathcal{J}_l}$$

 $\mathcal{J}_m > \mathcal{J}_s, \mathcal{J}_l$ for given I (>>1), the state of lowest energy (yrast) has $|I_m| \sim I$

$$\hat{H}_{\rm rot} = \frac{I(I+1)}{2\mathcal{J}_m} + \left(\hat{n} + \frac{1}{2}\right)\hbar\Omega$$

rotation precession

The quantum number \hat{n} describes the precessional motion of the axes with respect to the direction of *I*; for small amplitudes, this motion has the character of a harmonic vibration with frequency ω . If the intrinsic state

$$\hbar\Omega = 2I\sqrt{\left(\frac{\hbar}{2\mathcal{J}_s} - \frac{\hbar}{2\mathcal{J}_m}\right)\left(\frac{\hbar}{2\mathcal{J}_l} - \frac{\hbar}{2\mathcal{J}_m}\right)}$$

frequency: wobbling frequency/energy quanta: wobbling phonon quanta

LAB frame

Intrinsic frame

Valence particle influences the wobbling

• Odd-mass nuclei: transverse and longitudinal wobbling

Frauendorf & Dönau, PRC 89, 014322 (2014)

With increasing spin *I*, wobbling frequency E_{wob} in

■ TW: decrease

LW: increase

Experimental observations

 Experimental status: 20+ wobbling nuclei were reported in A~80, 100, 130, 160, and 190 mass regions; configurations based on one or two quasiparticles.

原子核	质子数	中子数	组态	β	γ	核区	参考文献
$^{74}\mathrm{Br}$	35	39	$\pi g_{9/2} \otimes \nu g_{9/2}$	0.45	27.5°	80	[22]
105 Pd	46	59	$\nu h_{11/2}$	0.27	25°	100	[23]
$^{125}\mathrm{Xe}$	54	71	$\nu h_{11/2}$	0.16	27°	130	[38]
¹²⁷ Xe	54	73	$\nu h_{11/2}$	-	-	130	[28]
$^{130}\mathrm{Ba}$	56	74	$\pi(h_{11/2})^2$	0.24	21.5°	130	[26, 27]
$^{133}\mathrm{Ba}$	56	77	$\nu h_{11/2}$	-	-	130	[29]
¹³³ La	57	76	$\pi h_{11/2}$	0.17	26°	130	[25]
135 Pr	59	76	$\pi h_{11/2}$	0.17	26°	130	[20, 24]
¹³⁶ Nd	60	76	$\pi h_{11/2}^2$	0.17	28°	130	[30, 39]
¹⁵¹ Eu	63	88	$\pi i_{13/2}$	0.19	20°	150	[36]
161 Lu	71	90	$\pi i_{13/2}$	0.40	20°	160	[32]
¹⁶³ Lu	71	92	$\pi i_{13/2}$	0.40	20°	160	[19, 31]
¹⁶⁵ Lu	71	94	$\pi i_{13/2}$	0.40	20°	160	[33]
¹⁶⁷ Lu	71	96	$\pi i_{13/2}$	0.43	19°	160	[34]
¹⁶⁷ Ta	73	94	$\pi i_{13/2}$	0.41	20°	160	[35]
¹⁸³ Au	79	104	$\pi i_{13/2}$	0.29	21.4°	190	[37]
¹⁸³ Au	79	104	$\pi h_{9/2}$	0.3	20°	190	[37]
¹⁸⁷ Au	79	108	$\pi h_{9/2}$	0.23	23°	190	[21]

Wobbling example: ¹³⁰Ba

collective enhancement of the interband B(E2)

TABLE I. Experimental and theoretical mixing ratios δ as well as the transition probability ratios $B(M1)_{out}/B(E2)_{in}$ and $B(E2)_{out}/B(E2)_{in}$ for the transitions from band S1' to band S1 of ¹³⁰Ba.

	δ			$\frac{B(M1)_{\text{out}}}{B(E2)_{\text{in}}}$ ($(rac{\mu_N^2}{e^2b^2})$	$\frac{B(E2)_{\text{out}}}{B(E2)_{\text{in}}}$	
$I(\hbar)$	Expt	PRM		Expt	PRM	Expt	PRM
13	-0.58^{+13}_{-13}	-0.67		0.36^{+19}_{-13}	1.11	0.32^{+18}_{-15}	0.51
15	-0.62^{+10}_{-10}	-0.68		$0.38\substack{+61\\-16}$	0.90	0.36^{+70}_{-19}	0.42
17	-0.62^{+10}_{-10}	-0.68		$0.23\substack{+22 \\ -09}$	0.76	0.22^{+27}_{-10}	0.35
19	-0.60	-0.66		$0.25\substack{+23 \\ -08}$	0.67	0.22^{+21}_{-07}	0.29
21	-0.60	-0.63		0.43^{+35}_{-13}	0.63	0.41^{+34}_{-13}	0.25

QB, Frauendorf, Petrache, PRC 100, 061301(R) (2019)

Elucidate the physics behind! ---> SCS/Azimuthal and SSS plots

Petrache et al., PLB 795, 241 (2019)

Calculate SCS and SSS plots in particle-rotor model

Hamiltonian:

$$\hat{H}_{PRM} = \hat{H}_{coll} + \hat{H}_{intr}$$

$$\hat{H}_{coll} = \sum_{i=1}^{3} \frac{\hat{R}_i^2}{2\mathcal{J}_i} = \sum_{i=1}^{3} \frac{(\hat{I}_i - \hat{j}_i)^2}{2\mathcal{J}_i}$$

$$\hat{H}_{intr} = \sum_{i=1}^{3} \sum_{\nu} \varepsilon_{i,\nu} a_{i,\nu}^{\dagger} a_{i,\nu}$$

$$I = \mathbf{R} + \mathbf{j}$$
d.o.f: K (I) and k (j), bipartition

Coupling basis

$$|IMK\varphi\rangle = \frac{1}{\sqrt{2}} \Big[|IMK\rangle|\varphi\rangle + (-1)^{I-K}|IM-K\rangle|\bar{\varphi}\rangle \Big], \ |\varphi\rangle = |jk\rangle$$

 $|IM\rangle_{\nu} = \sum_{K\varphi} C_{IK\varphi}^{(\nu)} |IMK\varphi\rangle$

• Reduced density matrix for total or particle AM

$$\boldsymbol{\rho}_{KK'}^{(\nu)} = \sum_{\varphi} C_{IK\varphi}^{(\nu)} C_{IK'\varphi}^{(\nu)*} \qquad \boldsymbol{\rho}_{\varphi\varphi'}^{(\nu)} = \sum_{K} C_{IK\varphi}^{(\nu)} C_{IK\varphi'}^{(\nu)*}$$

$$\mathcal{P}^{(\nu)}(\theta,\phi) = \sum_{KK'} D_{KI}^{I*}(\theta,\phi,0) \boldsymbol{\rho}_{KK'}^{(\nu)} D_{K'I}^{I}(\theta,\phi,0)$$
Azimuthal/Spin coherent state plots
Chen, QB, Luo, Meng, Zhang, PRC 96, 051303(R) (2017);
QB, Frauendorf, EPJA 58, 75 (2022)
$$\mathcal{P}^{(\nu)}(\theta,\phi,0) = \sum_{KK'} D_{KI}^{I*}(\theta,\phi,0) \boldsymbol{\rho}_{KK'}^{(\nu)} D_{K'I}^{I}(\theta,\phi,0)$$
Azimuthal/Spin coherent state plots

$$\mathcal{Q}^{(\nu)}(\theta,\phi,0) = \sum_{KK'} D_{KI}^{I*}(\theta,\phi,0) \boldsymbol{\rho}_{KK'}^{(\nu)} D_{K'I}^{I}(\theta,\phi,0)$$
Azimuthal/Spin coherent state plots

$$\mathcal{Q}^{(\nu)}(\theta,\phi,0) = \sum_{KK'} D_{KI}^{I*}(\theta,\phi,0) \boldsymbol{\rho}_{KK'}^{(\nu)} D_{K'I}^{I}(\theta,\phi,0)$$
Azimuthal/Spin coherent state plots

$$\mathcal{Q}^{(\nu)}(\theta,\phi,0) = \sum_{KK'} D_{KI}^{I*}(\theta,\phi,0) \boldsymbol{\rho}_{KK'}^{(\nu)} D_{K'I}^{I}(\theta,\phi,0)$$
Azimuthal/Spin coherent state plots

$$\mathcal{Q}^{(\nu)}(\theta,\phi,0) = \sum_{KK'} D_{KI}^{I*}(\theta,\phi,0) \boldsymbol{\rho}_{KK'}^{(\nu)} D_{K'I}^{I}(\theta,\phi,0)$$
Azimuthal/Spin coherent state plots

$$\mathcal{Q}^{(\nu)}(\theta,\phi,0) = \sum_{KK'} D_{K'I}^{I*}(\theta,\phi,0) \boldsymbol{\rho}_{KK'}^{(\nu)} D_{K'I}^{I}(\theta,\phi,0)$$
Azimuthal/Spin coherent state plots

$$\mathcal{Q}^{(\nu)}(\theta,\phi,0) = \sum_{KK'} D_{K'I}^{I*}(\theta,\phi,0) \boldsymbol{\rho}_{KK'}^{(\nu)} D_{K'I}^{I}(\theta,\phi,0)$$

$$\mathcal{P}^{(\nu)}(\phi) = \frac{1}{2\pi} \sum_{KK'} e^{-i(K-K')\phi} \rho_{KK'}^{(\nu)}$$

Spin squeezed state plots
B, Frauendorf, PRC 109, 044304 (2024)

Semiclassical visualization and classification

More general classification of TW and LW were introduced:

> LW as precession around the mediate axis (with the largest MoI);

TW as precession about an axis transverse to the m-axis.

with the key signatures:

- collective enhancement of the interband B(E2);
- > TW decreasing wobbling energy and LW increasing wobbling energy.

Visualization examples

Another perspective – back to the origin

To what extend can one interpret the coupled system in terms of a particle and a rotor state? Quantify their entanglement!

How to quantify the entanglement?

 $\rho^2 = \rho$, 1 eigenvalue $e_v = 1$ and the rest $e_v = 0$: system is pure.

 $\rho^2 \neq \rho$, more non-zero e_v : two subsystems are entangled.

Eigenvalue spectra

Particle and Rotor states are entangled! How to describe it quantitatively?

Using entropy and purity to describe entanglement

Entropy: quantitative measure of the degree of quantum entanglement (disorder) between two subsystems basis independent

• Entropy:

$$S_A = -\text{Tr } \rho_A \ln \rho = -\sum_m p_m \ln p_m$$
 p_m: eigenvalues
von Neumann entropy
S=0, pure state; S>0, entangled; S_{max}=ln d (d: dimension)

Purity: measure of the degree of mixing

• Purity:

$$P = \text{Tr } \rho^2 = \sum_m p_m^2$$
 P=1, pure state; P<1, mixed state

Entropy and purity: ¹³⁵Pr

Coherence

Coherence: the correlation and interference between different quantum states in a system; represented by the non-zero off-diagonal elements of the density matrix

basis dependent

• Intuitive l₁ norm:

$$C_{l_1}(\rho) = \sum_{i \neq j} |\rho_{i,j}|$$

PRL 113, 140401 (2014)

Density matrix

• K/SSS-plots coherence:

$$P(\phi) = \rho_{\phi,\phi}^{(I\nu)}, \quad P_2(\phi) = \left[\rho^{(I\nu)}\right]_{\phi,\phi}^2 / \operatorname{Tr}\left\{\left[\rho^{(I\nu)}\right]^2\right\},$$
$$\Delta_{\mathrm{SSS}} = \int_{-\pi}^{\pi} d\phi \left|P_2(\phi) - P(\phi)\right|.$$

 $\rho^2 = \rho$, complete coherence, $\Delta = 0$;

De-coherence in SSS plot

To understand the nature of de-coherence

Schmidt decomposition of reduced density matrix:

$$\rho = \sum_{m} \rho^{(m)} \text{ (blue)}, \quad \rho_{KK'}^{(m)} = p_m C_{IK}^{(m)} C_{IK'}^{(m)},$$

$$\rho^{(12)} = \rho^{(1)} + \rho^{(2)} \text{ (black)}, \quad \rho^{(34)} = \rho^{(3)} + \rho^{(4)} \text{ (gray)}, \quad \rho^{(1234)} = \rho^{(12)} + \rho^{(34)} \text{ (red)}$$

- The appearance of higher order terms causes the decoherence.
- > The higher order terms are small, so the Δ_{SSS} is small.

Summary

Entropy and coherence are studied for the wobbling motion in ¹³⁵Pr and ¹³⁰Ba in the framework of particle rotor model.

When transverse wobbling collapses: entropy increases; when longitudinal wobbling is established, entropy decreases. Although the entropy changes with number of wobbling quanta n, de-coherence stays about the same.

The physics of entropy and coherence should be further explored. They will be extended to study the chiral modes.

Thank, you!