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Motivation

microscopic large-scale shell-model description of
Intermediate-mass nuclei and np pairing correlation

-> Overwhelming evidence for like-

particle pairing. It manifests itself

through:

* Strongly attractive J=0 TBMEs

* Dominance of J=0 pairs in the w.f. of
semi-magic nuclei

—>No consensus on the role of the np

correlation. The interaction itself is also

complex:

* Strong monople interaction->drift in
single particle energies

* QQ correlation->deformation

* Non-collective residual interaction in
odd-odd nuclei

* Highly-mixed wave functions in most
cases.
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Deformation minima in even-even nuclei by using the deformed Woods-Saxon potential (not LSSM).
Z.X.Xu and C. Qi, Phys. Lett. B 724, 247 (2013). Z. Wu et al., Phys. Rev. C 92, 024306 (2015).
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Wiy np pairing
- g.s.) = v =0;J =0) = (P;)"?d)

* There have been tremendous studies on neutron-proton pairing correlations _ .
v =2;JM) = (P22 AT (52T M)| Do)

Seniority coupling as a result of strong J=0 pairing

with various approaches (MF+BCS, SM, Quartet etc) on observables like /
binding energy, spectrum, np transfer, beta decay and alpha decay

* Like-pairing pairing only spans the seniority-zero states, which we can :

comfortably handle with neural quantum states. s e
1. Bonnier, Master thesis, KTH, 2024 Cmui \‘\\\ —u(f\:,,fpgd;ff 12)
-—lomg LT e . . .
* The inclusion of T=0 and 1 np pairing spans however the full SM space but 8 12 o \ LO°In senloriy space
could be essential for N~Z nuclei Qw0 Easier to include many shells
U 104E ’,," \.\::\‘\.
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T 7 T T nf:/ x | doubly- degenerate orbitals and 18-19 pairs (Dim: 9*10°-
' [ / ” ; 1 3.5*10%, shell-model dimension: 4*¥102°-7*1021).
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FIG. 2. Comparison of data from various multiplets with j; =j,

and 7=0. The values of the matrix elements are divided by . . . . .
E=3,118,/% 9] to display the similarities in the J depen- PairDiag: An exact diagonalization program
dence (or 6 dependence) of the various multiplets. 5 .o o .
’ for solving general pairing Hamiltonians +,
1 | 1
120° 60° pAG k¢
8 cosq. = J(J+1)
- = iao-Yu Liu®®¢, Chong Qi® 2 =
FIG, 3. Comparison of data from various multiplets with j; qu 2](] + 1) Moot RISRISE

=j, and T =1. The values of the matrix elements are divided

s e Tl o display the similarities mthe 0o | P Schiffer and W.W. True, Rev.Mod.Phys. 48,191 (1976)
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There have been tremendous studies on neutron-proton pairing correlations
with various approaches (MF+BCS, SM, Quartet etc) on observables like
binding energy, spectrum, np transfer, beta decay and alpha decay

Like-pairing pairing only spans the seniority-zero states, which we can

comfortably handle with neural quantum states.
1. Bonnier, Master thesis, KTH, 2024

The inclusion of T=0 and 1 np pairing spans however the full SM space but
could be essential for N~Z nuclei

These nuclides represent the first opportun-
ity to study alpha decay from nuclei where the
“valence” neutrons and protons are in the same
single-particle level, in this case, the 1g;,,
level. This may give rise to a kind of “super-
allowed” alpha decay resulting in large re-
duced alpha widths. At present, we cannot
give any estimates of the alpha reduced widths
for Te'™ and Te'®® because the alpha branch-

R. D. Macfarlane and A. Siivola, Phys.
Rev. Lett. 14, 114 (1965).
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Superallowed a Decay to Doubly Magic 1°’Sn
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We report the first observation of the '%Xe — !%Te — %Sn a-decay chain. The a emitters, '**Xe
[E, = 4.4(2) MeV, T, = 581)%° us] and '**Te [E, = 4.9(2) MeV, T}, < 18 ns], decaying into doubly
magic '®Sn were produced using a fusion-evaporation reaction *Fe(**Ni, 4n)'%*Xe, and identified with a
recoil mass separator and an implantation-decay correlation technique. This is the first time & radioactivity
has been observed to a heavy self-conjugate nucleus. A previous benchmark for study of this fundamental
decay mode has been the decay of 2'?Po into doubly magic 2°*Pb. Enhanced proton-neutron interactions in
the N = Z parent nuclei may result in superallowed a decays with reduced a-decay widths significantly
greater than that for >'>Po. From the decay chain, we deduce that the a-reduced width for '®*Xe or 'Te is
more than a factor of 5 larger than that for 2'?Po.

K. Auranen, et al. Phys. Rev. Lett. 121 182501 (2018)
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* Alpha decay provides direct evidence for the existence of alpha clustering in g.s. of heavy nuclei- ( ~ 2500 data in total
in Nudat3 database, ~400 gs to gs decays, one expect “indirect” data from (p,pa) reaction)

The alpha formation amplitude

hEAS
33 ua

: ey : T filn 2 1112 H—i_(}(,p)
”““ ] 1;2 B FC v (R)

m—d+a

'-:'EI (R) — de‘EﬂEd‘g& [l'];[ (‘Ed}m{ga) E(R)] j.m M. I'Irm {£d1 gr:u R),
A=In2/T =vSPF, Nuclear structure indicator for particle decay

The spectroscopic factor for alpha

particle is not an observable. R is the distance between the center of mass of the cluster and daughter nucleus which divides the decay

process into an internal region and complementary external region.

F the formation amplitude;

H the Coulomb Hankel function (for the tail of the alpha wave function)

C. Qi, R. Liotta and R. Wyss / Progress in Particle and Nuclear Physics 105 (2019) 214-251



@, Simple alpha-emitter examples:
”; “““““ | 212pg ys 210pg

[*?Po(ay)) = > X(agf; @) *'"Pb(ag) @™ Po(f))
|'.'|:2.'3«1

If we neglect the proton-neutron interaction between the four valence nucleons
(Or pn interaction only being considered at the mean field level)

122Po(a, g.8.)) = [*1"Pb(2v, g.5.) @ |*1"Po(2m, g.5.)),
219Po(a, g.5.)) = P"°Pb(2v1, g5.) @ |*}Po(2m, g.5.)).

Fa (R;: 2 Po(gs)) = / dRASq P (S )V (1112 =10 Pb(gs) )lp(rjr4;:1ﬂ Po(gs)),
Fo(RFOPo(gs)) = [ dRAZa do(Ea) ¥ (r1r2 2% Pb(gs) ¥ (rsr4 71 Po(zs)).

Two-body
clustering

1||'||" AT /dr&{ﬁ'&[rm}lﬂﬂﬁ{rlrri’}lﬂiwf_rﬂrr-ﬂr

» Alpha particle is formed on the nuclear surface;

» Clustering inside the nucleus is suppressed due to Pauli
blocking.

This difference is
due to the large
difference in
pairing
correlation.
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e® * That configuration mixing from higher lying orbits is important for clustering at the surface

1 29, +1 . .
Ua(r1,r2) = (x1x2)oPa(r1, 2, 012) = {Xﬁ'z}ng g \/ jpﬂ Xpop(r1)op(ra) P, (cos f12),

25+1
GZQE::

The corresponding wave function amplitudes are

1331881

IRF R (fm’)

z and

P ) " . " . 2 . \ .
92 95 100 104 108 112 116 120 124 128 132 136 140
N

A.N. Andreyev et al., PhysRevLett.110.242502 (2013).
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222 Single-particle estimation
i Or how do we quantify the formation amplitude in an understandable way ‘
Fo(R) = | dRAEadEa[Ya(€0)D(Ea) ViR, a1, Ui (s as ),
The intrinsic a-particle wave function has the form of a n =1 =0 (0s)* harmonic oscillator eigenstate in the neutron-neutron

relative distances

1 v,

g( . )9/4e$p[—1f&(?“in + Tﬁp + 2?“3_”)/4]5&

@(fﬂ) —

The alpha decay of four uncorrelated/independent particles means that the mother nucleus consists of the daughter nucleus
times a pure configuration of a neutron pair coupled to zero angular momentum times a similar proton pair

W (€d» Ea ﬁ) = (pu(r1)pu(r2))oo(pr(r3)x(ra))ooWalla) g(%%
CSue

C.Qj, R. Liotta, and R. Wyss, Phys. Lett. B 818, 136373(2021). OO
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We assume that the radial single-particle wave function u(r) is
constant inside the mother nucleus, with radius R, which leads
to

f (u(r)/r)*r’dr=RC* =1

The corresponding formation amplitude acquires the form, 30—

28 :_ Po; gs to 02? | | I I | _:
1 .
Fyu(R) _de[rnndrmrppdrpprpndrpnf —2y9/4

4
—Vo (T +75p+2r5,) /4 1 C
v 4 rmlrpp TpnR

Vo (2472 +2r2) /4 Y 4n
R3

xe

xe

‘ 1 ‘ 1 ‘ 1 | 1 | 1 I 1 I 1 ‘ Il ‘ 1 ‘ 1 | 1 | 1
: . 92 96 100 104 108 112 116 120 124 128 132 136 140
After the integration, one can get N

1 (va )9 /4 ‘\/— C 4 4 \/_ vnr —3/4 _7/ 4 Fig. 1. a-particle formation probabilities in p.d.u. for the decays of the even-even

F o;pdu (R) = R v @ isotopes as a function of the neutron numbers N of the mother nuclei.
o

That defines the possibility for four “independent” particles to overlap and form an alpha particle at the surface
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Proton decay from heavy nuclei np pair transfer reaction cross section
* Nearly 50 events observed for decays from g.s. and isomeric states of odd-
Z nuclei with Z>50. ot [T ."{*ﬁ e
* Sensitive to nuclear deformation and pairing F Te 3 ___E T
) . 100 T T T T T e ey
* The decay formation amplitude has the form: _ E - = ] &
N
rg 102 ;— (p.°He) — —~-
Fp;pdu(R):W' \:/ —IIIIIIIIIIIIIII_.IE‘iIIIIIV
iy 1°1E'_'|""I""I""I""
T bo 100 é—' -]
1.2 ° ® Proton decay F +
1071 - -
E _ —_—
» =
1 1072 = (°He,p)
N I RV B B
oak 20 40 60 80 100
i 0.6 .. Fig. 2. Left axis: Unit -sections for the 0T (red) and 17 (black) stat d Right
ne Palrlng a;(gis: npewz)i(slsskopr;]U;?::S(Ijletfel)o:ss ao;un:tion orfe thc:1 r;arget m;scs. Tshz :Zs?lrllts fiim
dominance the approximation of Eq. (8) is shown in a dashed (blue) line. The corresponding
04 orbits being filled are indicated at the top. Experimental data points from Refs. [16-
18] are also included.
Deformation 2
dominance
0 : .
51 63 5 3 65 67 69 71 73 75 77 79 81 83 ) ) .
7 J.A. Lay, Y. Ayyad and A.O. Macchiavelli Physics Letters B 824 (2022) 136789

C.Qj, R. Liotta, and R. Wyss, Phys. Lett. B 818, 136373(2021).
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>%ﬁ we don’t consider np pairing, the alpha clustering is reflected as -
coupling of 2n and 2p clusters as in pdu [ Ll 1
» We have managed to calculate 1%4Te in six major shells and all Te
iIsotopes in one major shell w. and w/o the np interaction.

> Naively one can expect an enhancement upto a factor of around 3 for ! e . T ¥ i
alpha decays when approaching N=Z in our calculations including np .~
interaction = e ¢ C
» But one has to be careful which parts of the np interaction is contributing
and how they evolve as more n/p added.
TABLE II. Amplitudes X (o8, @) = X['2Te(a,) @2 Sn(B,); 30 [ | | I | | I
a4] for @, and B, yrast states, corresponding to '*Te(gs). R ]
1 Te(er) 25n(,) X(eof; o) B 201 LS o
o of 0.544 . - zz _ :Z .
Z;f 21+ 0.483 _g < < g — a5
4} 41 0.318 3. _ L o] 5] {;
6; 6, 0.228 E 4 T s ] Y s
= 1.0 1 1.0 1 lo]
H0Po(ary) H10Pb(B,) X(azf82; 04) 7 05 1 o Q 0.5 1 x x @
= 0.0 0.0
OT 0-1|- 0913 i 14gy  12e 10Te 106Te 108Te  110Tg
2F 2+ —0.253
47 4f 0.122 :
o ! 02 52 53 54 55 56 57 58 59 60
e 8+ 0.030 N
data from Nudat3/Nubase2020 and K. Auranen, et al., R. M. Clark et al, Phys. Rev. C 101, 034313 (2020)

M. Patial, R. J. Liotta, and R. Wyss Phys. Rev. C 93, 054326 (2016) Phys. Rev. Lett. 121 (2018) 182501.
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The average proton-neutron interaction
1
Von(Z,N) = Z[B(Z’ N)+B(Z—-2,N—2)
— B(Z—-2,N)—B(Z,N - 2)],

J.-Y. Zhang, R.F. Casten, D.S. Brenner, Phys. Lett. B 227 (1989) 1.

Pairing rotation

Erot(N,Z) — M Z(AN)(AZ) (AZ)Z

2T un 2Tnp 2T p
Sy, (N +2,Z) = Sy, (N +2,Z +2)].

Tup(N,Z) =

N. Hinohara and W. Nazarewicz Phys. Rev. Lett. 116, 152502 (2016)
6.Sprr e 1.8 e
6.0k even-even N= E [ 1
e I § j Bt @) |
5.0FN = = “Te.” = DZ ]
3 9 12f HFB-17 ]
S 40 1 2 T%. ]
2 3 1 = o09F. %
) E ~=
g 1 5706
: 0.3}
— OOJ||||HU|||
3 ~ 30 60 90 120 150 180 210 240

A
A
CQ, Physics Letters B 717, 436 (2012)
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ZY. Zhang et al., Phys. Rev. Lett. 126, 152502 (2021)
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The pairing correlation is well reflected in the odd-even staggering of bind energy and can be extracted with simple mass filters;
Here we extract the alpha correlation/separation energy (the energy one gains by adding one alpha particle or a-like quartet), similar to
what was done in G. Dussel, E. Caurier, A.P. Zuker, Atomic Data and Nuclear Data Tables 39, 205 (1988).

which is just opposite to the Q value in dig ¢(dNe Z) = B(N,Z) — B(N — 2,Z — 2) — Bay,

Systematics of experimental data

data with same isospin (same decay chain) are
connected

After removing the -l
Coulomb and symmetry -2
energy 3t

160

C. Qi, R. Wyss, to be submitted
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\x) All nn,pp and np correlations can contribute. )
Pairing vibration to pairing rotation!

One expects a parabolic behavior for a system involving equally-spaced o e
doubly- degenerate orbital or in a simple single-j shell 3301 * “#-_theo
2I'I'I'I'I'I'I'I'I'I'I'I'I'I'I'I
*eG=025) | 3001 ﬁ BRaemger No=78
00G=05 :‘m*ﬂﬂ-@ﬂﬂaﬁm No =176
Br | 2501 EP-[H :ﬂﬂﬂﬂﬂ-ﬂ-ﬁ-ﬁ@ No=174
~ E E _ | [Bé 'ﬁ'ﬁﬂ.@ﬂ_ﬁﬂ_&.ﬂ-& NO 72
Bln) = 2] ([2] l) GHoulean+o) | . S 200] No=68 @ﬁﬁﬂﬁﬂﬂﬂﬂﬂaaaa No =70
+ n E = No =66 ﬁﬁﬂﬂﬂﬂﬁ-@ﬂﬁﬁaﬂ
2, B 2
2 )5 . 150+ No = 64 B gy 2R J; 9
o= B >
1 No =62 gﬁﬂﬂﬂﬂﬂaa& g’?
A—h— 4 | 0= Bx -E‘g ’@’
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 100 EEE‘E‘E
23 4 s 6 7 8 5 10 1112 15 141516 No =60 gﬂﬂﬂﬁﬂaaga Hijt $¢
50 No=58 Wgpmpemad™ E&T Jir
No = 56 gﬂ,&&gaﬂasm
Figure 5: Pairing gaps A(C?’) for a equally spaced douby degenerate 01 No=54 mm® aaa®
system with 16 levels and G = 0.25 (solid circle) and 0.5 (open cir- . . . . .
cle). The triangles denote the contribution from the particle blocking -20 -10 0 10 20
effect, 4. N — Ny
S.A. Changizi, C. Qj, R. Wyss, Nucl. Phys. A (2015) N. Hinohara and W. Nazarewicz Phys. Rev. Lett. 116, 152502 (2016)

T. Papenbrock, Phys. Rev. C 105, 044322 (2022)
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Table 1. Configurations with the largest probabilities for the state **Pd(0]) corresponding to the
tensorial products of different two-particle states (upper) and four-particle states (lower).

Configuration z*

v =975 = 9T+ = 9T~4" =9%) | 0.85
2 =9y =9Ta2 =073 =0") | 0.76
[ye = 8Tyh =1Tas =07 = 8T) | 0.56
Iv2e =874 =1Tas =873, =0") | 0.56

The wave function of a system with 4 np pairs (4
alphas/quartets) can be nearly identical to the
simple coupling of two

ly2 =1y =170 =078, =01) | 0.52

Qe = 01 = 00) 098>
[ya = = 81 0.94
7 = 82 '74 = 85) 0.92
ya = 16774 = 167) 0.81

o
- -
C.Qi and R.Wyss, Physica Scripta, 91, 013009 (2016). - -

C. Qi, overview to be published in Int. J. Mod. Phys. E
More in N. Sandulescu’s talk



vt Proton decay formation amplitude

Does the quantity make sense since the emitting proton already “exists”?

» Proton decay F(R) can be expressed as the overlap between the mother, emitting proton and
daughter wave functions; It reflects the probability to find the proton in the particular emiting state

Y YV VY

at R.

}—p(R) — /defd[‘I’d(fd)X(gp)Yl(R)Emmm‘I’m(fda‘fpa R)

It is equivalent to the spectroscopic factor if one assume that the mother, daughter and._

the emitted particle share the same single-particle wave function 12 —
S = QJZ_1+ - > ‘< xp?—lijf(&k’m AT M, > -
o iC 06
‘< \Ir}4—1Jf k| TAT; >)2 :<

S 4t for decay of 2 qussimroton, the f "_- L "('2:&:'_“1') - '-'--.--- _.or neutron). O>M AP

S= u? for decay of a quasiproton, the formation amplitude is ug(r)

z

The two quantities are different if the single-particle wave functions are different, say

with different deformations for initial and final states.
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» Many emitters are deformed but the symmetry needs to be restored. Both SM and
MF+projection could be good tools.

» The largest systems we can handle in gdsh model space are 12Ba and 118Te (2*1019).

» Recently we have been studying the proton emitters within the truncated SM (monopole +

seniority truncations) and the variation after projection approach (z.c. Gao, Phys. Lett. B 824 (2022)
136795).
n

W ma(K)) =Y f Py |@i),

S W

A neural network quantum state
trial SD?

» We have managed to go upto emitters 112.113Cs so far.

1 2

S = < T My g [ WA TM; >

_ f Al Ukm i JeiVlg
2J; +1 MM m
2
< T ] WA >
(2J; + 1)
C.Qi, Z.C. Gao, to be submitted 1270 nodes with two AMD EPYC™ Zen2 2.25 GHz 64-core processors

56 GPU nodes with four AMD Instinct™ MI250X GPUs

126

82
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There is no difference between the spectroscopic factor for emission
of a single proton outside the core with and without the presence of
an extra neutron. (j,i,) vs j,

A
j=7/2 C}}

Decay Spec. Factor
(4pgn)” = (4n) 1
(Gpn) " =0 = (4a) ="/ L
(73)7=T72 = (52)7=0 0.75
(Ggin)7=0 = (53in) 7="/2 0

J=7/2

(G3dn) =" = (§2in); 0.3731, 0.3196..

(3332)7="1% = (3353)7=° 0.7381

(7343)7=0 — (j243)7=7/2

(3253)7= 7'—>(3 j3)I=7/2

10 __ B EvenN

= ) ) B OddN
= : O 116 La
'_"E 1 - 0 "Wia
e -
S 1 i
~ 100 =
R = u u
=, - =2 [ | *
ga 1072 ;; @ a +

- -

0% + '
:I | L 1 1 1 I 1 1 1 1 | 1 L 1 1 | L 1 1 I 1 | 1 1 1
55 60 65 0 75 80

Z

Fig. 3 Proton formation probabilities. These formation probabilities,
IRFi(R)|2, were deduced for the ground-state proton decays in the odd-Z
elements between Z=53 and 83 as a function of the proton number Z.

W. Zhang et al., Nature Communications Physics 5, 285 (2022).
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* A simple particle decay unit (pdu) can be introduced to quantify alpha clustering in
heavy nuclei

* Observed alpha decays show substantial enhancement in comparison to pdu,
especially at midshell, which is also reflected in systematics of like-particle pairing
correlation and alpha correlation

* The inclusion of np pairing can substantially increase the alpha formation
amplitude in theoretical calcualtions but the effect may be hard to separate.

* The np effect can be much more clear in the simplier proton emission.
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