Beyond-mean-field approach to shape coexistence phenomena in neutron-rich nuclei

A. PETROVICI

Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania

Outline

• complex EXCITED VAMPIR beyond-mean-field variational model

- shape coexistence and first-forbidden β⁻ decay of ⁹²Rb (N=55) to ⁹²Sr (N=54)
 first-forbidden β⁻ decay of 0⁻_{gs} of ⁹²Rb to 0⁺_{gs} and 2⁺ states in ⁹²Sr
- shape coexistence and first-forbidden β^- decay of 98 Y (N=59) to 98 Zr (N=58)
 - low-lying isomeric states in ⁹⁸Y
 - exotic structure and dynamics of low-spin states in ⁹⁸Zr
 - first-forbidden β^- decay of θ^-_{gs} of ${}^{98}Y$ to θ^+ and 2^+ states in ${}^{98}Zr$

Neutron-rich A~100 nuclei manifest dramatic evolution in structure and dynamics :

- shape transition, shape coexistence, shape mixing
- drastic changes in structure with particle number, spin, and excitation energy
- particular variations and even "sudden" changes correlated with the onset of deformation around N=58 in Sr and Zr isotopic chains, but a more gradual evolution in the Kr chain

Challenges for theory

- beyond-mean-field methods
- realistic effective Hamiltonians in adequate large model spaces aiming at
- unitary description of structure and β -decay properties
- comprehensive understanding of multifaceted impact of shape coexistence and mixing

complex EXCITED VAMPIR model

- the model space is defined by a finite dimensional set of spherical single particle states
- the effective many-body Hamiltonian is represented as a sum of one- and two-body terms
- the basic building blocks are Hartree-Fock-Bogoliubov (HFB) vacua
- *the HFB transformations are essentially complex and allow for proton-neutron, parity, and angular momentum mixing being restricted by time-reversal and axial symmetry (include unnatural-parity two-body correlations and T=1 and T=0 neutron-proton pairing correlations already at the mean-field level)*
- the broken symmetries (s=N, Z, I, p) are restored by projection before variation
- * The model allows to use rather large model spaces and realistic effective interactions

complex EXCITED VAMPIR model - beyond-mean-field variational approach

VAMPIR

$$E^{s}[F_{1}^{s}] = \frac{\langle F_{1}^{s} | \hat{H} \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}$$
$$|\psi(F_{1}^{s}); sM \rangle = \frac{\hat{\Theta}_{M0}^{s} | F_{1}^{s} \rangle}{\sqrt{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}}$$

 Θ^{s}_{00} - symmetry projector | F^{s}_{l} > - HFB vacuum

EXCITED VAMPIR

$$\begin{aligned} |\psi(F_i^s); sM\rangle &= \sum_{j=1}^i |\phi(F_j^s)\rangle \,\alpha_j^i \\ |\phi(F_i^s); sM\rangle &= \hat{\Theta}_{M0}^s |F_i^s\rangle \end{aligned}$$

for
$$i = 1, ..., n - 1$$

Allows to identify in a small energy interval spherical, oblate, prolate deformed orthogonal configurations of a given symmetry.

$$\left|\psi(F_n^s); sM\right\rangle \ = \ \Sigma_{j=1}^{n-1} \left|\phi(F_j^s)\right\rangle \alpha_j^n + \left|\phi(F_n^s)\right\rangle \alpha_n^n$$

$$(H - E^{(n)}N)f^n = 0$$

Projected configurations significantly correlated could become strongly mixed by the final diagonalization.

n

$$(f^{(n)})^+ N f^{(n)} = 1$$

$$|\Psi_{\alpha}^{(n)}; sM > = \sum_{i=1}^{n} |\psi_i; sM > f_{i\alpha}^{(n)}, \qquad \alpha = 1, ...,$$

Neutron-rich nuclei in the A=100 mass region

⁴⁰*Ca* - *core*

model space for both protons and neutrons :

 $1p_{1/2} \ 1p_{3/2} \ 0f_{5/2} \ 0f_{7/2} \ 2s_{1/2} \ 1d_{3/2} \ 1d_{5/2} \ 0g_{7/2} \ 0g_{9/2} \ 0h_{11/2}$

Effective interaction - renormalized G-matrix (Bonn CD potential)

• *pairing properties enhanced by short range Gaussians for:* T = 1 pp, nn channels T = 0 and 1 np channels

• onset of deformation influenced by monopole shifts:

 $<0g_{9/2} 0f; T=0 |G| 0g_{9/2} 0f; T=0>$ $<0f_{5/2} 1d; T=0 |G| 0f_{5/2} 1d; T=0>$ $<0g_{9/2} 0h_{11/2}; T=0 |G| 0g_{9/2} 0h_{11/2}; T=0>$

• Coulomb interaction between valence protons added

First-forbidden beta decay formalism

$$\frac{1}{t_{1/2}} = \frac{f}{K} \qquad f = \int_1^{W_0} C(W)W(W^2 - 1)^{1/2}(W_0 - W)^2 F(Z, W)dW,$$

first-forbidden $0^- \rightarrow 0^+$ C(W) = k + kb/W

$$O(0^{-}) = \sum_{ab} o^{(0)}(0^{-})(ab) \langle \xi_f J_f || [c_a^{\dagger} \tilde{c}_b]_0 || \xi_i J_i \rangle$$

$$w = -g_A \sqrt{3} \langle a | | r [\boldsymbol{C}_1 imes \boldsymbol{\sigma}]^{(0)} | | b
angle$$

$$w' = -g_A \sqrt{3} \langle a || \frac{2}{3} r I(1, 1, 1, 1, r) [\boldsymbol{C}_1 \times \boldsymbol{\sigma}]^{(0)} || b \rangle$$

$$v = \frac{\epsilon_{mec} g_A \sqrt{3}}{M} \langle a || [\boldsymbol{\sigma} \times \boldsymbol{\nabla}]^{(0)} || b \rangle$$

first-forbidden $0^- \rightarrow 2^+$ $C(W) = k + kaW + kcW^2$ $O(0^-) = \sum_{ab} o^{(2)} (0^-)(ab) \langle \xi_f J_f || [c_a^+ \tilde{c}_b]_2 || \xi_i J_i \rangle$

 $z = 2g_A \langle a || r[\mathbf{C_1} \times \boldsymbol{\sigma}]^2 || b \rangle$

Shape coexistence and first-forbidden β^- decay of ${}^{92}Rb$ to ${}^{92}Sr$

A. Petrovici, Phys. Rev. C 109, 024303 (2024)

⁹²**Rb**: 0^{-}_{gs} - spherical configuration

⁹²Sr: 0⁺_{gs} - multiple shape coexistence : spherical (57%), prolate (28%), oblate (15%) configurations

(spherical occupation $(d^{v}_{5/2})^{4.81}$)

First-forbidden β^- decay of the 0^- ground state of ${}^{92}Rb$ to 0^+ ground state of ${}^{92}Sr$

$$v = \frac{\epsilon_{mec} g_A \sqrt{3}}{M} \langle a || [\boldsymbol{\sigma} \times \boldsymbol{\nabla}]^{(0)} || b \rangle$$

$\epsilon_{\rm mec} = 1.3$	$\epsilon_{\rm mec} = 1.4$	$\epsilon_{\rm mec} = 1.5$	Expt.
5.92	5.78	5.66	5.75

Log ft values for the decay of 0_{gs}^{-} of ${}^{92}Rb$ to 0_{gs}^{+} of ${}^{92}Sr$

Contributions: - main : $d_{5/2}^v f_{5/2}^{\pi}$ matrix elements

- very small effects: $s_{1/2}^{v} p_{1/2}^{\pi}$, $d_{3/2}^{v} p_{3/2}^{\pi}$, $g_{7/2}^{v} f_{7/2}^{\pi}$ matrix elements

Log ft values for the decay of 0_{gs}^{-} of $9^{2}Rb$ to 0_{gs}^{+} of $9^{2}Sr$ constraining the final state to 100% spherical, prolate or oblate content

	$\epsilon_{ m mec} = 1.3$	$\epsilon_{ m mec} = 1.4$	$\epsilon_{\rm mec} = 1.5$
$0^+_{\rm spherical}$	5.62	5.49	5.37
0^+_{prolate}	7.57	7.45	7.34
0^+_{oblate}	9.15	9.06	9.02

First-forbidden β^- decay of 0^- ground state of ${}^{92}Rb$ to 2^+ states in ${}^{92}Sr$

Significant first-forbidden unique transitions in the high-energy region – relevant input for the investigation of the reactor antineutrino spectra

Contributions: - main : $d^{v}_{5/2} f^{\pi}_{5/2}$ matrix elements - small effects: $d^{v}_{5/2} p^{\pi}_{1/2}$, $d^{v}_{5/2} p^{\pi}_{3/2}$, $g^{v}_{7/2} f^{\pi}_{5/2}$ matrix elements

Multiple shape coexistence in ${}^{98}Zr$ by first-forbidden β^- decay of ${}^{98}Y$

Low-lying isomeric states in ⁹⁸Y

\$\mathcal{O}_{gs}\$: spherical configuration
\$\mathcal{Z}_1\$: mixing of oblate deformed configurations
\$\mathcal{L}_1\$: prolate deformed configuration
\$\mathcal{G}_1\$: prolate deformed configuration
\$\mathcal{L}_1\$: mixing of oblate deformed configurations

Proton occupation of valence spherical orbitals

Neutron occupation of valence spherical orbitals

Multifaceted impact of shape coexistence at low-spins in ⁹⁸Zr

Spectrum of ${}^{98}Zr$ populated by β^- decay of ${}^{98}Y$

Spherical, prolate, oblate mixing in the structure of the wave functions

 $\beta_2 = 0.03 \div 0.36$ $\beta_2 = -0.24 \div -0.34$

Occupation of valence spherical orbitals

Spectroscopic quadrupole moments

 $g(2^+_1) = 0.48 \quad g(2^+_2) = 0.48 \quad g(2^+_3) = 0.435$

 $g(4^+_1) = 0.49$ $g(4^+_2) = 0.43$ $g(4^+_3) = 0.33$

E0 transitions

$I[\hbar]$	$\underset{0_{2}^{+}}{\text{EXVAM}}$	$\mathop{\rm EXP}_{0^+_2}$	$\underset{0_{3}^{+}}{\text{EXVAM}}$	$\mathop{\rm EXP}_{0^+_3}$	$\underset{0_{4}^{+}}{\text{EXVAM}}$	$\underset{0_{4}^{+}}{\mathrm{EXP}}$	$\underset{0_{5}^{+}}{\text{EXVAM}}$	$\underset{0_{6}^{+}}{\text{EXVAM}}$
0^+_1	0.033	0.0112(12)						
0^+_2			0.020	0.076(6)			0.005	0.007
0^+_3					0.022	0.061(8)	0.013	0.011
0^+_4								0.006

 $\rho^2(E0)$ values for the lowest six 0^+ states in $^{98}{\rm Zr}$

Transition	EXVAM	Transition	EXVAM
$2^+_2 \rightarrow 2^+_1$	0.013	$4^+_2 \rightarrow 4^+_1$	0.009
$2_3^+ \rightarrow 2_1^+$	0.004	$4_4^+ \rightarrow 4_1^+$	0.016
$2^+_4 \rightarrow 2^+_1$	0.012	$4^+_3 \rightarrow 4^+_2$	0.008
$2^+_5 \rightarrow 2^+_1$	0.006		
$2^+_3 \rightarrow 2^+_2$	0.011		
$2^+_4 \rightarrow 2^+_2$	0.006		
$2_5^+ \rightarrow 2_2^+$	0.020		
$2_5^+ \rightarrow 2_3^+$	0.005		
$2^+_7 \rightarrow 2^+_5$	0.012		

E2 transition strengths

 $B(E2; \Delta I = 2)$ (W.u.) in ⁹⁸Zr

Transition	EXVAM	Cologne(2020)	ENSDF	
$2^+_1 \rightarrow 0^+_1$	3.5	1.1 + 0.3 - 0.2	2.9 + 8-5	
$2^+_1 \rightarrow 0^+_2$	28.1	11 <i>+3-2</i>	29 + 8 - 6	
$0^+_3 ightarrow 2^+_1$	3.7		58 <i>8</i>	
$0^+_4 \rightarrow 2^+_1$	0.45		0.103 8	
$2^+_2 \rightarrow 0^+_1$	0.04	0.26 +0.20-0.08		
$2^+_2 \rightarrow 0^+_2$	1.24	1.8 +1.4-0.6		
$2^+_2 \rightarrow 0^+_3$	34.6	$40 18^{Triumf}$		
$0^+_4 ightarrow 2^+_2$	0.75		42 3	
$2^+_3 \rightarrow 0^+_1$	0.13	0.14 +0.12-0.04		
$2^+_3 \rightarrow 0^+_2$	0.25	1.7 + 1.5 - 0.5		
$2^+_3 ightarrow 0^+_3$	0.25			
$2^+_3 ightarrow 0^+_4$	23.8			
$2^+_4 ightarrow 0^+_3$	2.3			
$2^+_4 ightarrow 0^+_4$	0.64			
$2^+_4 \rightarrow 0^+_5$	24.9			
$0_6^+ \rightarrow 2_4^+$	53.5			
$2^+_5 \rightarrow 0^+_5$	6.9			
$2^+_5 ightarrow 0^+_6$	18.7			
$4^+_1 \rightarrow 2^+_1$	43.6	25 +15-7	42 +10-7	
$4^+_1 \rightarrow 2^+_2$	10.6	38 +26-13	54 +18-16	
$4^+_2 \rightarrow 2^+_1$	1.56	0.6 +0.17-0.12		
$4_2^+ \rightarrow 2_2^+$	40.4	4.6 +1.7-1.3		
$4^+_3 \rightarrow 2^+_3$	30.7			
$4^+_3 \rightarrow 2^+_4$	4.7			
$4^+_4 \rightarrow 2^+_4$	47.7			
$4^+_4 \rightarrow 2^+_5$	3.9			

 $B(E2; \Delta I = 0) \text{ (W.u.) in } {}^{98}\text{Zr}$ Transition EXVAM Cologne(2020) Triumf(2023) $2^+ \rightarrow 2^+ \qquad 41.6 \qquad 46 \pm 85 \cdot 1/2 \qquad 33.17$

$2^+_2 \rightarrow 2^+_1$	41.6	46 +35-14	33 17
$2^+_3 \rightarrow 2^+_1$	0.3	7.6 +6.5-2.3	
$2^+_3 \rightarrow 2^+_2$	0.5		
$2^+_4 \rightarrow 2^+_1$	2.3		
$2^+_4 \rightarrow 2^+_2$	5.9		
$2^+_4 \rightarrow 2^+_3$	4.6		
$2_5^+ \rightarrow 2_3^+$	0.4		
$2_5^+ \rightarrow 2_4^+$	13		
$2_6^+ \rightarrow 2_3^+$	4.6		
$4_2^+ \rightarrow 4_1^+$	28.2		
$4^+_3 \rightarrow 4^+_2$	1.2		
$4_4^+ \rightarrow 4_2^+$	5.5		
$4^+_4 \rightarrow 4^+_3$	16.8		

First-forbidden β^- decay of 0^- ground state of ${}^{98}Y$ to 0^+ states in ${}^{98}Zr$

⁹⁸Y: 0_{gs}^{-} - spherical configuration 0_{gs}^{-} : $(s_{1/2}^{v})^{1} (d_{5/2}^{v})^{5.39}$ ⁹⁸Zr: 0⁺_{gs}: spherical (87%), prolate (3%), oblate (10%) configurations
0⁺_{gs}: (d^v_{5/2})^{4.94}

$$v = \frac{\epsilon_{mec} g_A \sqrt{3}}{M} \langle a || [\boldsymbol{\sigma} \times \boldsymbol{\nabla}]^{(0)} || b \rangle$$

Ι[ħ]	$\mathrm{EXVAM}\left(\epsilon_{mec}=1.15 ight)$	Exp.
0_{gs}^+	5.75	5.8(2)
0^+_2	6.56	> 7.2
0^+_3	7.53	6.0(1)
0_{4}^{+}	7.76	5.6(1)
0_{5}^{+}	7.34	
0_6^+	7.66	

Log ft values for the decay of 0^- gs of ${}^{98}Y$ to 0^+ states in ${}^{98}Zr$

Contributions: - main : $s^{v}_{1/2}p^{\pi}_{1/2}$ matrix elements

- very small (or cancelling effects): $d^{v}_{3/2}p^{\pi}_{3/2}$ and $d^{v}_{5/2}f^{\pi}_{5/2}$ matrix elements

First-forbidden β^- decay of 0^- ground state of ${}^{98}Y$ to 2^+ states in ${}^{98}Zr$

Contributions: $s_{1/2}^v p_{3/2}^{\pi}$, $d_{5/2}^v p_{1/2}^{\pi}$, and $d_{5/2}^v f_{5/2}^{\pi}$ matrix elements

Summary

Comprehensive understanding of multifaceted impact of shape coexistence in neutron-rich nuclei within complex Excited Vampir beyond-mean field variational model

- Shape coexistence and first-forbidden β^- decay of ${}^{92}Rb$ to ${}^{92}Sr$
 - ⁹²*Rb spherical* 0⁻ ground state
 - ⁹²Sr spherical-prolate-oblate mixing in 0⁺ ground state
 - complex prolate-oblate mixing in 2⁺ states (signature spectroscopic quadrupole moments)

* significant first-forbidden unique transitions in high-energy region - relevant for reactor antineutrino anomalies

- Multiple shape coexistence and first-forbidden β^- decay of ${}^{98}Y$ to ${}^{98}Zr$
 - ⁹⁸Y spherical 0⁻ ground state
 - variable mixing of prolate and oblate configurations creates low-spin isomers
 - ⁹⁸Zr spherical-prolate-oblate mixing in 0⁺ states induces significant E0 transitions
 variable prolate-oblate mixing in 2⁺ and 4⁺ states induces complex decay pattern

* unitary description of exotic structure and first-forbidden β^- decay induced by multiple shape coexistence