Impact of deformation on ultra-relativistic nuclear collisions

Benjamin Bally

SSNET24 - Orsay - 04/11/2024

- Interface between low- and high-energy nuclear physics
- Use of nuclear structure information to better understand heavy-ion collisions Giacalone et al., PRL 127, 242301 (2021)
 Bally et al., PRL 128, 082301 (2022)
 Jia et al., PRL 131, 022301 (2023)
- Nuclear deformation impacts initial conditions and thus final state observables
- Nuclear structure calculations for $^{16}\mathrm{O}$ and $^{20}\mathrm{Ne}$ using EFT-based interactions

- · Interface between low- and high-energy nuclear physics
- Use of nuclear structure information to better understand heavy-ion collisions Giacalone et al., PRL 127, 242301 (2021)
 Bally et al., PRL 128, 082301 (2022)
 Jia et al., PRL 131, 022301 (2023)
- Nuclear deformation impacts initial conditions and thus final state observables
- Nuclear structure calculations for $^{16}\mathrm{O}$ and $^{20}\mathrm{Ne}$ using EFT-based interactions
- Predictions for $^{16}\text{O} + ^{16}\text{O}$ and $^{16}\text{O} + ^{208}\text{Pb}$ runs at LHC in 2025

 $\operatorname{CERN-TH-2024-021}$

The unexpected uses of a bowling pin: exploiting ²⁰Ne isotopes for precision characterizations of collectivity in small systems

Giuliano Giacalone,^{1, *} Benjamin Bally,² Govert Nijs,³ Shihang Shen,⁴

Thomas Duguet,^{5,6} Jean-Paul Ebran,^{7,8} Serdar Elhatisari,^{9,10} Mikael Frosini,¹¹ Timo A. Lähde,^{12,13}

Dean Lee,¹⁴ Bing-Nan Lu,¹⁵ Yuan-Zhuo Ma,¹⁴ Ulf-G. Meißner,^{10,16,17} Jacquelyn Noronha-Hostler,¹⁸ Christopher Plumberg,¹⁹ Tomás R. Rodríguez,²⁰ Robert Roth,^{21,22} Wilke van der Schee,^{3, 23, 24} and Vittorio Somå⁵

CERN-TH-2024-074

Anisotropic flow in fixed-target ²⁰⁸Pb+²⁰Ne collisions as a probe of quark-gluon plasma

 Giuliano Giacalone,^{1,*} Wenbin Zhao,^{2,3,†} Benjamin Bally,⁴ Shihang Shen,⁵

 Thomas Duguet,^{6,7} Jean-Paul Ebran,^{8,9} Serdar Elhatisari,¹⁰ Mikael Frosini,¹¹

 Timo A. Lähde,^{12,13} Dean Lee,¹⁴ Bing-Nan Lu,¹⁵ Yuan-Zhuo Ma,¹⁴ UlF.G. Meißner,^{16,17,5}

 Govert Nijs,¹⁸ Jacquelyn Noronha-Hostler,¹⁹ Christopher Plumberg,²⁰ Tomás R. Rodríguez,²¹

 Robert Roth,^{22,23} Wilke van der Schee,^{18,24,25} Björn Schenke,^{26,1} Chun Shen,^{27,28,§} and Vittorio Somå⁶

- · Collaboration between low- and high-energy nuclear physics communities
 - ♦ Heavy-ion collisions
 - Nuclear structure (PGCM)
 - ◊ Nuclear structure (NLEFT)

Ultra-relativistic ion-ion collisions

Ultra-relativistic ion-ion collisions

Ollitrault, EPJA 59, 236 (2023)

Ultra-relativistic ion-ion collisions

SSNET24 - Orsay - 04/11/2024

Collective flow of particles

credit: CMS collaboration

• Probability distribution of particle emission

$$P(\phi,\eta) = P(\phi) = \frac{1}{2\pi} \sum_{n=-\infty}^{+\infty} V_n e^{-in\phi}$$

 $V_2 \equiv$ elliptic flow, $V_3 \equiv$ triangular flow, . . .

Collective flow of particles

credit: CMS collaboration

• Probability distribution of particle emission

$$P(\phi,\eta) = P(\phi) = \frac{1}{2\pi} \sum_{n=-\infty}^{+\infty} V_n e^{-in\phi}$$

 $V_2 \equiv$ elliptic flow, $V_3 \equiv$ triangular flow, . . .

Average of pair distribution

$$\left(\frac{dN_{\text{pair}}}{d\Delta\eta d\Delta\phi}\right) = \left\langle P(\phi)P(\phi + \Delta\phi)\right\rangle = \frac{1}{2\pi} \left(1 + 2\sum_{n=1}^{+\infty} \left\langle |V_n|^2 \right\rangle \cos(n\Delta\phi)\right)$$

Ollitrault, PRD 46, 229 (1992) Ollitrault, EPJA 59, 236 (2023)

Geometric asymmetry of initial conditions

Ollitrault, PRD 46, 229 (1992) Ollitrault, EPJA 59, 236 (2023)

Geometric asymmetry of initial conditions

Chinellato, Quark Matter 2023

- Collectivity appears in *small systems* (p+p, p+A, d+A, ...)
- Is it the same mechanism? Is hydrodynamic the correct description?

Cez

Tools and workflow

- TAURUS: https://github.com/project-taurus
- Trajectum: https://sites.google.com/view/govertnijs/trajectum
- SMASH: https://github.com/smash-transport/smash

NLEFT calculations

 Nuclear Lattice Effective field Theory (NLEFT) Lee, Front. in Phys. 8, 174 (2020)
 Lähde and Meißner, Lectures Notes in Phys., Springer (2019)

- Mesh with 8 sites and spacing a = 1.315 fm
- Minimal pionless EFT Hamiltonian with SU(4) symmetry
- Pin-hole algorithm → nucleon positions Elhatisari *et al.*, PRL 119, 222505 (2017)

• Projected Generator Coordinate Method (PGCM)

$$|\Theta_{\epsilon}^{\sigma M}\rangle = \sum_{qK} f_{\epsilon}^{\sigma M}(q,K) P_{MK}^{\sigma} |\Phi(q)\rangle \quad \text{where} \quad \sigma \equiv Z, N, J, \pi$$

• Projected Generator Coordinate Method (PGCM)

$$|\Theta_{\epsilon}^{\sigma M}\rangle = \sum_{qK} f_{\epsilon}^{\sigma M}(q, K) P_{MK}^{\sigma} |\Phi(q)\rangle \quad \text{where} \quad \sigma \equiv Z, N, J, \pi$$

• Full method: PGCM + Perturbation Theory

Frosini et al., EPJA 58, 62 (2022) Frosini et al., EPJA 58, 63 (2022) Frosini et al., EPJA 58, 64 (2022) → PGCM enough for relative properties

PGCM calculations

cez

• Projected Generator Coordinate Method (PGCM)

$$|\Theta_{\epsilon}^{\sigma M}\rangle = \sum_{qK} f_{\epsilon}^{\sigma M}(q, K) P_{MK}^{\sigma} |\Phi(q)\rangle \text{ where } \sigma \equiv Z, N, J, \pi$$

• Full method: PGCM + Perturbation Theory

Frosini et al., EPJA 58, 62 (2022) Frosini et al., EPJA 58, 63 (2022) Frosini et al., EPJA 58, 64 (2022) \rightarrow PGCM enough for relative properties

• Model space: $e_{max} = 6$, $e_{3max} = 18$, $h\omega = 12$ Hamiltonian: Hüther N3LO Hüther *et al.*, PLB 808, 135651 (2019) Reference states $|\Phi\rangle$: real general Bogoliubov (VAPNP mininization) Collective coordinates *q*: $\beta_{20}, \beta_{22}, \beta_{30}, \beta_{32}$

PGCM-based densities

- Determine average deformation of PGCM ground state: $ar{q}$
- One-body density: $\rho_m(x, y, z) = \sum_{st} \frac{\langle \Phi(\bar{q}) | s^+_{xyzst} P^Z P^N | \Phi(\bar{q}) \rangle}{\langle \Phi(\bar{q}) | P^Z P^N | \Phi(\bar{q}) \rangle}$
- Sample directly ρ_m or assuming α clusters

• In the 0-1% events:

$$\frac{v_{2}\{2\}_{\text{NeNe}}}{v_{2}\{2\}_{\text{OO}}} = \begin{cases} 1.170(8)_{\text{stat.}} (30)_{\text{syst.}}^{\text{Traj.}} (0)_{\text{syst.}}^{\text{str.}} (\text{NLEFT}) \\ 1.139(6)_{\text{stat.}} (27)_{\text{syst.}}^{\text{Traj.}} (28)_{\text{syst.}}^{\text{str.}} (\text{PGCM}) \end{cases}$$

SSNET24 - Orsay - 04/11/2024

• Negative ρ due to the large deformation of $^{\rm 20}{\rm Ne}$

$$\rho_{\rm Ne+Ne} - \rho_{\rm O+O} \propto \left(\beta_{2,16\,\rm O}^3 - \beta_{2,20\,\rm Ne}^3\right)$$

Fixed-target program at LHCb/SMOG2

credit: CERN

- · Collaborative work at the interface between low- and high-energy physics
 - $\diamond~$ Make use of the large ground-state deformation of $^{20}{\rm Ne}$
 - Combines several state-of-the-art frameworks and software
 - NLEFT and PGCM give consistent results
- We make predictions for
 - \diamond ^{16}O + ^{16}O and ^{16}O + ^{208}Pb runs at the LHC (2025)
 - $\diamond~^{20}\text{Ne}+^{20}\text{Ne}$ and $^{20}\text{Ne}+^{208}\text{Pb}$ runs that could be performed in the future