

Advances in Heavy-Ion Transfer Reactions: Insights from Recent Experiments at LNL-INFN

SSNET'24 Orsay, France, 4-8 Nov 2024

Tea Mijatović, RBI, Zagreb, Croatia

Multinucleon transfer reactions

۸ZP

- MNT above the barrier: many open transfer channels, governed by optimum Q-value and transfer form factors
- Interesting for the study of the structural properties of nuclei (single particle states, collective states, correlations between nuclei)
- Recent experimental highlights concerning • reaction mechanism:
 - Production of n-rich heavy isotopes: important to understand proton pick-up channels
 - Simultaneous population of 1N and 2N channels: study of nucleon-nucleon correlations
- **PRISMA** large solid angle magnetic spectrometer @ LNL-INFN, Italy

MNT and the production of heavy neutron-rich nuclei

206Bi	207Bi	208Bi	209Bi	210Bi	211Bi
205Pb	206Pb	207Pb	208Pb	209РЬ	210Pb
204TI	205TI	206TI	207TI	208TI	209TI
203Hg	204Hg	205Hg	206Hg	207Hg	208Hg
202Au	203Au	204Au	205Au	206Au	207Au
201Pt	202Pt	203Pt	204Pt	205Pt	206Pt
200Ir	201Ir	202Ir	203Ir	204Ir	205Ir
199Os	200Os	201Os	202Os	203Os	

Change of population pattern from n-poor to n-rich projectiles

- pick-up channels observed in experiments
- Experimental cross section for multi-p transfer channels are much larger than GRAZING predictions, especially for the pick-up channels
- At energies above the barrier, DIC and secondary effects become increasingly more influential
- A lot of interest in the optimal method to produce heavy n-rich nuclei with MNT reactions

From quasi-elastic to deep-inelastic processes: the ²⁰⁶Pb+¹¹⁸Sn case

- The role of DIC was further studied in the heavy system with high Coulomb fields
- 206Pb+¹¹⁸Sn measured at 1200 MeV, at 35° (grazing angle) and 25°
- Lighter fragment detected in PRISMA
- MNT in inverse kinematics:
 - Higher kinetic energy: energy and mass resolution
 - Forward focused angular distribution: efficiency
- A wealth of transfer channels identified in A, Z, and TKEL with high resolution

Excellent Z resolution

Excellent A resolution

E(²⁰⁶Pb)=1200 MeV PRISMA@25° and 35°

35° is close to the limiting angle of Pb-like ions: Safe control of the correct geometry of the experiment

J. Diklić et al., Phys. Rev. C 107 (2023) 014619 S. Szilner et al., Phys. Rev. Lett., accepted

Q-value and angular distributions for the ²⁰⁶Pb+¹¹⁸Sn system

Experimental angular distributions compared with GRAZING. For few nucleon transfer channels, angular distributions retain the main characteristics of the direct process.

Cross section for the ²⁰⁶Pb+¹¹⁸Sn system

Synthesis of heavy neutron-rich nuclei

- GRAZING progressively underestimates yields as more nucleons are transferred - more complicated processes than a direct one
- Secondary processes may strongly modify the final cross • section
- binary partner

Theoretical interest for the ²⁰⁶Pb+¹¹⁸Sn system

- Recent cross section data quickly attracted theorist's interest
 - Time-dependent covariant density functional theory
 - Langevin dynamics
- Calculations have been done for the light partner: high-quality data about the heavy is still lacking
- In general, big interest in developing new models able to predict cross sections and effects of secondary process (coupled channel, semiclassical, TDHF, Langevin, QMD, DNS...)

PHYSICAL REVIEW C 109, 024614 (2024)

Multinucleon transfer with time-dependent covariant density functional theory D. D. Zhang¹, D. Vretenar¹,^{2,1,*} T. Nikšić,^{2,1} P. W. Zhao¹,[†] and J. Meng^{1,‡} TDCDFT(DD-ME2) Exp. ²⁰⁶Pb + ¹¹⁸Sn (E_{lab} = 1200 MeV) GRAZING TDCDFT(PC-PK1) 10 (0p;Sn (-2p;Cd) (-1p;ln) +1p:Sb) 102 (qm) 10¹ 10¹ 10-2 10-3 10-60 65 70 75 60 65 70 75 60 65 70 75 60 65 70 75 Neutron number of TLF

PHYSICAL REVIEW C 109, 024617 (2024)

F. C. Dai⁽¹⁾, ^{1,2} P. W. Wen⁽²⁾, ^{3,*} C. J. Lin⁽³⁾, ^{3,4,†} J. J. Liu⁽³⁾, ¹ X. X. Xu, ^{1,2,5,‡} K. L. Wang, ¹ H. M. Jia, ³ L. Yang, ³ N. R. Ma, ³ and F. Yang³

Study of the heavy partner: the ¹⁹⁷Au+¹³⁰Te case

- Important to understand the production mechanism for • neutron-rich nuclei in the A=200 mass region and the effect of secondary processes on the final yields of fragments
- ¹⁹⁷Au+¹³⁰Te, 1070 GeV, inverse kinematics •
- PRISMA coupled to a second time-of-flight system • NOSE, a gas detection system for fragment identification in low-energy heavy-ion collisions
 - Coincident detection of binary partners: PRISMA • (Te-like) + NOSE (Au-like)
 - NOSE: solid angle $\sim 1/3$ PRISMA solid angle
- Study of the final mass distribution of the heavy partner and the effect of the secondary processes

Before AGATA installation

Importance of secondary processes: ¹⁹⁷Au+¹³⁰Te

- Mass correlation between light and heavy reaction products
 - The mass distribution of the heavy partner separated in well defined bands, whose centroids and widths depend on secondary processes
 - The simulations incorporate a successive evaporation of neutrons taking into account the experimental TKEL distributions (to compute evaporation), the cross sections measured in PRISMA and the experimental resolution
 - Slight bend toward lower masses in comparison to those expected for the corresponding primary neutron transfer channels indicates that evaporation becomes relevant in defining the final yields
- MNT are suitable tool to populate heavy n-rich nuclei

MNT with radioactive beams: the ⁹⁴Rb+²⁰⁸Pb case

- Aim: To test multinucleon transfer (MNT) • reactions for producing n-rich heavy nuclei
- ⁹⁴Rb+²⁰⁸Pb, 6.2 MeV/u
- ISOLDE CERN: MINIBALL + CD particle • detector
 - fragment- $\gamma(-\gamma)$ coincidences
- Pb isotopes directly identified by the • detection of their electromagnetic transitions
- Main γ-ray transitions for inelastic and ٠ neutron transfer channels
- Analysis of isomeric decay of ²¹⁰Pb •

[New] = 500

400

300

Cross sections with radioactive beam

- agreement with GRAZING)
 - Dominant cross section in the south-east region
- The calculated cross sections for Hg:
 - ⁸⁷Rb (the most neutron-rich stable) vs ⁹⁴Rb (RIB)
- Importance of increased beam intensities for further research

Proton transfer channels near and below the Coulomb barrier

With some news from PRISMA-AGATA campaign

Nucleon-nucleon correlations with MNT reactions

- Two-particle transfer processes are an ideal tool • to study the dynamical aspects of pairing correlations
- Heavy ions: in selected cases simultaneous • comparison of $\pm nn$, $\pm pp$ and $\pm np$ pairs
 - Proton pair transfer studies so far performed • above the barrier: 2p cross section is enhanced
 - Below the barrier: experimental data very scarce
 - Large modification in the trajectories of entrance and exit channels due to the modification of the Coulomb field
 - Theoretically very challenging to reproduce

L. Corradi et al., PLB 834 (2022) 137477 ₁₅

Probing nucleon-nucleon correlations: the ⁴⁸Ca+²⁰⁸Pb case

- Going towards more n-rich system, ⁴⁸Ca+²⁰⁸Pb:
 - Opportunity to investigate both addition and • removal of n and p pairs, starting from doubly magic nuclei
 - Possibility to investigate correlations simultaneously for a complete set of transfer channels
- Exploring both pick-up and stripping channels should allow to better understand the relative contribution of pair transfer and DIC (below barrier DIC is much less)
- Measured at three bombarding energies with **PRISMA-AGATA**

Preliminary results: the ⁴⁸Ca+²⁰⁸Pb case

- •
- predicted by theoretical models
- •

Summary

- **Production of heavy neutron-rich with MNT reactions:**
 - the comparison between data and theory: elementary modes of the complex mechanism can be studied
 - still needed studies of the best selection of mass asymmetry and collision energy for the largest survival • probabilities of heavy partners
 - new perspective: the use of neutron-rich projectiles (RIB)

Relative role of a transfer of one particle and pair of nucleons: •

- sub-barrier transfer reaction measurement (nuclei interact at large distances)
- the information about correlations are extracted when experimental absolute cross sections are compared • with a microscopic theory which beside correlations includes the coupling between relative motion (reaction) and intrinsic motion (structure)

Thank you!

And a big thank you to all the AGATA-PRISMA collaboration!

S. Szilner, L. Corradi, G. Pollarolo, F. Galtarossa, P. Čolović, J. Diklić, A. Goasduff, D. Montanari, E. Fioretto, A.M. Stefanini, G. Montagnoli, G. Colluci, J.J. Valiente-Dobon, D. Mengoni, D. Jelavić Malenica, N. Soić, N. Vukman, M. Milin, A. Gottardo, T. Marchi, M. Siciliano...

Ruđer Bošković Institute, Zagreb, Croatia INFN - Laboratori Nazionali di Legnaro, Legnaro, Italy INFN and Universita di Torino, Italy INFN and Universita di Padova, Padova, Italy University of Zagreb, Croatia ISOLDE, CERN

This work has been supported in part by the Croatian Science Foundation under project no. IP-2018-01-1257.

