

Felix Bretaudeau – Richard Dallier – Valentin Decoene – Lilian Martin FRB - Neutrino workshop, Institut d'Astrophysique de Paris November 28, 2023

Introduction

- An example of a possible analysis in neutrino astrophysics
- Substrate the second se
- ✤ 1 will discuss:
 - > Hypotheses made to build the analysis strategy
 - ➤ KM3NeT data selection and characterization
 - > Analysis method and optimization results
 - ➤ Future prospects

This symbol:

the answer. In blue

marks a question that could be discussed this afternoon, or to which I do not know

🔵 s been answered

• One proceedings has been published recently, from the Journées de la SF2A 2023, in Strasbourg:

https://drive.google.com/file/d/1mc-N-gz4-_Olmr1HNb4yTA8CbWV_Ldez/view?usp=sharing

The KM3NeT Experiment

Being built now in the Mediterranean Sea (Start: 2016, End: 2028?)

Do we know the estimation of the future FRB rate discovery ? \longrightarrow Cherry: a few per day by CHIME \Rightarrow ~10^3 yr^-1

The KM3NeT Experiment

- Being built now in the Mediterranean Sea (Start: 2016, End: 2028?)
- Each sea operation involves a new detector configuration
 - > All detector configurations can be used, recent show better performance
 - > The data preparation (processing, data quality, simulations) takes time to process
 - > A long and stable period is preferred

Do we know the estimation of the future FRB rate discovery ? \longrightarrow Cherry: a few per day by CHIME \Rightarrow ~10^3 yr^-1 4

The KM3NeT Experiment

- Being built now in the Mediterranean Sea (Start: 2016, End: 2028?)
- Each sea operation involves a new detector configuration
 - > All detector configurations can be used, recent show better performance
 - > The data preparation (processing, data quality, simulations) takes time to process
 - > A long and stable period is preferred
- KM3NeT is not at its full potential
 - > Background discrimination
 - > Shower event reconstruction

Do we know the estimation of the future FRB rate discovery ? \rightarrow Cherry: a few per day by CHIME \Rightarrow ~10^3 yr^-1

Reminder on FRB

1 do not use most of the knowledge on FRBs

⇒ To be as
model-independent

as possible

⇒ This first analysis is basic, the future might require more

Reminder on FRB

1 do not use most of the knowledge on FRBs

⇒ To be as model-independent as possible

⇒ This first analysis is basic, the future might require more

Makes it hard to spot neutrinos 👡

Reminder on FRB

1 do not use most of the knowledge on FRBs

⇒ To be as model-independent as possible

⇒ This first analysis is basic, the future might require more

Makes it hard to spot neutrinos 👡

Are magnetar models ← leading the FRB search ? ⇒ Guillaume: yes and no

Hypotheses for the first KM3NeT analysis

- Simultaneous emission of FRB and neutrino(s) \Rightarrow short time window of ±500s (compact objects)
- No guess on **neutrino energy**: possible search in ORCA and ARCA \Rightarrow Claire: $v \oplus$ TeV
- All bursts are considered **unique**, even repeaters!

Start with a first analysis:

ON/OFF Binned analysis with ORCA6
 Research of a spatial and temporal correlation of neutrino events and FRB

Fast Radio Bursts Selection

- ✤ 900+ bursts detected today
- ✤ Mainly from the Northern Hemisphere by CHIME

Fast Radio Bursts Selection

- ✤ 900+ bursts detected today
- ✤ Mainly from the Northern Hemisphere by CHIME
- ✤ KM3NeT is effectively in operation since January 2020

Fast Radio Bursts Selection

- ✤ 900+ bursts detected today
- ✤ Mainly from the Northern Hemisphere by CHIME
- ✤ KM3NeT is effectively in operation since January 2020
- Many FRBs are discovered by data mining in the radiotelescopes archives, i.e. are not available directly upon detection

D_ORCA006 analysis

- D_ORCA006 configuration lasts from January 27, 2020 to November 18, $2021 \rightarrow 22$ months
- ✤ 123 bursts are left in this period

D_ORCA006 analysis

representation

acceptance

- D_ORCA006 configuration lasts from January 27, 2020 to November 18, $2021 \rightarrow 22$ months *
- 123 bursts are left in this period \rightarrow 69 bursts are located in the local up-going region \rightarrow 55 are usable (taking into account the * ORCA lifetime)

Data selection: Fast Radio Bursts

N°	Name	RA [hourangle]	DEC [°]	Discovery Date (UT)	DM	Repeater	Reporting Group/s	Frequency	Redshift
1	FRB 20200430A	15:18:41.000	+12:20:23.00	2020-04-30 15:49:48.907	380.1		CRAFT	864.5	0.3797
2	FRB 20200508A	09:01:32.390	-65:35:42.70	2020-05-08 07:42:09.500	629		FRBCAT	835	0.4048
3	FRB 20200514B	07:01:00.550	-45:54:24.96	2020-05-14 05:40:45.700	349.4		UTMOST	835.2	0.147
4	FRB 20200607A	13:41:30.650	-05:08:24.10	2020-06-07 10:37:21.700	466.9		FRBCAT	835	0.4613
5	FRB 20200615E	06:12:54.960	+04:38:43.60	2020-06-15 02:51:30.241	518.6	20180301A	CRAFT	-	-
6	FRB 20200627A	21:47:00.000	-39:28:60.00	2020-06-27 19:23:41.644	294		CRAFT	920.5	0.295 4
7	FRB 20200906A	03:35:00.000	-14:04:00.00	2020-09-06 21:40:50.923	577.8		CRAFT	864.5	0.5516
8	FRB 20201123A	17:34:40.560	-50:46:02.00	2020-11-23 10:11:59.482	433.9		MeerTRAP	1284	0.2998
9	FRB 20201124A	05:07:57.600	+26:11:24.00	2020-11-24 08:50:41.885	410.83	20201124A	CHIMEFRB	600	0.2443
10	FRB 20210117A	22:39:36.000	-16:11:25.20	2021-01-17 07:51:21.277	730		CRAFT	1271.5	0.7016

Data selection: Fast Radio Bursts

N°	Name	RA [hourangle]	DEC [°]	Discovery Date (UT)	DM	Repeater	Reporting Group/s	Frequency	Redshift
11	FRB 20210202D	19:46:48.740	-54:13:38.80	2021-02-02 12:38:25.339	609.16		MeerTRAP	-	-
12	FRB 20210214G	00:27:43.000	-05:49:56.00	2021-02-14 05:12:39.696	398.3		CRAFT	1271.5	0.4015
13	FRB 20210303A	22:15:52.300	-46:05:32.00	2021-03-03 01:28:46.900	366.9		UTMOST	835	0.3684
14	FRB 20210320C	13:37:16.800	-15:24:37.30	2021-03-20 18:38:08.508	384.8		CRAFT	864.5	0.3805
15	FRB 202104051	17:01:21.500	-49:32:42.80	2021-04-05 04:14:40.470	566.43		MeerTRAP	-	-
16	FRB 20210407E	05:14:46.300	+27:04:12.30	2021-04-07 05:14:36.202	1785.3		CRAFT	1271.5	1.5002
17	FRB 20210408H	13:37:18.250	-28:17:02.90	2021-04-08 21:20:11.813	1195.95		MeerTRAP	-	-
18	FRB 20210410D	21:44:20.700	-79:19:05.50	2021-04-10 11:13:02:432	578.78		MeerTRAP	-	-
19	FRB 20210630A	17:23:07.409	+07:51:41.85	2021-06-30 12:48:11.200	943.7		UTMOST	835.55	0.8631

26 bursts from rFRB 20201124A and 12 from rFRB 20180301A (detail in backup)

- Data Quality in KM3NeT: all runs are equal, but some runs are more equal than others!
 - > Bioluminescence \rightarrow "Bad run"
 - \succ Detector stability \rightarrow Event rate monitoring
 - > Sea operations, calibration, DAQ issues can reduce the detector duty cycle

An **event**: collection or light in DOMs passing thresholds Minimum of n DOMs triggered Minimum of n lines triggered Track and energy reconstruction with quality factor

- Data Quality in KM3NeT: all runs are equal, but some runs are more equal than others!
 - ➢ Bioluminescence → "Bad run"
 - \succ Detector stability \rightarrow Event rate monitoring
 - > Sea operations, calibration, DAQ issues can reduce the detector duty cycle
- Event rate during ORCA6 period
 - > The variations are not due to signal, but are from the detector itself!

Data event rate for the period of D_00RCA006

20

- Data Quality in KM3NeT: all runs are equal, but some runs are more equal than others!
 - ➢ Bioluminescence → "Bad run"
 - \succ Detector stability \rightarrow Event rate monitoring
 - > Sea operations, calibration, DAQ issues can reduce the detector duty cycle
- Event rate during ORCA6 period
 - > The variations are not due to signal, but are from the detector itself!

"Normal rate": within [0.10, 0.13] Hz "Low rate": below 0.10 Hz

Data event rate for the period of D 00RCA006

- Data Quality in KM3NeT: all runs are equal, but some runs are more equal than others!
 - ➢ Bioluminescence → "Bad run"
 - \succ Detector stability \rightarrow Event rate monitoring
 - > Sea operations, calibration, DAQ issues can reduce the detector duty cycle
- Event rate during ORCA6 period
 - > The variations are not due to signal, but are from the detector itself!
- Each run of interest has *similar runs* based on event rate comparison
 - ▶ Between 4 days and 367 days can be used for each FRB

A **run**: 3 or 4 hours long An **event**: collection of light in DOMs passing thresholds Minimum of n DOMs triggered Minimum of n lines triggered Track and energy reconstruction with quality factor

- The data is highly dominated by the background of atmospheric muons and atmospheric neutrinos
 - > The muons are discriminated mainly through a **zenithal cut** (up-going events only)
 - > A **BDT** is trained to recognize track-like events
 - > The atmospheric neutrinos are present at **low energies** + we are looking for an **excess** in the neutrino flux that should be cosmic

- The data is highly dominated by the background of atmospheric muons and atmospheric neutrinos
 - > The muons are discriminated mainly through a **zenithal cut** (up-going events only)
 - > A **BDT** is trained to recognize track-like events
 - > The atmospheric neutrinos are present at **low energies** + we are looking for an **excess** in the neutrino flux that should be cosmic
- The neutrino cosmic flux is taken as: $\Phi = 1.2 \times 10^8 \times E^{-\gamma}$ [GeV⁻¹ cm⁻² s⁻¹ sr⁻¹], E in GeV and $\gamma = 2$

- The data is highly dominated by the background of **atmospheric muons** and **atmospheric neutrinos** *
 - The muons are discriminated mainly through a **zenithal cut** (up-going events only) \succ
 - A **BDT** is trained to recognize track-like events \succ
 - The atmospheric neutrinos are present at low energies + we are looking for an excess in the neutrino flux that should be cosmic \succ
- The neutrino cosmic flux is taken as: $\Phi = 1.2 \times 10^8 \times E^{-\gamma}$ [GeV⁻¹ cm⁻² s⁻¹ sr⁻¹], E in GeV and y = 2*

- The Data/MC comparison is acceptable *
 - Need to understand the remaining discrepancies \succ
 - After applying BDT cuts, neutrino should dominate \succ

 ν MC

μ MC all MC

ORCA6 data/Monte Carlo comparison

- The data is highly dominated by the background of **atmospheric muons** and **atmospheric neutrinos** *
 - The muons are discriminated mainly through a **zenithal cut** (up-going events only) \succ
 - A **BDT** is trained to recognize track-like events \succ
 - The atmospheric neutrinos are present at low energies + we are looking for an excess in the neutrino flux that should be cosmic \succ
- The neutrino cosmic flux is taken as: $\Phi = 1.2 \times 10^8 \times E^{-\gamma}$ [GeV⁻¹ cm⁻² s⁻¹ sr⁻¹], E in GeV and y = 2*

- The Data/MC comparison is acceptable *
 - Need to understand the remaining discrepancies \succ
 - After applying BDT cuts, neutrino should dominate \succ

 ν MC

ORCA6 data/Monte Carlo comparison

26

- The data is highly dominated by the background of atmospheric muons and atmospheric neutrinos
 - > The muons are discriminated mainly through a **zenithal cut** (up-going events only)
 - > A **BDT** is trained to recognize track-like events
 - > The atmospheric neutrinos are present at **low energies** + we are looking for an **excess** in the neutrino flux that should be cosmic
- The neutrino cosmic flux is taken as: $\Phi = 1.2 \times 10^8 \times E^{-\gamma}$ [GeV⁻¹ cm⁻² s⁻¹ sr⁻¹], E in GeV and $\gamma = 2$
- The Data/MC comparison is acceptable
 - \succ Need to understand the remaining discrepancies
 - > After applying BDT cuts, neutrino should dominate

- Some additional cuts could also be made:
 - ➤ Reconstructed track length
 - Reconstructed energy
 - > Number of triggered modules (high quality events)

- ON/OFF Analysis in a nutshell:
 - 1. Optimize the cuts on the event selection
 - 2. Estimate the background from scrambled data, without looking at the signal
 - 3. Look at the real events and conclude on some visible excess or not

Selection cuts optimization

*

*

- Time Window of **1000 seconds** : $t_v \in [t_{FRB} 500 \text{ s}; t_{FRB} + 500 \text{ s}]$ *
- Model Rejection Factor used to optimize the two cuts, BDT score & ROI * size :
 - Feldman Cousins average upper limit at 90% $MRF = \frac{\overline{\mu}_{90}(n_{bg})}{n}$ confidence level ^{1,2} 15° Latitude [°] S -150 -120 1209 Number of expected signal ÓN ØFF -15° Background from real data -30° Signal from MC simulations Scan on BDT score and ROI size 45° -60° -75° Longitude [°] optimal BDT score optimal ROI size Data $MRF = \frac{\overline{\mu}_{90}(n_{bg})}{n}$ MC Optimal BDT score Optimal ROI size

1: Hill, Rawlins, 2003, https://doi.org/10.1016/S0927-6505(02)00240-2 2: Feldman, Cousins, 1997, arXiv:9711021v2

150°

Method for the ON/OFF Binned analysis

45°

30°

ORCA6 Optimization Results

- Optimization selection: Example of FRB 20200508A
 - ➤ ROI size: 23°
 - ➢ BDT score: 1−10^{-1.8} = 0.984

Scan on the two parameter space: the BDT score (as 1-10^{-BDT score}) and ROI size [°]. The color gradient shows the MRF potential. The red mark shows the minimum for a factor around 10⁶

ORCA6 Optimization Results

- Optimization selection: Example of FRB 20200508A
 - ➤ ROI size: 23°
 - ➢ BDT score: 1−10^{−1.8} = 0.984

Scan on the two parameter space: the BDT score (as 1-10^{-BDT score}) and ROI size [°]. The color gradient shows the MRF potential. The red mark shows the minimum for a factor around 10⁶

Model rejection potential, expected background and expected signal in the ROI. The MRF shows where selected events minimizes the ratio background/signal. The background increases as the square of the ROI but the signal has a slower growth.

- The expected background is much higher than the signal: one event only would have a very high significance
- After unblinding, proceed to the statistical analysis of the real data

ORCA6 Optimization Results

- Some Bursts need further investigation
- Average radii around 15-20° \Rightarrow it's huge, what does this imply ?

- The optimisation with elevation dependent background is almost ready
- Thorough verification of the cuts optimization
- Solve anomalies for some of the bursts
- Un-blinding and analysis of the real data for each burst

Think about the next analysis!

Next analysis strategy

- Candidate: Pulsar Wind Nebula from SNR
- Shocked regions can be a source of neutrinos
 - > What if FRB and neutrinos are not correlated ?
 - Claire & Julien: no hint

Next analysis strategy

- Candidate: Pulsar Wind Nebula from SNR
- Shocked regions can be a source of neutrinos
 - > What if FRB and neutrinos are not correlated ?
 - Claire & Julien: no hint

Next analysis strategy

- Candidate: Pulsar Wind Nebula from SNR
- Shocked regions can be a source of neutrinos
 - > What if FRB and neutrinos are not correlated ?
 - Claire & Julien: no hint

- Stacked analysis ?
 - > The whole FRB population could be studied
 - > Should some cuts be applied on the selection of FRBs ? \Rightarrow Julien: trial factor problem
- Repeaters (and unknown repeaters) could be emitting neutrinos anytime
 - ⇒ Next analysis would be a Stacked likelihood analysis on ARCA21: Research of a spatial correlation of neutrino events with all available FRBs

Overview

- An analysis is undergoing
 - > Once this framework is set, analyses of other detector configurations should be faster

Overview

- An analysis is undergoing
 - > Once this framework is set, analyses of other detector configurations should be faster
- Summary of questions:
 - > Do we know the estimation of the future FRB rate discovery?
 - > Are there energy estimations for magnetar emitted neutrinos?
 - \succ Is it probable that FRB and neutrinos are correlated ?
 - > Are shocked regions of PWN a source of FRB?
 - > Are there FRB published in real time?
 - > What size is an acceptable ROI?
 - > Should additional cuts be made of neutrino data?

Overview

- ✤ An analysis is undergoing
 - > Once this framework is set, analyses of other detector configurations should be faster
- Summary of questions:
 - \succ Do we know the estimation of the future FRB rate discovery ?
 - > Are there energy estimations for magnetar emitted neutrinos?
 - \succ Is it probable that FRB and neutrinos are correlated ?
 - > Are shocked regions of PWN a source of FRB?
 - > Are there FRB published in real time?
 - > What size is an acceptable ROI?
 - > Should additional cuts be made of neutrino data?
- Additional questions:
 - > What do you think is this worth? What would be the best analysis?
 - > For a stacked analysis, should we use all FRBs? What physical cuts on FRB selection?

Backup

Full FRB list 1/5

N°	Name	RA	DEC	Discovery Date (UT)	DM	Repeater	Reporting Group/s	Frequency	Redshift
1	FRB 20200430A	15:18:41.000	+12:20:23.00	2020-04-30 15:49:48.907	380.1		CRAFT	864.5	0.3797
2	FRB 20200508A	09:01:32.390	-65:35:42.70	2020-05-08 07:42:09.500	629		FRBCAT	835	0.4048
3	FRB 20200514B	07:01:00.550	-45:54:24.96	2020-05-14 05:40:45.700	349.4		UTMOST	835.2	0.147
4	FRB 20200607A	13:41:30.650	-05:08:24.10	2020-06-07 10:37:21.700	466.9		FRBCAT	835	0.4613
5	FRB 20200615E	06:12:54.960	+04:38:43.60	2020-06-15 02:51:30.241	518.6	20180301A	CRAFT	-	-
6	FRB 20200627A	21:47:00.000	-39:28:60.00	2020-06-27 19:23:41.644	294		CRAFT	920.5	0.2954
7	FRB 202007011	06:12:54.960	+04:38:43.60	2020-07-01 23:52:50.618	517.3	20180301A	CRAFT	-	-
8	FRB 20200702E	06:12:54.960	+04:38:43.60	2020-07-02 01:05:33.417	516.5	20180301A	CRAFT	-	-
9	FRB 20200906A	03:35:00.000	-14:04:00.00	2020-09-06 21:40:50.923	577.8		CRAFT	864.5	0.5516
10	FRB 20201016B	06:12:54.960	+04:38:43.60	2020-10-16 16:26:21.187	515.6	20180301A	CRAFT	-	-

Full FRB list 2/5

N°	Name	RA	DEC	Discovery Date (UT)	DM	Repeater	Reporting Group/s	Freque	ncy	Redshift
11	FRB 20201123A	17:34:40.560	-50:46:02.00	2020-11-23 10:11:59.482	433.9		MeerTRAP		1284	0.2998
12	FRB 20201124A	05:07:57.600	+26:11:24.00	2020-11-24 08:50:41.885	410.83	20201124A	CHIMEFRB		600	0.2443
13	FRB 20201124B	05:08:26.400	+26:11:24.00	2020-11-24 08:54:45.868	404.36	20201124A	CHIMEFRB		600	0.2368
14	FRB 20201210A	05:13:57.600	+26:12:00.00	2020-12-10 07:54:42.971	414.89	20201124A	CHIMEFRB		600	0.2327
15	FRB 20201229E	06:12:54.960	+04:38:43.60	2020-12-29 13:41:11.701	518.9	20180301A	CRAFT	-		-
16	FRB 20210117A	22:39:36.000	-16:11:25.20	2021-01-17 07:51:21.277	730		CRAFT		1271.5	0.7016
17	FRB 20210118D	06:12:54.960	+04:38:43.60	2021-01-18 11:35:08.060	518.3	20180301A	CRAFT	-		-
18	FRB 20210202D	19:46:48.740	-54:13:38.80	2021-02-02 12:38:25.339	609.16		MeerTRAP	-		-
19	FRB 20210212G	06:12:54.960	+04:38:43.60	2021-02-12 09:33:04.483	518.2	20180301A	CRAFT	-		-
20	FRB 20210214G	00:27:43.000	-05:49:56.00	2021-02-14 05:12:39.696	398.3		CRAFT		1271.5	0.4015

Full FRB list 3/5

N°	Name	RA	DEC	Discovery Date (UT)	DM	Repeater	Reporting Group/s	Frequency	Redshift
21	FRB 20210220A	05:07:48.000	+26:11:24.00	2021-02-20 03:06:22.953	418.93	20201124A	CHIMEFRB	600	0.2522
22	FRB 20210301A	05:01:55.200	+26:10:48.00	2021-03-01 02:28:45.287	417.3	20201124A	CHIMEFRB	600	0.2644
23	FRB 20210303A	22:15:52.300	-46:05:32.00	2021-03-03 01:28:46.900	366.9		UTMOST	835	0.3684
24	FRB 20210320C	13:37:16.800	-15:24:37.30	2021-03-20 18:38:08.508	384.8		CRAFT	864.5	0.3805
25	FRB 20210321A	05:07:50.400	+26:11:24.00	2021-03-21 01:12:22.524	412.46	20201124A	CHIMEFRB	600	0.2462
26	FRB 20210322A	05:08:21.600	+26:11:24.00	2021-03-22 01:10:44.315	410.04	20201124A	CHIMEFRB	600	0.2425
27	FRB 20210323A	05:13:16.800	+26:12:00.00	2021-03-23 01:08:04.102	414.89	20201124A	CHIMEFRB	600	0.2348
28	FRB 20210326A	05:07:09.600	+26:11:24.00	2021-03-26 00:53:51.088	412.46	20201124A	CHIMEFRB	600	0.2477
29	FRB 20210327A	05:03:38.400	+26:11:24.00	2021-03-27 00:46:22.270	416.51	20201124A	CHIMEFRB	600	0.2596
30	FRB 20210327B	05:08:33.600	+26:11:24.00	2021-03-27 00:53:10.546	411.25	20201124A	CHIMEFRB	600	0.2433
31	FRB 20210327C	05:08:33.600	+26:11:24.00	2021-03-27 00:53:10.696	422.17	20201124A	CHIMEFRB	600	0.2536
32	FRB 20210328A	05:08:28.800	+26:11:24.00	2021-03-28 00:49:08.222	415.7	20201124A	CHIMEFRB	600	0.2477

Full FRB list 4/5

N°	Name	RA	DEC	Discovery Date (UT)	DM	Repeater	Reporting Group/s	Frequency	Redshift
33	FRB 20210401C	06:12:54.960	+04:38:43.60	2021-04-01 09:04:12:457	518.5	20180301A	CRAFT	-	-
34	FRB 20210402A	05:07:55.000	+26:01:60.00	2021-04-02 05:48:59.114	414	20201124A	CRAFT	1271.5	0.2482
35	FRB 20210403A	05:08:03.000	+26:03:39.00	2021-04-03 06:37:16.068	423	20201124A	CRAFT	110 4	0.2562
36	FRB 20210403B	05:08:03.000	+26:03:39.00	2021-04-03 07:33:49.802	417	20201124A	CRAFT	1104	0.2505
37	FRB 20210404B	05:08:09.000	+26:08:44.00	2021-04-04 07:46:46.027	414	20201124A	CRAFT	1271.5	0.2478
38	FRB 20210404C	05:08:03.000	+26:03:39.00	2021-04-04 06:56:06.814	420	20201124A	CRAFT	1104	0.2534
39	FRB 20210405C	05:08:03.000	+26:03:39.00	2021-04-05 07:48:16.553	414	20201124A	CRAFT	1104	0.2478
40	FRB 20210405D	05:08:03.000	+26:03:39.00	2021-04-05 06:06:36.441	418	20201124A	CRAFT	895.75	0.2515
41	FRB 20210405E	05:08:03.000	+26:03:39.00	2021-04-05 06:14:36.096	414	20201124A	CRAFT	959.75	0.2478
42	FRB 20210405F	05:08:03.000	+26:03:39.00	2021-04-05 06:34:39.271	415	20201124A	CRAFT	895.75	0.2487
43	FRB 20210405G	05:08:03.000	+26:03:39.00	2021-04-05 06:44:57.149	4 11	20201124A	CRAFT	991.75	0.2449
44	FRB 20210405H	05:08:03.000	+26:03:39.00	2021-04-05 06:53:56.577	418	20201124A	CRAFT	959.75	0.2515

Full FRB list 5/6

N°	Name	RA	DEC	Discovery Date (UT)	DM	Repeater	Reporting Group/s	Frequency	Redshift	
45	FRB 202104051	17:01:21.500	-49:32:42.80	2021-04-05 04:14:40.470	566.43		MeerTRAP	-	-	
46	FRB 20210407A	05:08:03.000	+26:03:39.00	2021-04-07 06:14:00.084	424	20201124A	CRAFT	1104		0.2572
47	FRB 20210407B	05:08:03.000	+26:03:39.00	2021-04-07 06:14:56.340	413	20201124A	CRAFT	1104		0.2469
48	FRB 20210407E	05:14:46.300	+27:04:12.30	2021-04-07 05:14:36.202	1785.3		CRAFT	1271.5		1.5002
49	FRB 20210408H	13:37:18.250	-28:17:02.90	2021-04-08 21:20:11.813	1195.95		MeerTRAP	-	-	
50	FRB 20210410D	21:44:20.700	-79:19:05.50	2021-04-10 11:13:02.432	578.78		MeerTRAP	-	-	
51	FRB 20210517A	06:12:54.960	+04:38:43.60	2021-05-17 06:25:18.841	522.4	20180301A	CRAFT	-	-	
52	FRB 20210517B	06:12:54.960	+04:38:43.60	2021-05-17 07:02:11.264	519.8	20180301A	CRAFT	-	-	
53	FRB 20210517C	06:12:54.960	+04:38:43.60	2021-05-17 07:26:54.640	532.4	20180301A	CRAFT	-	-	
54	FRB 20210530F	06:12:54.960	+04:38:43.60	2021-05-30 01:52:45.763	522.6	20180301A	CRAFT	-	-	
55	FRB 20210630A	17:23:07.409	+07:51:41.85	2021-06-30 12:48:11.200	943.7		UTMOST	835.55		0.8631

45

Angular error Simulation (ORCA6)

Difference between true neutrino direction and reconstructed neutrino direction

