Methods of analysis in HE neutrino astronomy

Julien Aublin - Bruny Baret julien.aublin@apc.in2p3.fr baret@apc.in2p3.fr

Université Paris Cité, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France

Atelier FRB - Nov.2023

- Supernovea explosions $\sim {\rm MeV}$
- Neutrino Physics (oscillations) ~ GeV
- Dark matter and exotic searches ~ TeV
- Cosmic-ray-related neutrinos \sim TeV-PeV

Search for astrophysical sources

Time-independent searches

- Point-like sources:
 - All-sky blind search (lots of trials)
 - Targeted search: list of sources $N \sim 100$ (reduce trial factors)
 - Population study: perform one global fit (stacking) or many individual fits and then combine
- Diffuse emission:
 - Galactic plane / Galactic ridge
 - Fermi Bubbles

Time-dependent searches

- Point-like objects with variability:
 - GRB, Micro-Quasars, γ -ray binaries, Blazars, FRB!
- Gravitationnal waves follow-up

Different types of analyses optimized for each topic

- "Simple" counting methods: cross-correlation with a catalog, counts in a Rol
- Likelihood-based methods: binned or un-binned
- Different parametrization of the signal and background
 - Data-driven approach: scrambling of real data
 - Monte-Carlo-driven: use MC to predict signal/background distributions

Neutrino data set:

- Online (send or answer to alerts) vs Offline reconstruction
- Selection criteria needs to be optimized
- Effective field of view will depend on background rejection

Searches for neutrinos in the direction of radio-bright blazars with the ANTARES telescope (Submitted to ApJ.) https://doi.org/10.48550/arXiv.2309.06874

Search for space and time correlation between ν and blazars Neutrino Data set:

- ANTARES final data sample 2007-2022 (3845 days livetime)
- Track-like (10504) + Shower-like events (227)
- Selection cuts: up-going + $\beta < 1^{\circ} + \Lambda > -5.2$
- \blacksquare Median angular resolution $\sim 0.4^\circ$ for tracks and $\sim 3^\circ$ for showers

Catalog of blazars:

- Very Long Baseline Interferometry (VLBI) observations http://astrogeo.smce.nasa.gov/sol/rfc/rfc_2021b/
- \blacksquare Flux limited catalog for $S_{\rm 8GHz} > 0.15$ Jy
- 3411 blazars \sim uniformly on the full sky

Hypothesis testing, build a Test Statistic (TS) to distinguish:

- Null hypothesis *H*₀ only background
- Alternative: H_1 background + signal

Extended Maximum Likelihood ratio method:

- TS under H_0 should asymptotically follow χ^2 with *n* dof with n = nb of free parameters in the fit
- Not always fulfilled, need MC estimation for the p-value
- Estimation of sensitivity/limits from the TS distribution

Extended Maximum Likelihood ratio method:

Time integrated:

- \blacksquare Mild excess $p=2.2\sigma$, upper-limits on the total flux from blazars
- \blacksquare Similar studies using IC 10yr ν_{μ} public data: < 30% of the diffuse flux

Time dependent:

- 18 blazars with a pre-trial significance $> 3\sigma$
- Most significant gaussian flare for blazar J1355-6326:

• from 3.7 σ pre-trial \rightarrow post-trial P = 0.29

Most significant box flare for blazar J1826+1831:

• from 3.3 σ pre-trial \rightarrow post-trial P = 0.84

Time dependent:

- 18 blazars (among 3411) with a pre-trial significance $> 3\sigma$
- Search for a cumulative excess:
 - Probability to get 18 sources or more with $3\sigma \ p = 1.4\%(2.5\sigma)$

Different ways to perform a stacking analysis:

- Single analysis with the signal term including all sources contributions (counting or likelihood)
- Individual fits/counting and add the individual test statistics $TS = \sum_{i} TS_{i}$

Search for cumulative excess using the p-values (~ binomial)

Interest of the stacking analysis:

- Individual sources are too faint to be detected
- At first order, significance $n_\sigma \sim n_s/\sqrt{n_b}$
- Stacking N identical sources would give $n_{\sigma}^{
 m stack} \sim \sqrt{N} imes n_{\sigma}$
- If only a small fraction of a population of source is ν emitter, stacking $> 10^3$ sources may be worse...

Influence of the time window

- Small time window reduces the background...
- Look for the smallest possible, but risky if we miss the signal!
- Inputs from the theory to optimized discovery potential
- Perform a safer study with more conservative time windows

Search for counterparts (among the 18 blazars with $s > 3\sigma$):

J0242+1101(PKS 0239+108)

ANTARES best-fit flare

OVRO radio light-curve

Adaptive binned gamma-ray light-curve obtained from Fermi-LAT data

IceCube 10-years pointsource sample -Tracks within 90% angular error from source - angular error < 10deg²

Multi-messenger analysis

Result 0.5% (2.9σ) chance probability of v+radio+y correlation

How likely is it that such a multi-messenger (v+radio+ χ) correlation arises by chance?

- Run flare analysis on scrambled data
- Verify how many times these conditions are fulfilled:
 - the global maximum of the radio/gamma lightcurve falls within the ANTARES flare duration $\widehat{T}_0\pm\widehat{\sigma}_t$
 - · ratio between maximum and median flux is
 - · above 1.6 for radio
 - above **3.5** for **gamma** as seen in J0242+1101

Total of 335 blazars with light-curves available both in radio (OVRO) and gamma (Fermi-LAT)

The search for high-energy neutrinos coincident with fast radio bursts with the ANTARES neutrino telescope

MNRAS 482, 184-193 (2019)

- Time period 2013-2017: 16 FRB detected (Parkes+UTMOST+ASKAP)
- Only 12 in the ANTARES FoV (up-going) + good conditions

ANTARES FRB analysis

Method:

- Counting up-going events within 2° search cone
- Time window around
 FRB T₀ ± 6h
- Selection cuts such that 1 detected event $\longrightarrow 3\sigma$
- No signal: UL on the ν fluence for different pure power-law indexes

Cosmological redshift 0.02 0.2 1.4 9.5 10⁵⁹ **Excluded region** 90 % C.L All models (γ = 1.0, 2.0, 2.5) 10⁵⁷ 10⁵⁵ $E_{\nu,iso}$ [erg] 10⁵³ 10⁵¹ 10⁴⁹ 10⁴⁷ Cosmological 10⁴⁵ 10⁴³ 10⁻² 10² 10-3 10⁻¹ 10^{0} 10^{1} 10^{3} 10^{4} 10^{5} Distance [Mpc] 19 / 20

For a more recent example of analysis with KM3NeT \longrightarrow see Felix's talk !