Novembre 2023 – IAP - Atelier Fast Radio Bursts

Modèles FRBs : une revue partiale et partielle.

Guillaume Voisin LUTH, Observatoire de Paris, Université PSL – CNRS

1

Fast radio bursts

One-off : broad-band and shorter

Repeaters : narrow-band, longer, downward-drifting sub-bursts

2

Fast radio bursts

- Extragalactic DM/distance
- Intense : >> 10²³ erg/Hz/s, brightness temperature >> 10³⁰ K
- Fast : a few ms with $\sim 10 \mu s$ substructures
- Bandwidth : narrow (repeaters) / wide (oneoff)
- Repeaters : Downward drifting subpulses
- Repeaters : clustered, but clusters are Poisson distributed (Cruzes+20)
- Polarisation :
 - ➔ Mostly or totally linear
 - No clear trend on Faraday rotation (across sources)
 - ➔ Moderate or no swing

FRB121102, Hessels18

State of the art (more or less)

- Statistical distributions: occurrence times, bandwidth/duration correlations...
- Physical constraints on observables are broadly averaged quantities: flux, duration, bandwidth, frequency drift..
- Burst morphology fitted with empirical functions (e.g. Gaussian).

Some observational constraints

Celebrities

800

500

-15

(ZHW) 700

600 ·

- FRB121102 : the loud one
 - ➔ Up to 30 bursts/hour
 - → 1 Gpc
 - → Very high RM (10⁵ rad/m²)
 - ➔ Persistent radio counterpart
 - ➔ periodic with period 160 days
- FRB180916.J0158+65 : the periodic one
 - ➔ 16 days periodicity with 5 day activity window
 - ➔ Star-forming region
- FRB200824.SGR1935+2154 : the Galactic one
 - ➔ Low luminosity
 - \rightarrow (but 10³ brighter than other magnetars)
 - ➔ X-ray counterpart (Magnetar flare)

High burst density event

"Dense Forests of Microshots in Bursts from FRB 20220912A", Hewitt+2023

Sub-second periodicity

FRB20201020A: 5 bursts with period 0.4ms@2.2sigma (Pastor-Marazuela+ 2023)

FRB 20191221A: 9 bursts with period ~216 ms @6.5sigma, (CHIME/FRB Collaboration, Nature 607, 2022)

Models

Overview of the model maze

- Asteroids + Neutron star (NS)
- White dwarf Neutron star (NS)
- Giant pulses (Young pulsars)
- Magnetar
 - ➔ Shock wave
 - ➔ Magnetospheric
- Pulsar O/B star close binary (or combed NS)

- Flare stars
- Catastrophic events (mergers...)
- Plasma lensing
- Blitzars
- Cavitons (AGNs)
- (Even more) exotic :
 - ➔ Quark novae
 - ➔ Axion stars
 - ➔ Light sails (aliens)

Overview of the model maze

- Asteroids + Neutron star (NS)
- White dwarf Neutron star (NS)
- Giant pulses (Young pulsars)
- Magnetar
 - → Shock wave
 - → Magnetospheric
- Pulsar O/B star close binary (or combed NS)

- Flare stars
- Catastrophic events (mergers...)
- Plasma lensing
- Blitzars
- Cavitons (AGNs)
- (Even more) exotic :
 - → Quark novae
 - ➔ Axion stars
 - ➔ Light sails (aliens)

→

Bibliography on FRB models

Neutron star magnetosphere/wind

In magnetars:

- *"Twisted magnetosphere"* : Strong toroidal magnetic field
- Magnetic field : $10^{12} 10^{16} \, \text{G}$
- *Star quakes* (responsible for magnetar flares)
- Magnetically-powered emission (vs rotation-powered for pulsars)
- Rotation period ~ few seconds for "normal" magnetars

Energetics: basic definitions

Inspired by Metzger+2017

• FRB luminosity:

• FRB energy :

 $E_{\rm FRB} \sim L_{\rm FRB} \Delta t \sim 10^{39} {\rm erg}$ with $\Delta t \sim 1 {\rm ms}$

Energetics : spin-down power (pulsar-like)

• Magnetar with P = 1ms at birth has spin-down timescale :

$$t_{\rm sd} \simeq 5 \left(\frac{B}{10^{14}{\rm G}}\right)^{-2} \left(\frac{P}{1{\rm ms}}\right)^2 {\rm days} \rightarrow {\rm P} \sim 27{\rm ms} ~{\rm after}~10{\rm yr}$$

• Spin-down luminosity after 10 years:

$$L_{\rm sd} \simeq_{t>>t_{\rm sd}} 8 \times 10^{40} \left(\frac{B}{10^{14} {\rm G}}\right)^{-2} \left(\frac{t}{10 {\rm yr}}\right)^{-2} {\rm erg/s}$$

• Condition for spin-down powering of FRBs:

$$L_{\rm sd} > L_{\rm FRB} \Rightarrow t \lesssim 3 \frac{f_r}{f_b} \left(\frac{L_{\rm FRB}}{10^{42} {\rm erg/s}}\right)^{-1/2} B_{14}^{-1} {\rm yr}$$

Energetics: magnetic reservoir (magnetar-like) Inspired by Metzger+2017

• Magnetic energy stored in the crust:

$$E_B \simeq 10^{49} \left(\frac{B_{\rm int}}{10^{16} \rm G}\right)^2 \rm erg$$

• Maximum number of bursts:

$$N_{\rm FRB} < \frac{E_B}{E_{\rm FRB}} \simeq 3 \times 10^2 f_b^{-1} \left(\frac{f_r}{10^{-8}}\right) \left(\frac{B_{\rm int}}{10^{16} \rm G}\right)^2 \left(\frac{E_{\rm FRB}}{10^{39} \rm erg}\right)^{-1}$$

(Metzger+2017 assuming emission mechanism of Lyubarsky 2014)

• Remark : interest of a localised and ultra-relativistic source for $f_h \ll 1$

Emission mechanisms

- Curvature radiation by bunches (e.g. Cooper and Wijers 2021, Kumar+17)
- Inverse Compton scattering by bunches (Zhang21)
- Reconnection of fast magnetosonic waves in magnetar magnetospheres (Lyubarsky 2020, Mahlmann+22)
- Maser in relativistic shocks (Khangulyan+22, Sironi21, Lyutikov21 (argues against))
- Free Electron Laser (Lyutikov20) : wiggler-type emission with wiggler provided by Alfven waves.
- "Pulsar mechanism"...

Radius-to-frequency mapping

- Idea : emission frequency $\,\,\omega \propto 1/r^{lpha}$

where r = distance from central engine

- Emitting plasma is propagating outwards
- ➔ Emission is relativistically beamed

- Emission mechanisms:
 - Synchrotron Maser : $\omega_{
 m peak} \propto B$
 - ightarrow Curvature radiation : $\omega_c \propto 1/r_c$
 - → Plasma frequencie<u>s</u> : $\propto B^{\beta}$

- Interesting result :
 - If NS magnetosphere rotating slow / burst duration then linear frequency drift

FRBs created by interaction of an object with a pulsar/magnetar

Asteroid orbiting around NS

- Source : Plasma wake (Alfven wings) in NS wind
 - ➔ Very high collimation / low energy
 - Randomness: due to orbital dynamics and turbulence
 - ➔ Period
 - If asteroid belt : None
 - If asteroid swarm : swarm period

- Emission mechanism:
 - ➔ Unspecified plasma instability

References : Mottez14, Mottez20, Decoene20, Voisin21

Asteroid orbiting around NS

Energetics

Duration

Population Frequency range Bandwidth

Downward drifting subpulses

Polarisation Polarisation swing Faraday rotation

Counterpart

NS wind + Very high collimation Orbital transit + Wind turbulence ? ? Clumpiness (wind turbulence)

Radius-to-frequency mapping + Clumpiness (wind turbulence)

? (linear if set by magnetic field)

? (flat if set by magnetic field)

Extrinsic

Asteroid colliding with NS

- **Source :** Collision of an asteroid with an old pulsar
 - ➔ Asteroid torn apart by tidal field
 - Moving pieces create unipolar inductor electric field
 - ➔ Electrons are accelerated and radiate

- Emission mechanism:
 - Coherent curvature radiation accelerated

References :

Geng15, Dai16, Bagchi17, Smallwood19, Liu20, Dai20, Dai&Zhong20

Asteroid colliding around NS

Energetics	Asteroids gravitational energy
Duration	Impact duration ~ size of the train of asteroid pieces
Population	? Needs extremely dense asteroid population (/ solar system)
Frequency range	Asteroid size
Bandwidth	?
Downward drifting subpulses	Radius-to-frequency mapping and electron bunching
Polarisation	Curvature radiation
Polarisation swing	Depends on magnetic geometry, expected mild
Faraday rotation	?
Counterpart	? But NS-asteroid were proposed for GRBs in the past

White-dwarf-pulsar binary

• **Source :** A white dwarf is periodically accreted at periastron. The stream of matter falling en waves that trigger reconnection

- Emission mechanism:
 - ➔ Bunched curvature radiation

- Issue:
 - High viscosity needed to get the material down to the star in t < Porb</p>

• References : Gu16, Gu20

FRBs created from the magnetar/pulsar itself

Magnetar: hints and analogies

Repeating FRB ~ Magnetar high-energy bursts ~ Type III Solar flares (Popov10) (Lyutikov02)

- Radio/x-ray fluence ~ 10-4
 - ➔ for type III flares and FRB200428 (e.g. Lu20)
- Similar frequency / energy distributions (e.g. Wadiasingh19, Wang21)
- Sufficient Source population (e.g. Popov10, Metzger17)
- Energetics :
 - ➔ Rotation power unlikely sufficient even with ms-magnetar (e.g. Metzger17)
 - → Magnetic power OK even with "normal" magnetar if high radio/xray efficiency (10-2)
- Expected supernova remnant:
 - ➔ FRB121102 permanent radio source, DM/RM variations (e.g. Hessels19, Marcote17)
 - → But does not work with e.g. FRB180916 (could be other supernova channel) (Marcote20)

Magnetar Magnetosphere

- **Source :** Young Magnetar magnetosphere
 - ➔ FRB200428/SGR1935+2154 is the tail of the extragalactic FRB spectrum
 - Radio bursts are caused by star quakes, as is the HE counterpart

- Emission mechanism:
 - ➔ Bunched curvature radiation
 - → "Pulsar mechanism"
 - ➔ Fast magnetosonic wave packets
 - **→** ...
- Predictions :
 - If very young magnetar (a few decades) activity should decay within a few decades (e.g. Metzger17)
- References :

Kumar17, Ghisellini18, Katz18, Yang18, Lu19, Wang19, Lyubarsky20, Lyutikov20, Lu20...

Magnetar magnetosphere

Energetics

Duration

Population

Frequency range Bandwidth

Downward drifting subpulses

Polarisation

Polarisation swing

DM / Faraday rotation

Counterpart

Magnetic energy in magnetar magnetosphere

~ms given by light-crossing time in magnetosphere Strong repeaters : Young magnetars (Expected in star-forming regions) Galactic/weaker :"Normal" magnetars (Lu20) ? Narrow-band expected in "solar flare" model (Lyutikov02)

Possibly radius-to-frequency mapping (Lyutikov20a)

Usually imposed by local magnetic field (linear) Possible depending on location

Extrinsic

X-ray burst, 10^2 to 10^5 more energetic

Low-twist Magnetar

- **Source** : A rather old magnetar (~10 000 years) having lost its toroidal field i.e. "low-twist"
 - The twist produces a large charge density in the magnetosphere
 - Starquakes produce waves that are creating an electric field
 - If twist too low, then not enough charges to screen the field

Wadiasingh20

- Emission mechanism:
 - Pulsar-like mechanism but possibly along closed magnetic field lines

- Prediction :
 - Possible (isotropic) energy cutoff below 10³⁷ erg (at odds with SGR1935)
- **References :** Wadiasingh19, Wadiasingh20a, Wadiasingh20b, Beniamini20

Supergiant pulses

- **Source :** Young pulsar/magnetar producing giant pulses and nanoshots akin to the Crab's
 - ➔ Based on extrapolation from Crab observation
 - Beaming could be more or less favorable (e.g. the Crab's twin has giant pulses 10 times smaller)

- Emission mechanism:
 - ➔ Unclear

- Problems :
 - Rotation power may be insufficient (Metzger17, Lyutikov17) for 1Gpc distance

• **References :** Cordes16, Connor16, Lyutikov16, Lyutikov17, Lyu21

Magnetar Blast Waves

- **Source :** Strong shock between relativistic plasmoid from reconnection and surrounding material
 - Star quakes produce Alfven waves that trigger reconnection

- Emission mechanism:
 - ➔ Synchrotron Maser

- Prediction :
 - ➔ Optical flash
 - ➤ Wide frequency range
- References :

Popov13, Lyubarsky14, Beloborodov17, Metzger17, Plotnikov19, **Metzger19**, Babul20, **Beloborodov20**, Wu20, Xiao20, **Yuan20**, Margalit20, Yu21

Magnetar Blast Waves

Energetics

Duration

Population

Frequency range Bandwidth

Downward drifting subpulses

Polarisation

Polarisation swing

DM / Faraday rotation

Counterpart

Magnetic energy in magnetar magnetosphere

< 1 ms for GHz (Related to Doppler-compressed propag time) Strong repeaters : Young magnetars (Expected in star-forming regions) Galactic/weaker :"Normal" magnetars (Lu20) Wide (>>1Ghz) ? Unclear

> (Sort-of) radius to frequency mapping (frequency ~ local magnetic field)

Quasi-linear (according to maser simulations)

?

Extrinsic (potential small variations?)

X-ray and optical burst, 10⁶ more energetic

Freely Precessing Magnetar

- **Source :** A young (decades) precessing magnetar
 - Strong magnetic field strains the star creating a quadrupole moment
 - If initial kick (e.g. due to magnetospheric braking) then precession with period ~ 10 1000 days

- Problem:
 - Superfluidity suppresses precession (never observed on known neutron stars)
- Solution :
 - → Interior temperature > T_c = 10^9K. Possible for young magnetars
- Predictions :
 - ➔ Rapid period increase (a few years)

References : Zanazzi20, Levin20, Li21

Magnetar orbiting O/B star / Combed NS

- Source : Enshrouded magnetar
 - O/B star wind enshroud the magnetar and prevents radio emission from exiting due to free-free absorption
 - The tail of the magnetar wind leaves open a radio corridor for a fraction of the orbit

- Emission mechanism:
 - ➔ Plasma laser (Lyutikov20)
 - ➔ Any other Magnetar/pulsar mechanism ?
- Predictions :
 - ➔ Small DM variations
 - ➔ Increase of the activity window with frequency
 - ➔ No periodicity < 10 days (O/B stars)</p>

< 0.1 days (NS companion) (loka20)

References : Lyutikov20, Ioka20, Pleunis21

Geometric magnetospheric models

• **Source :** propagation of relativistic material in the magnetosphere

• Emission mechanism:

Depends on authors, but the details of the emission mechanism do not really affect the results.

• Prediction :

 Dependent on model: explanations for repearter/non-repeater morphologies, lowfrequency lag etc..

• References :

Zhang 21, Connery+22, Liu+23, Voisin+23

Voisin 2023

Some conclusions

- A lot of work still needed to falsify models, either by observation, or by making finer predictions.
- Some of the important things that I did not discuss :
 - → propagation (RM, DM, lensing...),
 - → models not based on neutron stars,
 - \rightarrow polarisation hardly touched,
 - → high energy counterparts...
 - → Population studies..
- All papers cited can be found in the public library at https://ui.adsabs.harvard.edu/public-libraries/0wJ4Jgh8RtuboZNzlkONMg (link also on my personal webpage luth.obspm.fr/~luthier/gvoisin/mywork)
- FRB Theory Catalogue (Platts+ 2018) : frbtheorycat.org
- FRB Community Newsletter : https://forms.gle/fFE8uQWfavWA48s5A

Some existing reviews

- Fast Radio Bursts, Akshaya+ 2017, DOI:10.1007/s12036-017-9478-1
- Fast Radio Bursts, Popov+ 2018, arXiv:1806.03628
- Fast Radio Bursts, Petroff+ 2019, arXiv:1904.07947
 - Complete, especially on observations (at that time).
- A living theory catalogue for fast radio bursts, Platts+ 2019, arXiv:1810.05836
- Fast Radio Bursts: An Extragalactic Enigma, Cordes+ 2019, arXiv:1906.05878
 - Complete review, especially on (intergalactic) radio propagation
- The physical mechanism of fast radio bursts, Zhang B.+ 2020, arXiv:2011.03500
 - Concise and synthetic review that advocates the two-population magnetar scenario with magnetospheric emission
- The physics of fast radio bursts, Xiao+ 2021, arXiv:2101.04907
- Emission mechanisms of fast radio bursts, Lyubarsky 2021, DOI:10.3390/universe7030056
 - Blast waves and Masers, reconnection, propagation...

Quelques questions

- Quelle est la localisation des FRBs par rapport à la phase rotationnelle de l'étoile ?
- A quelle distance de l'étoile: magnétosphère ou vent ?
- Y a-t-il plusieurs modèles/mécanismes simultanément à l'oeuvre ?
- Quelle relations avec les contreparties ?