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Polymers=complex structures

Multiple organization 
levels

 Molecular

 Macromolecular

 Supra Macromolecular

Polymers = Macromolecules

 Repeat unit

 Covalent bonds



Fate of primary species: defects creation

f(monomer chemical structure, 
microstructure, irradiation 
conditions)

Energy deposition

Gas 
Emission 

Ionization/excitation

Radicals

Macromolecular 
defects

Quantifying both defect types 
mandatory 

f(monomer chemical structure)R° + H°Covalent bonds = 
prone to radiolysis



Influence of the radiation : energy 
deposition structure

X Rays, γ  Rays, Electrons
~Homogeneous

Swift Heavy Ions

Heterogeneous at the 
nanometric level
 Radial dose distribution

 High local dose rate

Track formation
Bouffard & Gervais 
1994
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Basic research

 CIMAP : « Polymer » sub-group

 Kobe University : Pr. Yamauchi

 National Institute for Quantum Science and 

Technology / Radiation Measurement Research 

Group : Dr. Kusumoto

 PUCRS : Dr. Thomaz Raquel



Basic research

Modulation of the excitation and ionizing density 

Defects creation

 Creation mechanism

 Tailoring the energy deposition density

 Formation kinetics 

 Characteristic creation time

 Modulating the irradiation temperature

CIMAP



Polymers of biological interest: 
Application to hadrontherapy
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 More precise dose deposition. 
But:

What about healthy tissues on 
the ion path?

• Radio & chemo-resistant cancers 
chondrosarcoma : a bone and joint cancer

Maximum ion beam 
energy deposition 

Tum
or

Cartilage extra-cellular matrix

Type II collagène under 
ionizing radiation ?

Hoda Al Assaad
Thesis - CIMAP



Type II 
collagen

Polyproline

Polyalanine

Polyglycine

Homopolypeptides
Polyglycine

Poly-DL-alanine
Poly-L-proline

Collagen Model 
Peptides

Methodology = simplify

Protein data bank- 1CAG

H2O

 Variety in amino acids
 Internal strongly bonded H2O 

 Same polypeptidic structure 
 1 type of amino acid 
 No internal H2O bonds
 No triple helix structure 
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 Triple helix structure 
 Internal H2O bonds 
 Reduced number of the types of 

amino acids (n = 10)
 Reduced mass  Enhanced 

solubility 



Macromolecular defects

 Highly insaturated defects

 Concerted reactions 

 Hydrophobic groups 

Polyglycine & Polyalanine

D

DRF/IRAMIS/LSI
DES/ISAS/DRMP/SPC/LC2R

Polymer of biological interest: LET 
effect

20Ne9+

7,2 MeV/A

Reduced H2O intake = potential lost 
in biomechanical properties



Ebeam: Reference beam

β : 1 MeV

20Ne9+

7,2 MeV/A

Polyglycine & Polyalanine

DRF/IRAMIS/LSI
DES/ISAS/DRMP/SPC/LC2R

Polymer of biological interest: LET 
effect

Emitted gas : 

 H2, CO, CO2

 Potentially hazardous for cells

LET   G0 (H2)  & G0 (CO) 
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Polymers of biological interest: 
Application to hadrontherapy



Technological applications : nuclear 
waste

 CEA/DES: M. Ferry / S. Esnouf/ A. Dannoux-
Papin 

 CIMAP: Y. Ngono



Technological applications : nuclear 
waste SHI to simulate α particles

Storage (LL-ILW)

 Long-term fate of contaminated polymers under α irradiations

 Gas emission  Nuclear safety

 High doses : G(gas) = f(Dose)

 Oxidized defects potential complexing agents for actinides

 Hydrolysis of from radiation-induced oxidized polymers

Transportation safety

 Thermolysis of radiation-induced defects

 Gas emission evaluation from ILLW in accidental 

conditions during transportation

Long term 
simulations 



Polymers used in the nuclear power 
industry => LL-ILW
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Entreposage - Exploitation

 Emission gazeuse
 RT Dose ++

Transport

 Emission gazeuse
 150°C  Doses +

Stockage (temps géologiques)

 Emission gazeuse 
 Lixiviation
 Complexation Rn = Mobilité 


ILLW : β, γ, α

Technological applications : nuclear 
waste SHI to simulate α particles



Technological applications : nuclear 
waste SHI to simulate α particles

Storage (LL-ILW)

 Long-term fate of contaminated polymers under α irradiations

 Gas emission  Nuclear safety

 High doses : G(gas) = f(Dose)

 Oxidized defects potential complexing agents for actinides

 Hydrolysis of from radiation-induced oxidized polymers

Transportation safety

 Thermolysis of radiation-induced defects

 Gas emission evaluation from ILLW in accidental 

conditions during transportation

Long term 
simulations 



Why SHI to simulate α particles from 
actinides

Equivalent LET 
Equivalent Energy deposition structures
Higher penetration range for SHI : 

homogeneous oxidation through the 
thickness

Homogeneous irradiation 
under several microns (case 

of PE)
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PRELOG integrated results 
examples

Ferry et al., Polymers in the nuclear power industry, In: Rudy Konings (editor-in-chief), Comprehensive Nuclear Materials 2nd Edition. Oxford: Elsevier (2020), volume 3, 545-580
Pellizzi et al., Gordon Research Seminar, Proctor Academy, July 2014 
Seguchi, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 185 (2001), 43-49
Seguchi, Radiat. Phys. Chem. 85 (2013), 124-129
Ventura, Thesis from Caen - Basse Normandie university, France (2013)
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Dose, nature of irradiation and atmosphere effects

 G(H2)  when D

 G(H2) decrease rate 

reduced under SHI

Use of G(H2) at 0 dose = 
worst case scenario 



Polystyrene under helium atmosphere

21
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110°C

Atactique Polystyrene 𝑇𝑇𝑔𝑔 = 100°𝐶𝐶

𝐸𝐸𝑎𝑎 = 0 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝑎𝑎 = 6,5 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚



Ion Track Technology

LSI : Dr. Clochard / Dr. Aubrit
ENS: Dr. Lepoitevin
Univ. Montpellier: Dr. Balme

Track-etched polymer membranes 
functionalization for developing real-time 

solutions



Ion Track technology :Polymer 
nanostructuration for new materials 

development

Use of tracks formed under high LET ion beam irradiation

Latent Tracks

 Grafting on radiation induced radicals

 Tailoring of the material properties as a function of the grafted 

component

 New materials with specific chemical and physical-chemical 

properties 

Use of the high specific 
surface of the track walls

Etched Tracks

 Grafting on radiation induced radicals

 Non covalent insertion of organic or inorganic components

 Membranes for filtration and other applications



BEFORE AFTER

M*

monomer

*M = acrylic acid (in green)

z

CLSM image

* ion fluence = 109 cm-2

Track-etched membranes functionalization



* ion fluence = 109 cm-2

no gold

Application for Health & Environment Technology

Converting radio-grafted membranes into electrodes

CAPTÔT
Protéger l’eau passe d’abord par la connaître

with gold

Metal ion detection

Packaged product

Metal ion trapping 

compatible with marine applications
Prototype IIIrd generation



60% of increase
on the output 
power

Flexible piezoelectric nanostructured generator

Experimental set-up

Model for large bending regime

Z components, surface average on Ae:

Composite material
made of track-etched piezopolymer

Sarrey et al. JAP (submitted)



What may the future hold?



Modulation of the excitation and ionizing density 

Radiation-induced oxidation

 Modulating the chain reaction kinetics

 Simulation of the oxidation heterogeneity

 Kinetic constants determination

Basic Science and technological 
applications



Thèse Stéphanie Cambon (2001) Université Blaise Pascal Clermont-Ferrand

Radiation-induced oxidation

Complex mechanism and 
large variety of defects



Tailoring the reactions with the LET

Tuning specific radical 

recombinations

 POO° + POO°

 P°+P°

Termination reactions modulation

Defect type modulation
Oxidation level modulation

 Relative evolution of oxidation routes 

 Local dose rate increase



Basic Science and technological 
applications

Kinetics consideration

In-situ analysis of 
oxidized radicals 
reaction

Development of an on-
line EPR spectrometer

Combining experiments
and simulation

Kinetics  Monte-Carlo

Oxidation modelling and ageing 

tailoring for application in recycling

few µsec to a 
few seconds



Ion Track technology

Track-etched polymer membranes functionalization for developing real-

time solutions for :

 Renewable energies, 

 The Environment protection

 Health 



Antireflective coatings for PV cells in Space

Project EU : JUMP INTO SPACE
EIC Pathfinder Challenges start next oct. 2024

Alternative materials to glass: Refractive
index decrease with increase conical
nanopore density and orientations

2µm

Conical nanopores in 
a copolymer

Varying the irradiation angles

Conductive polymer grown by diaphragmatic
method in a track-etched polymer membrane



Nanoporous Membranes with MOFs for blue energy application

Present a promising energy source coming from
the difference concentration of salt between
seawater and fresh water.
(fresh water / brine)

Blue Energy

Ion-selective nanochannels
promising in the field to add
new physicochemical properties
to the nanochannel.



500 nm

5 μm

tip diameter = 56 ± 4 nm

base diameter = 301 ± 19 nm

500 nm

1 μm

Bullet-shaped nanopores



UiO-66

pH(I): 5.5

Cages: 5.9 & 10.2 Å

Zr6(μ3-O)4(μ3-OH)4(BDC)6

Y. S. Seo et al., Chem. Eng. J., 2015, 270, 22-27

Pore size: 0.6 nm

The candidates to functionalize the nanopore: MOF
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Nanopore
• Bullet-shaped
• 6 M NaOH 0.05% surfactant, 4 minutes at 60 °C
• Base pore diameter: 248 ± 19 nm
• Tip pore diameter: 41 ± 7 nm

current rectification observed, surface 
modification of pore successful

In-Situ MOF growth into a Single Nanopore

Tip pores Base pores Tip pore Cross section



• New MOFs synthesis
• Evaluation of MOFs

• Characterizations of bulk 
materials (TGA, BET, XRD) 

• Chemist and Physics point of 
view of membrane’s properties 

• Electrochemical properties of 
the membranes

Conclusions and next steps

MOFs synthesis

Power density

• Correct Set-Up
• Functionalization of linker
• Membranes SEM 

characterizations

38

Material
characterizations

• Next characterizations
• New comparisons and studies Work in progress



What may the future hold?

Work in progress and new research topics

 Cyclotrons and IRSSUD Mandatory

 Development of new set-ups

 Multiple beam irradiations?



Thank you for your attention
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