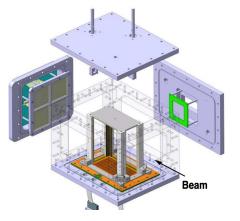


anr®



ATRACT : New Avenue of Transfer Reactions with Active and Cryogenic ³He Targets

Marlène ASSIE (IJCLab) and Thomas Roger (GANIL)

<u>IJCLab</u> : M. Pierens, P. Duthil, H. Saugnac, S. Blivet, L. Velasquillo + 1 CDD cryo-mechanic: D. Beaumel, Y. Blumenfeld, F. Hammache, N. De Séréville, V. Girard-Alcindor + 1PhD

GANIL: O. Sorlin, J. Pancin + 1 Post-doc

Transfer reactions are powerful tools to provide single-particle and collective properties of nuclear states, in particular :

- single-particle states and their mixing, spin-parity, spectroscopic information
- size of gaps and their evolution

From direct kinematics for (d,p)....

target

- access to the nuclear force (central, spin-orbit & tensor force)

detection

- one-nucleon - vacancy and occupancy across the Fermi surface
 - unbound states

beam

... to reverse kinematics for (d,p)

nucleus of interest = stable all light beams available (p,d, ³He, ⁴He and even t)

- unbound states

two-nucleon

- shape coexistence

spectrometer

Transfer reactions are powerful tools to provide **single-particle and collective properties of nuclear states**, in particular :

beam

nucleus of interest

= radioactive

- single-particle states and their mixing, spin-parity, spectroscopic information

spectrometer

- size of gaps and their evolution

From direct kinematics for (d,p)....

target

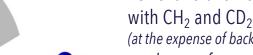
- access to the nuclear force (central, spin-orbit & tensor force)

detection

- one-nucleon - vacancy and occupancy across the Fermi surface
 - unbound states

beam

... to reverse kinematics for (d,p)


target

all light beams available (p,d, ³He, ⁴He and event)

nucleus of interest

= stable

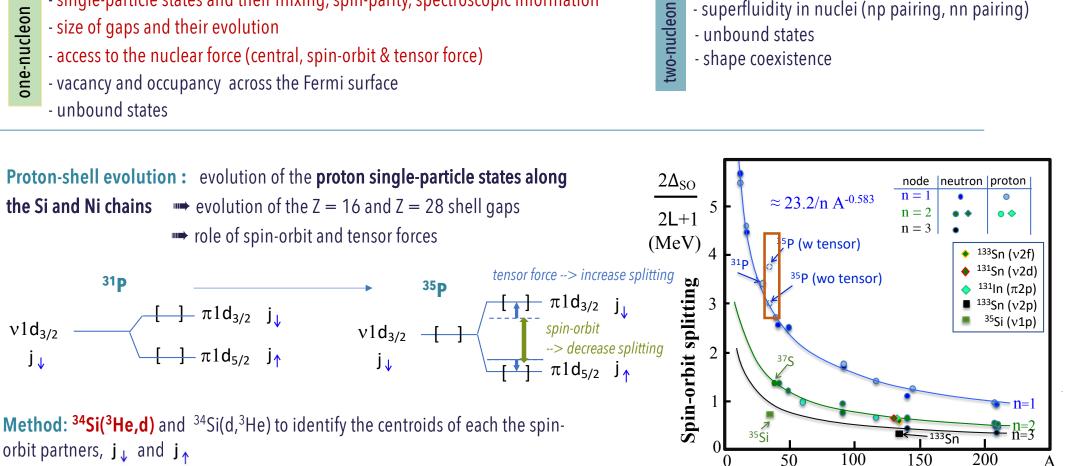
ATRACT aims at developing ³He targets with $> 10^{20}$ at/cm²

- unbound states

- shape coexistence

Major lock : light targets . One- and two-neutron transfer performed

- superfluidity in nuclei (np pairing, nn pairing)


with CH₂ and CD₂ targets (at the expense of background and resolution) --> boost of neutron WF studies

. Options for proton transfer

- (*d*,*n*) : neutron detection difficult
- $(d,^{3}He)$: identification of ³He (but OK)
- (³He,d), (³He,p) : targets availability

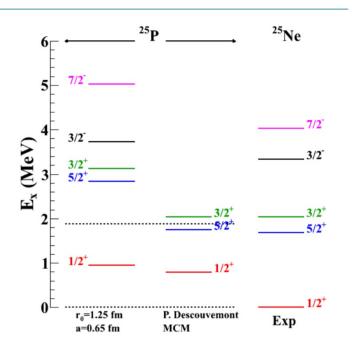
detection

Transfer reactions are powerful tools to provide **single-particle and collective properties of nuclear states**, in particular :

- single-particle states and their mixing, spin-parity, spectroscopic information
- size of gaps and their evolution

- superfluidity in nuclei (np pairing, nn pairing)

- unbound states


Transfer reactions are powerful tools to provide **single-particle and collective properties of nuclear states**, in particular :

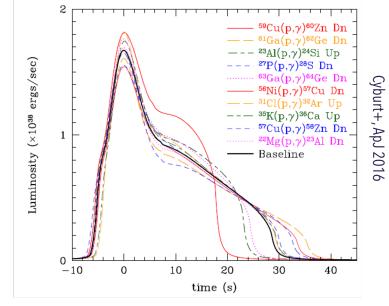
- single-particle states and their mixing, spin-parity, spectroscopic information
- size of gaps and their evolution
- access to the nuclear force (central, spin-orbit & tensor force)
- one-nucleon - vacancy and occupancy across the Fermi surface
 - unbound states

Mirror symmetry and proton-rich unbound nuclei: Case of ²⁵P

- **Mirror asymmetry for the low** *l***-orbitals (Thomas-Ehrman-shift)** induced by weakly-bound proton (particularly the outermost proton in $s_{1/2}$ state)
- \rightarrow weakening of Coulomb potential due to the spatial extension of s-wave.
- \rightarrow New interpretation : the difference in s.p. energies that lead to an asymmetry between the neutron and protons s.p. WF.

Method: ²⁴Si(³He,d) ²⁵P to perform the spectroscopy of ²⁵P

- superfluidity in nuclei (np pairing, nn pairing) - unbound states
- shape coexistence


Transfer reactions are powerful tools to provide **single-particle and collective properties of nuclear states**, in particular :

- single-particle states and their mixing, spin-parity, spectroscopic information
- size of gaps and their evolution
- access to the nuclear force (central, spin-orbit & tensor force)
- one-nucleon - vacancy and occupancy across the Fermi surface
 - unbound states
 - + Indirectly astrophysically relevant reaction rates

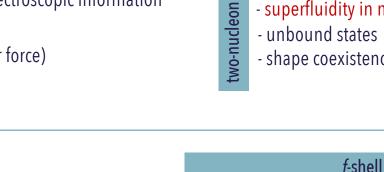
Nuclear astrophysics: Explosive hydrogen burning

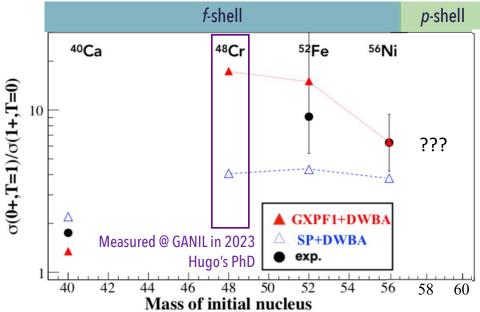
- . Proton captures during outburst of classical novae and type I X-ray bursts
- . Main challenge is to understand the observed light curves
- . Sensitive studies give 10 key reactions and particularly : ${}^{69}Cu(p, \chi){}^{60}Zn$, ${}^{56}Ni(p, \chi){}^{57}Cu$ and ${}^{57}Cu(p, \gamma){}^{58}Zn$

Method: One-proton transfer reactions ⁶⁹Cu(³He,d)⁶⁰Zn, ⁵⁶Ni(³He,d)⁵⁷Cu and ⁵⁷Cu(³He,d)⁵⁸Zn with low beam intensities, low energy deuterons and y-ray coincidence needed

- superfluidity in nuclei (np pairing, nn pairing)
- unbound states
- shape coexistence

Transfer reactions are powerful tools to provide **single-particle and collective properties of nuclear states**, in particular :


- single-particle states and their mixing, spin-parity, spectroscopic information
- size of gaps and their evolution
- access to the nuclear force (central, spin-orbit & tensor force)
- one-nucleon - vacancy and occupancy across the Fermi surface
 - unbound states


Neutron-proton pairing in the *fp*-shell

Two-nucleon transfer reactions are the best probe for pairing and (³He,p) and $(p, {}^{3}He)$ allows to populate both T=0 and T=1 channel.

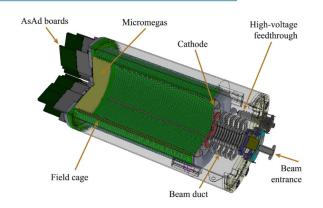
T=1 T=0

Method: Cross-sections to the first 0+ and 1+ states for the two-nucleon transfer reaction ⁶⁰Zn(³He,p) ⁶²Ga and, simultaneously ⁶⁰Zn(³He,d)⁶¹Ga the intermediate reaction

- superfluidity in nuclei (np pairing, nn pairing)

- unbound states

- shape coexistence


- superfluidity in nuclei (np pairing, nn pairing) two-nucleon one-nucleon - size of gaps and their evolution - unbound states - access to the nuclear force (central, spin-orbit & tensor force) - shape coexistence - vacancy and occupancy across the Fermi surface - unbound states + Indirectly astrophysically relevant reaction rates Summary of key reactions and specificites: • Proton shell evolution : ³⁴Si(³He,d) @ 20 A MeV Cryogenic target --> deuterons recoiling with high energy (few MeV), gamma-ray needed • Unbound proton-rich nuclei : ²⁴Si(³He,d)²⁵P @ 30 A MeV --> low beam intensity, deuterons with very low energy (below 1 MeV) Active target • Nuclear astrophysics : ⁶⁹Cu(³He,d)⁶⁰Zn, ⁵⁶Ni(³He,d)⁵⁷Cu and ⁵⁷Cu(³He,d)⁵⁸Zn --> low beam intensity, deuterons with very low energy (below 1 MeV), gamma-ray needed • np pairing: ⁶⁰Zn(³He,p)⁶²Ga @ 10 A MeV and ⁶⁰Zn(³He,d)⁶¹Ga and ⁶⁰Zn(³He,³He) vogenic target --> proton recoiling with high energy ~10 MeV, gamma-ray needed

- **Transfer reactions** are powerful tools to provide **single-particle and collective properties of nuclear states**, in particular :
 - single-particle states and their mixing, spin-parity, spectroscopic information

√ X AT-TPC for FRIB

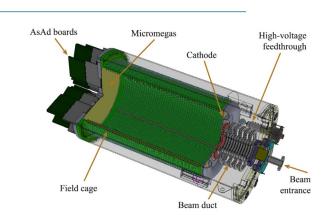
- . Recirculation of ³He designed and tested
- . Full volume of ³He already available
- . Day1 experiments @ FRIB already approved

³He areal density: >10²⁰ at/cm² limited range of particles

√ X AT-TPC for FRIB

- . Recirculation of ³He designed and tested
- . Full volume of ³He already available
- . Day1 experiments @ FRIB already approved

✓ **X** ³He implanted targets on W and Al (to be tested @ ALTO)


State-of-the-art implanted ³He target :

- magnetron sputtering technique
- **gas nanobubbles** trapped within a nanoporous solid matrix

³He areal density: >10²⁰ at/cm² limited range of particles

³He areal density: ca 5-7 10¹⁸ at/cm²

Al backing : 7.4 um

Fernández+, Materials and Design 2020 1.5 u a-Si:³He/150W SiC interlayer 1.0 µm Si substrate a-Si:³He/150W 000 000 4He 000 000 500 2000 2500 1000 1500 Energy (keV)

√ X AT-TPC for FRIB

- . Recirculation of ³He designed and tested
- . Full volume of ³He already available
- . Day1 experiments @ FRIB already approved

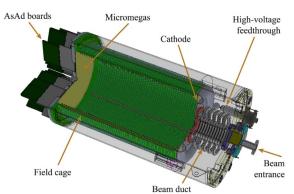
✓ X ³He implanted targets on W and Al (to be tested @ ALTO)

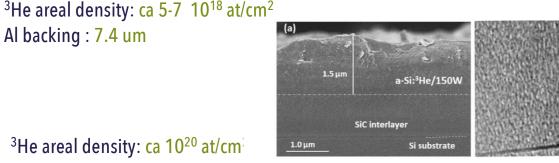
State-of-the-art implanted ³He target :

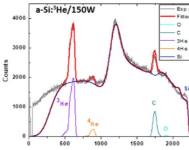
- magnetron sputtering technique
- gas nanobubbles trapped within a nanoporous solid matrix

Cryogenic ³He target

✓ **HeCTOr** ³He target (M. Assié, M. Pierens et al, IJCLab) already used during the MUGAST-AGATA-VAMOS campaign


F. Galtarossa et al, NIMA (2022)


✓ **CTADIR** ³He target (A. Gottardo et al, INFN) based on a pulse tube, already tested in beam (2023) ³He areal density: >10²⁰ at/cm² limited range of particles


Al backing : 7.4 um

³He areal density: ca 10²⁰ at/cm³ Havar windows : 3.8 um

³He areal density: ca 10²⁰ at/cm Havar windows : 3.8 um

10

✓ X AT-TPC for FRIB

alr

- . Recirculation of ³He designed and tested
- . Full volume of ³He already available
- . Day1 experiments @ FRIB already approved

✓ X ³He implanted targets on W and Al (to be tested @ ALTO)

State-of-the-art implanted ³He target :

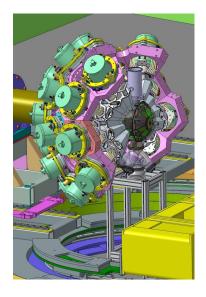
- magnetron sputtering technique
- **gas nanobubbles** trapped within a nanoporous solid matrix

³He areal density: >10²⁰ at/cm² limited range of particles

Al backing : 7.4 um

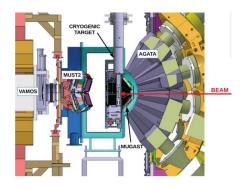
ATRACT aims at developing

both cryogenic and active target with at least 10²⁰ at/cm²

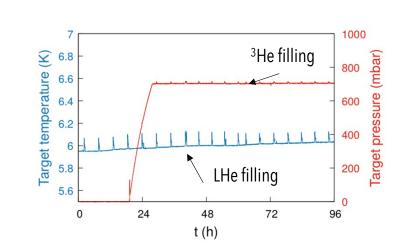

and to run experimental campaigns in at GANIL with **Spiral1 beams** and AGATA-GRIT-VAMOS.

ryogenic ³ He target	
HeCTOr ³ He target (M. Assié, M. Pierens et al, IJCLab) ready used during the MUGAST-AGATA-VAMOS campaign	³ He areal density: ca 10 ²⁰ at/cm ² Havar windows : 3.8 um
F. Galtarossa et al, NIMA (2022)	

✓ **CTADIR** ³He target (A. Gottardo et al, INFN) based on a pulse tube , already tested in beam (2023)


³He areal density: ca 10²⁰ at/cm² Havar windows : 3.8 um

³He areal density: ca 5-7 10¹⁸ at/cm²

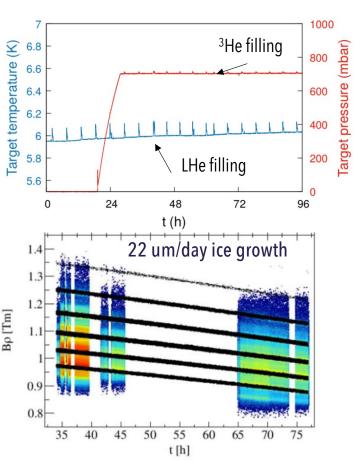


Example with HeCTOr 3He cryogenic target @ MUGAST-AGATA-VAMOS campaign

Is there a problem with protons in N=28 nucleus ⁴⁶Ar ? (A. Gottardo, M. Assié, D. Brugnara et al, submitted to Nature Comm.)

⁴⁶Ar(³He,dγ)⁴⁷K with MUGAST-AGATA-VAMOS@ GANIL-Spiral1

COPPER FRAME TARGET WINDOW CONIC FLANGE TEMPERATURE PROBES


Ø 16 mm
Opening angle: 130 deg.
Havar windows: 3.8um
T ~ 6-7 K. / P up to 1 bar
Equivalent thickness 2 mg/cm²
³He recycling
LHe open circuit

M. Pierens, V. Delpech, F. Galet, H. Saugnac (IJCLab) A. Giret & J. Goupil (GANIL)

Example with HeCTOr 3He cryogenic target @ MUGAST-AGATA-VAMOS campaign

Problems/ Limitations identified with HeCTOr:

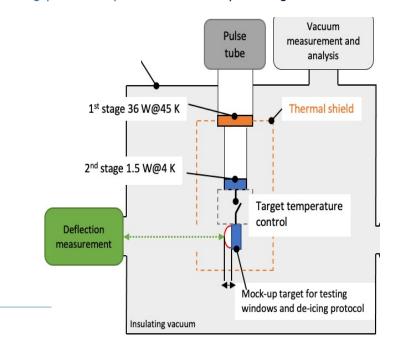
- **1.** Ice growth : $11 \mu m/day/window$ for a vacuum of 10^{-6} mbar.
- 2. No reheat and cooling cycles were not possible due to the LHe consumption.
- 3. Deuteron <1.5 MeV do not get out of the target.
- 4. Strong background contribution from the havar windows
- and ice layers to the excitation energy resolution (600 keV each for 3 MeV deuteron and resolution in E*= 3 MeV FWHM).
- For gamma-ray measurement, depending on the lifetime of the populated state, the absorption from the target cell and shielding is quite important.

F. Galtarossa et al, NIMA (2022)

Ø 16 mm
 Opening angle: 130 deg.
 Havar windows: 3.8um

- $_{\rm D}T \sim 6-7$ K. / P up to 1 bar
- Equivalent thickness 2 mg/cm²
- ^a³He recycling
- LHe open circuit

M. Pierens, V. Delpech, F. Galet, H. Saugnac (IJCLab) A. Giret & J. Goupil (GANIL)

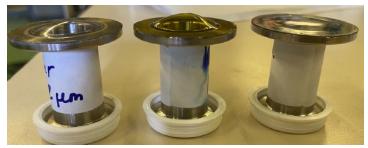

New design of cryogenic target proposed in ATRACT

Problems/ Limitations identified with HeCTOr:

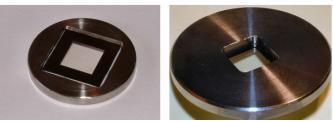
- **1.** Ice growth : $11 \mu m/day$ for a vacuum of 10^{-6} mbar.
- 2. No reheat and cooling cycles were not possible due to the LHe consumption.
- 3. Deuteron <1.5 MeV do not get out of the target.
- 4. Strong background contribution from the **havar** windows
- 5. and **ice layers** to the **excitation energy resolution** (600 keV each for 3 MeV deuteron and resolution in $E^*= 3$ MeV FWHM).
- 6. For gamma-ray measurement, depending on the lifetime of the populated state, the **absorption from the target cell and shielding** is quite important.

Design of a new cryogenic ³**He target**

 based on a cryocooler (points 2 & 6) already bought and tested
 new window material (points 3 & 4): thin synthetic foils (Aramid) and SiN windows to investigate
 new de-icing protocol (points 1 & 5) depending on the window chosen



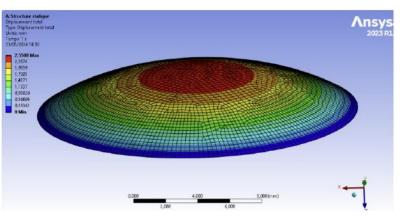
New design of cryogenic target


- Test of new (other) target window (pressure test, deformation)
 - Mylar 12 µm
 - Kapton 8 μm
- plastic deformation
- Mylar 50 μm aluminisé 1 face

too thick

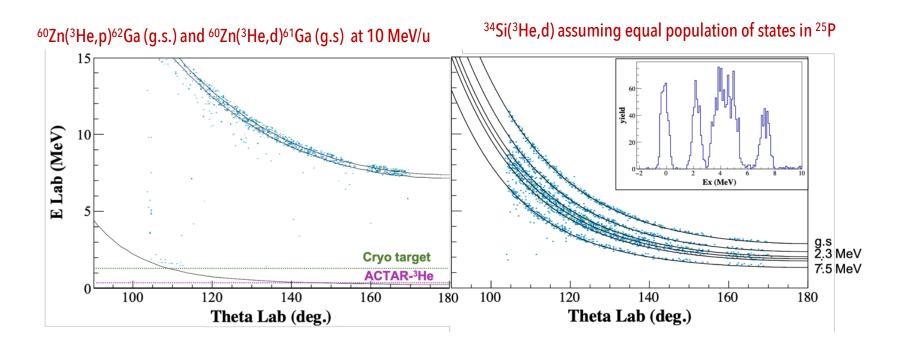
--> Modification of material data --> wrong !!

- Toray Aramid --> available to be tested
- SiN windows good properties to be tested (order in progress)


• Target design

other option considered : glued windows

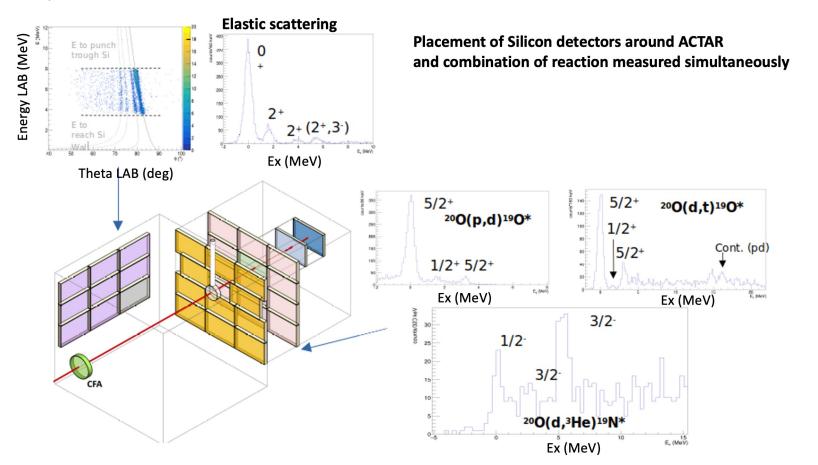
Modelisation of deformation with ANSYS


P. Sebaoun, Ph. Rosier, J. Blivet (IJCLab) M. Pierens, P. Duthil (IJCLab)

Physics simulations for the new design of cryogenic target proposed in ATRACT

<u>Hypothesis:</u>

- 2.2 mm thickness of the cell with deformation
- 10²⁰ atoms/cm²
- Toray Aramid windows of 4 um thickness



E* Resolution : 420 keV with Aramid 505 keV with Havar

New active 3He-target proposed in ATRACT: ACTAR-3He

Very few direct reactions have been measured up to now with active targets, this is just the beginning....

First transfer reaction measurement performed with ACTAR : One-neutron transfer ${}^{20}O(p,d){}^{19}O$ and ${}^{20}O(d,t){}^{19}O$ + elastic

New active 3He-target proposed in ATRACT: ACTAR-3He

Very few direct reactions have been measured up to now with active targets, this is just the beginning....

First transfer reaction measurement performed with ACTAR : One-neutron transfer ${}^{20}O(p,d){}^{19}O$ and ${}^{20}O(d,t){}^{19}O$ + elastic

✓ X ACTAR-3He demonstrator (-> SMACTAR) will be used

- Improvements required:
- Recirculation/purifying system, to not waste the 3He
- New multiplication stage, to improve the gain of the system (only micromegas not enough)
- Si detector all around, to cover the full range of the ejectile

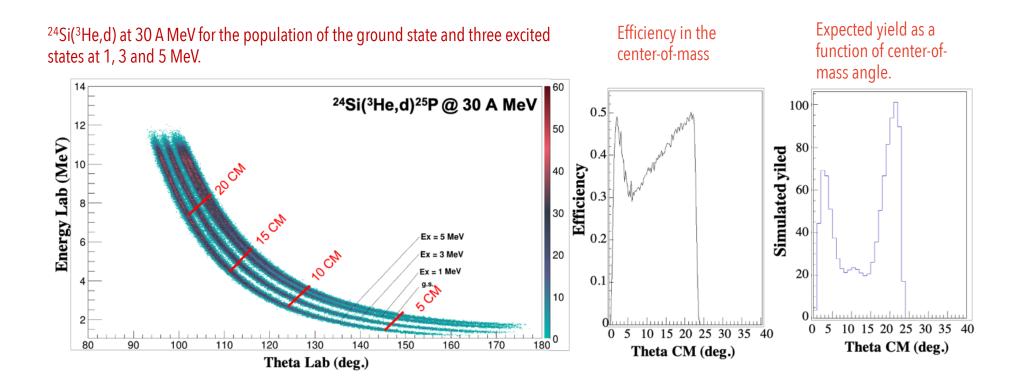
➡ So far:

- Gas system in close-loop was studied and developed @GANIL [*NIM A 1069 (2024) 169866]*. Expertise acquired on the subject
- Preliminary tests with triple THGEM performed with 4He in SMACTAR. Very promising results were obtained in term of gain
- New THGEM under construction, to have a more homogeneuus drift field
- Pad plane sent to CERN because too noisy
- 15l of 3He have been bought

- What next:
- Recirculation system has to be designed and tested on SMACTAR.

Beam

- Lekeage rate of SMACTAR has to be measured
- Test new THGEM and pad plane (when they will be delivered)
- · Look for electronics indepedent from ACTAR
- And then commissioning of ACTAR-3He:
- with pure ⁴He (LoI for NFS submitted to the November 2024 PAC)
- with pure ³He


³He areal density: ca 3.10²⁰ at/cm²

Physics simulations for ACTAR-3He proposed in ATRACT

Hypothesis:

- ACTAR demonstrator 500 mbar pure ³He
- 3.2 10²⁰ atoms/cm²
- $5 \ 10^4 \text{ pps} \longrightarrow 1000 \text{ counts for one week}$

Expected energy resolution : **300 keV** with the cryogenic target it would be 940 keV (with the same equivalent target thickness)

Timeline for ATRACT

			engineer in cryogenics post-doc									0	PhD student								GRIT-AGATA-VAMOS		
			2024 2025				2026			Т	2027			Т	2028		3	Í	2029-2030				
	Coord	Part.	S1	S2	S 3	S 4	S1	S2	S3	S4	S1	S2 !	S3 S	54 S	1 S	2 S	3 S4	4 S:	1 S2	2 S3	3 S	54	
Task A : Design of the 3He cryogenic target	CDD																						
A.1: test bench design	CDD	MP, PD, HS, CAD																					
A.2: new material/de-icing	CDD	MP, PD, HS			-																		
A.3: simulations	VGA	MA, PhD (internship)																					
A.4: final design	CDD	MP, PD, CAD, MA																					
A.5: commissioning & data analysis	MA	PhD,MA,DB,YB,VGA, FH,NdS										5											
Task B: conversion of ACTAR to 3He	TR											1											
B1: commissioning of ACTAR-4He	TR	TR,DB,YB,FH,NdS,VGA,																					
B.2: commissioning of ACTAR-3He	TR	OS,Post-doc,PhD											\sum_{α}										Δ
Task C: Physics experiments -data analysis	MA													\sum_{n}									
C.1: Experimental campaigns	MA	TR,DB,YB,FH,NdS,VGA,													1								
C.2: Data analysis	MA	OS,Post-doc,PhD																					
Task D: Management	MA																						
D.1 Recruitment	MA	TR																					
D.2: annual reports to ANR	MA	TR																					
D.3: Data management Plan	MA	TR, VGA																					
D.4: prePAC workshop	MA	TR																					