# LASAGN : new collinear laser spectroscopy setup at DESIR

Louis Lalanne IPHC



GANIL Community Meeting 16/10/2024

## HFS : HyperFine Structure



Hyperfine splitting:

$$E(F) = kA + k'B \qquad A = \frac{\mu Be(0)}{I.J} \quad B = e \ Qs \ V(0)$$

Isotope shift : HFS shift between an isotope A and A'

$$\delta v_i^{A,A'} = \frac{A - A'}{AA'} M_i + F_i \delta \langle r^2 \rangle^{A,A'}$$

#### Measuring the HFS allows access to:

- Nuclear spin I
- Dipole magnetic moment  $\mu$ 
  - $\rightarrow$  Single particle configuration
- Electrical quadrupole moment  $Q_s$ 
  - $\rightarrow$  Nuclear shapes
- Mean-squared charge radii
  → Magicity, collectivity, correlations



2



### Colinear Laser Spectroscopy





Measuring the HFS allows access to:

- Dipole magnetic moment  $\mu$ 
  - $\rightarrow$  Single particle configuration
- Electrical quadrupole moment  $Q_s$ 
  - $\rightarrow$  Nuclear shapes
- Mean-squared charge radii
  - $\rightarrow$  Magicity, collectivity, correlations





### Resonance Ionization Spectroscopy



Hyperfine splitting:

$$E(F) = kA + k'B \qquad A = \frac{\mu Be(0)}{I.J} \quad B = e \ Qs \ V(0)$$

Isotope shift : HFS shift between an isotope A and A'

$$\delta v_i^{A,A'} = \frac{A - A'}{AA'} M_i + F_i \delta \langle r^2 \rangle^{A,A'}$$

Measuring the HFS allows access to:

- Nuclear spin I
- Dipole magnetic moment  $\mu$ 
  - $\rightarrow$  Single particle configuration
- Electrical quadrupole moment  $Q_s$ 
  - $\rightarrow$  Nuclear shapes
- Mean-squared charge radii
  - $\rightarrow$  Magicity, collectivity, correlations



### Resonance Ionization Spectroscopy



## LASAGN @ DESIR

SPIRAL2 and the "Super Separator Spectrometer" S3

S3 Low Energy Branch (S3-LEB): In gas-jet RIS

- Medium-resolution and very high sensitivity
- Located at S3 focal plane
- Laser ion source for DESIR

→ Big benefits from a high resolution high sensitivity laser spectroscopy setup in DESIR

#### LASAGN @ DESIR :

- $\checkmark$  Versatile, high resolution, precision and sensitivity laser spec.
- ✓ Unique nuclear structure studies opportunities
- ✓ Highly complementary to S<sup>3</sup>-LEB
- $\checkmark$  Excellent synergy with Bestiol and Detrap
- $\checkmark$  Open to future development

SPIRAL1

## SPIRAL1 opportunities



 $\rightarrow$  Intense light RIB from Spiral1 + a new versatile laser spec setup @ DESIR

Unique opportunities for the study of nuclear g.s. structure of exotic light isotopes N, O, F, P, Na, Cl...

## LINO at ALTO





The LINO beam line (Laser Induced Nuclear Orientation)

- Collinear Laser Spectroscopy with fluorecence detection (COLLAPS-type)
- Commissioned at ALTO facility (Orsay) w/o cooler buncher



D.T. Yordanov *et al* 2020 *JINST* **15** P06004

## LINO at ALTO



D.T. Yordanov et al 2020 JINST **15** P06004

The LINO beam line (Laser Induced Nuclear Orientation)

- Collinear Laser Spectroscopy with fluorecence detection (COLLAPS-type)
- Commissioned at ALTO facility (Orsay) w/o cooler buncher



Output plan from DESIR WS, ISOL-France meeting and LUMIERE WS (2024):

- $\rightarrow$  First goal : install and commission LINO at DESIR as standard CLS
- $\rightarrow$  Upgrade LINO toward a CRIS-like setup

## LASAGN Phase 0



#### Needs:

- Narrow band CW laser (Ti:Sa Matisse from Syrah) (532 CW pump laser already available)
- New control and DAQ system
- An offline ion source to test everything offline before to get the first stable beam from spiral1

## LASAGN Phase 1



- > Upgrade to CRIS-like : Collinear resonance ionization spectroscopy with ion detection
- > Day 1 experiment with exotic Spiral 1 beam + first experiment with S3 beams if available

#### Needs:

- UHV interaction region
- End of beam line (bender, beam optics, ion detector)
- Pulsed BB TiSa, injection locked, 1064+532+355 high power pulsed laser and pulsed 532 pump lasers

## LASAGN Phase 2



#### > New development to enhance the capacity of the setup

- Collinear-Anticolinear fluorescence and RIS  $\rightarrow$  <1MHz precision on IS
- Perpendicular illumination using ultra narrow bunches  $\rightarrow$  background free spec.
- Double laser-RF spectroscopy  $\rightarrow$  resolution < 10 MHz



for beam purification

- trap/decay assisted laser spectroscopy
- Laser purification for trap or decay exp.

LASAGN : Versatile high-res high-sensibility laser spec. setup

- ✓ Benefits from the many beam preparation and purification devices of DESIR
- Allow to re-inject RIS beams to the central beam line  $\rightarrow$  synergy with trap and decay setups  $\checkmark$
- Can take beam from S3 and Spiral1

#### LASAGN at DESIR



|                  | N=14             |                  | N=16             |                  | N=20             |                  |                  |                  |                  |                  | N=28 |                  |                  |      |      |                  |                  |                  |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------|------------------|------------------|------|------|------------------|------------------|------------------|
| <sup>30</sup> Cl | <sup>31</sup> CI | <sup>32</sup> Cl | <sup>33</sup> Cl | <sup>34</sup> Cl | <sup>35</sup> Cl | <sup>36</sup> CI | <sup>37</sup> Cl | <sup>38</sup> Cl | <sup>39</sup> Cl | <sup>40</sup> Cl | ⁴¹CI | <sup>42</sup> Cl | <sup>43</sup> Cl | 44Cl | 45CI | <sup>46</sup> Cl | <sup>47</sup> Cl | <sup>48</sup> Cl |

Statues of knowledge:

- g.s. spin A>40 not firmly assign
- Only moments of <sup>32-38,44</sup>Cl known
- No charge radii measured



Suggested one-*p* halo in <sup>31</sup>Cl and *p* skin in <sup>32</sup>Cl from theory  $\rightarrow$  Increase in charge radii? Influence of continuum?



C. Xiang-Zhou *et al.*, Chinese Phys. Lett. 19 (2002) F. Sammarruca, Front. Phys. 6:90 (2018)

Statues of knowledge:

- g.s. spin A>40 not firmly assign
- Only moments of <sup>32-38,44</sup>Cl known
- No charge radii measured



Statues of knowledge:

- g.s. spin A>40 not firmly assign
- Only moments of <sup>32-38,44</sup>Cl known

17

• No charge radii measured



Statues of knowledge:

- g.s. spin A>40 not firmly assign
- Only moments of <sup>32-38,44</sup>Cl known

18

• No charge radii measured

Chlorine mass



<sup>31-47</sup>Cl in reach for CRIS

#### LASAGN @ DESIR

- ✓ Versatile laser spectroscopy beam line of high resolution, precision and sensitivity
- ✓ Exploits well established methods routinely used in ISOLDE and IGISOL
- ✓ Open for future development (collinear / anti-collinear RIS, perpendicular illumination, RF...)
- ✓ Unique opportunities for the study of light exotic isotopes, benefiting from existing Spiral1 beams
- ✓ Highly complementary to S<sup>3</sup>-LEB
- ✓ Excellent synergy with Bestiol (decay spec.) and Detrap (mass spec.)

Timeline : Phase 0 (standard CLS) completed in 2027, Phase 1 (CRIS) completed in 2029 Collaboration : IPHC, KU Leuven, IJCLab, LPC

# THANK YOU FOR YOUR ATTENTION