

Topology change and non-geometry at infinite distances

Saskia Demulder

Ben Gurion University (Azrieli international fellow)

Based on upcoming work in collaboration with Thomas Raml and Dieter Lüst

> November 30, 2023 LaPTh, Annecy

String theory and quantum gravity

Quantum mechanics and gravity can be unified within string theory

A consistent theory of strings requires to **live in 10 dimensions**

Requires studing **compactifications**

String compactifications

What kind of string compactification can arise from a theory of quantum gravity ?

- What is the shape of this internal manifold ?
- What are their properties ?
- What **physics** do they contain?

Calabi-Yau manifolds are however very hard to study....

 \rightarrow instead study simpler manifolds that display critical properties Guiding principles and tools: T-duality and integrability

Quantum gravity and the swampland

Quantum field theories that emerge in the low energy limit of a quantum gravity theory are **very special**

Swampland program

identify criteria for what **"very special"** concretely means By identifying a set of defining conjectures

From I.Valenzuela's lecture "Navigating the Web of Swampland Conjectures"

Quantum gravity and the swampland

Quantum field theories that emerge in the low energy limit of a quantum gravity theory are **very special**

Swampland program

identify criteria for what **"very special"** concretely means By identifying a set of defining conjectures

From I.Valenzuela's lecture "Navigating the Web of Swampland Conjectures"

Outline

 \rightarrow Quick intro to the Swampland distance conjecture

- \rightarrow Relation to T-duality: a simple example
- \rightarrow Challenging the conjecture: change of topology
- \rightarrow Extending the Swampland distance conjecture

The Swampland distance conjecture

Target space manifold

External space

internal space

Moduli space

describes the parameters of the internal space

In any consistent theory of quantum gravity:

When going to large distances in its moduli space, encounter an infinite tower of particles which become light exponentially

$$M(Q)\sim M(P)e^{-\lambda\Delta\phi}$$
 when $\Delta\phi
ightarrow\infty$ and $\Delta\phi\equiv d(P,Q)$

The Swampland distance conjecture

Target space manifold

External space

Moduli space

describes the parameters of the internal space

In any consistent theory of quantum gravity:

When going to large distances in its moduli space, encounter an infinite tower of particles which become light exponentially

$$M(Q)\sim M(P)e^{-\lambda\Delta\phi}$$
 when $\Delta\phi
ightarrow\infty$ and $\Delta\phi\equiv d(P,Q)$

A very simple example: the free boson on a circle

A very simple example: the free boson on a circle

At $R \rightarrow \infty$ Infinite tower of massless KK-modes & At $R_d = 0$ Infinite tower of massless winding-modes

$$(M_{n,w})^2 = \left(\frac{1}{2\pi R}\right)^{\frac{2}{d-2}} \left(\frac{n}{R}\right)^2 + (2\pi R)^{\frac{2}{d-2}} \left(\frac{wR}{\alpha_0'}\right)^2$$

Infinite towers of massless states \checkmark

Compact dimensions and T-duality

 \rightarrow For a string: "large circle" \equiv "small circle" \Rightarrow T(oroidal)-duality

Swampland distance conjecture and T-duality

At $R \rightarrow \infty$ Infinite tower of massless KK-modes & At $R_d = 0$ Infinite tower of massless winding-modes

$$(M_{n,w})^2 = \left(\frac{1}{2\pi R}\right)^{\frac{2}{d-2}} \left(\frac{n}{R}\right)^2 + (2\pi R)^{\frac{2}{d-2}} \left(\frac{wR}{\alpha_0'}\right)^2$$

Infinite towers of massless states \checkmark

What about more complicated geometries ?

A much more challenging question...

- Backgrounds have now curvature, fluxes: sources a scalar potential
- Under T-duality may display changes in topology
- Non-geometric backgrounds

Presents a challenge to the Swampland Distance Conjecture

Some details on string compactifications

Described by G_{ij}, B_{ij}, ϕ, F

Starting form a ten dimensional (supergravity) theory

$$S = \frac{1}{2\kappa_0^2} \int \mathrm{d}^D X \sqrt{-G} e^{-2\Phi} \left(\mathcal{R}(G) - \frac{1}{12} \mathcal{H}_{IJK} \mathcal{H}^{IJK} + 4\partial_I \Phi \partial^I \Phi \right)$$

Lower dimensional effectivel field theory

$$\begin{split} S &= \frac{1}{2\kappa^2} \int \mathrm{d}^d x \mathrm{d}^n y \sqrt{-g} \Omega \left(\mathcal{R}(g) - \frac{1}{12} \mathcal{H}_{\mu\nu\lambda} \mathcal{H}^{\mu\nu\lambda} e^{\frac{-8\phi}{d-2}} R^{\frac{4\alpha}{d-2}} - \frac{4}{d-2} \partial_\mu \phi \partial^\mu \phi \right. \\ &+ \left(\mathcal{R}(h) - \frac{1}{12} \mathcal{H}_{ijk} \mathcal{H}^{ijk} + 4 \partial_i \Phi_y \partial^i \Phi_y \right) e^{\frac{4\phi}{d-2}} R^{\frac{-2\alpha}{d-2}} - \frac{3}{12} \mathcal{H}_{\mu j k} \mathcal{H}^{\mu j k} \\ &- 2\alpha \frac{d-3}{d-2} R^{-1} (\partial \phi \partial R) - \left(\frac{3}{12} (\partial_R B)^2 + \frac{\alpha^2}{d-2} R^{-2} + \frac{1}{4} \mathrm{tr}(k^2) \right) (\partial R)^2 \right). \end{split}$$

Leading to a **non-vanishing potential**

 $V \supset \mathcal{R}, \ \mathcal{H}^2, \ (\partial \Phi)^2, \ \dots$

curvature, fluxes, dilaton of the compact space

[SD, Lüst, Raml]

A simple example of change in topology The three-sphere and its T-dual

Abelian T-duality

No winding (all closed loops are contractible)

has winding modes

New phenomenon: winding/(certain) momentum modes are forbidden !

[SD, Lüst, Raml]

A simple example of change in topology The three-sphere and its T-dual

New phenomenon: winding/(certain) momentum modes are forbidden !

T-duality can change topology: fluxes : $i_k \mathcal{H} \leftrightarrow \text{topology} : c_1(E_k)$ Calabi-Yaus also display changes in topology under mirror symmetry [cite]

 \rightarrow This poses a puzzle for the Swampland distance conjecture

A simple example of change in topology The three-sphere and its T-dual

A simple example of change in topology The three-sphere and its T-dual

Extension to the Swampland distance conjecture

Suggests a generalisation to the Distance Conjecture: [SD, Lüst, Raml]

At infinite distance points of the moduli space where the geometry cannot carry a light tower of states the scalar potential will be divergent

That is, the potential effectively screens pathological infinite points.

Generalised T-duality in under 2 mins

Abelian T-duality

- ▷ Compactification on a circle
- ▷ Apply T-duality

 $1/R \leftrightarrow R$

 \triangleright momentum modes \leftrightarrow winding modes

Generalised T-duality in under 2 mins

Abelian T-duality

- ▷ Compactification on a circle
- ▷ Apply T-duality

 $1/R \leftrightarrow R$

 \triangleright momentum modes \leftrightarrow winding modes

non-Abelian T-duality

- Canonical transformation
- Solution generating technique
- Useful to generate parametric families of supergravity solutions which can be integrable

Deforming the string theory side: integrable deformations of string backgrounds

They deform the background (and thus the symmetries), whilst remaining integrable and are closed related to generalised T-duality

For example: $AdS_5 \times S^5 \longrightarrow (AdS_5 \times S^5)_{\eta}$ $\xrightarrow{\text{deform}} \times \underbrace{4dS_5 \times S^5}_{\text{deform}} \xrightarrow{\text{deform}} \times \underbrace{4dS_5 \times S^5}_{\text{deform}} \times \underbrace{4dS_5 \times S^5}_{\text{deform}$

En corresponding deformed (g)SUGRA solutions:

$$G_{ij}, B_{ij}, \phi, F \longrightarrow G^{\eta}_{ij}, B^{\eta}_{ij}, \phi^{\eta}, F^{\eta}$$

Offers the possibility to explore the SDC in less symmetric parametric families of solutions

S³ and non-Abelian T-duality

We take to be a three-sphere $SU(2) \cong S^3$ and its non-abelian T-dual

 \rightarrow encounter a very similar problem: missing zero modes to provide towers

But does non-trivially meets expectations of the SDC !

$$V_{S^3} = \sigma^{-2} \rho^{-1} V_f^0 \sim R^{-2}$$

 $V_{\text{NATD}} = \tilde{\sigma}^{-2} \tilde{\rho} V_Q^0 \sim R^{-2}$, $1/X$

Summary

- \rightarrow What compactification spaces lead to consistent Quantum Gravities ?
- \rightarrow Curvature and fluxes challenge the current form of the Distance Conjecture
- \rightarrow The moduli space is a feature-full manifold:
 - \rightarrow The potential cannot be discarded
 - \rightarrow How does it transform under T-duality ?
 - \rightarrow What is global and local structure ?
- \rightarrow We propose to an extension to the SDC

There is **protecting mechanism** triggered **by the potential** whenever the (global) geometry does not warrant for a tower of states

Outlook

Investigate richer examples with non-geometry and fluxes

Study the geodesic flow on the moduli space

Are two T-dual moduli space always equivalent?

Exploit T-duality and integrability to test (supersymmetric) reductions?

Thank you for your attention !

Backup slides

Non-geometric backgrounds

Are these valid backgrounds for quantum gravity?

Geometries and moduli

Moduli?

Free parameters, specifying the size and shape of the internal manifold

They are unwanted because they lead to a fifth force, Might destroy successful prediction of Big Bag nucleosynthesis Change the gauge and Yukawa couplings

. . . .

How to fix them?

Create potential sourced by curvarture and fluxes

Geometries and moduli

Moduli?

Free parameters, specifying the size and shape of the internal manifold

Why fix moduli?

They are unwanted because they lead to a fifth force, Might destroy successful prediction of Big Bag nucleosynthesis Change the gauge and Yukawa couplings

. . . .

How to fix them?

Create potential sourced by curvarture and fluxes

Geometries and moduli

Moduli?

Free parameters, specifying the size and shape of the internal manifold

Why fix moduli?

They are unwanted because they lead to a fifth force, Might destroy successful prediction of Big Bag nucleosynthesis Change the gauge and Yukawa couplings

. . . .

How to fix them?

Create potential sourced by curvarture and fluxes

T-duality and its generalisations

The sigma-model characterisation of T-duality

$$S = \int d^2 \sigma (G_{ij} + B_{ij}) \partial_\mu X^i \partial^\mu X^j = \int d^2 \sigma E_{ij} \partial_\mu X^i \partial^\mu X^j, \qquad J_{a,\pm} = k_a{}^i E_{ij} \partial_\pm X^j$$

Abelian T-dualityAbelian isometryexact symmetry of string theory
$$[k_a, k_b] = 0$$
 $L_{k_a}E_{ij} = 0$ $d \star J_a = 0$ non-Abelian T-dualitynon-Abelian isometrysolution generating technique $[k_a, k_b] = f_{ab}{}^c k_c$ $L_{k_a}E_{ij} = 0$ $d \star J_a = 0$ Poisson-Lie T-dualitynon-Abelian isometry? (and rest of the talk) $[k_a, k_b] = f_{ab}{}^c k_c$ $L_{k_a}E_{ij} = (\tilde{f}^{bc})k_b{}^m E_{mi}E_{jn}k_c{}^n$ $d \star J_a = \tilde{f}^{bc}{}_aJ_b \wedge J_c$ Has a natural algebraic interpretation G fits into a Drinfel'd double $D = G(\tilde{G})$ determines the dual background G

T-duality and its generalisations

The sigma-model characterisation of T-duality

$$S = \int d^2 \sigma (G_{ij} + B_{ij}) \partial_\mu X^i \partial^\mu X^j = \int d^2 \sigma E_{ij} \partial_\mu X^i \partial^\mu X^j, \qquad J_{a,\pm} = k_a{}^i E_{ij} \partial_\pm X^j$$

Abelian T-dualityAbelian isometryexact symmetry of string theory
$$[k_a, k_b] = 0$$
 $L_{k_a}E_{ij} = 0$ $d \star J_a = 0$ non-Abelian T-dualitynon-Abelian isometrysolution generating technique $[k_a, k_b] = f_{ab}{}^c k_c$ $L_{k_a}E_{ij} = 0$ $d \star J_a = 0$ Poisson-Lie T-dualitynon-Abelian isometry? (and rest of the talk) $[k_a, k_b] = f_{ab}{}^c k_c$ $L_{k_a}E_{ij} = \tilde{f}{}^{bc}{}_a k_b{}^m E_{mi}E_{jn}k_c{}^n$ $d \star J_a = \tilde{f}{}^{bc}{}_a J_b \wedge J_c$ Has a natural algebraic interpretation \rightarrow G fits into a Drinfel'd double $D = G \cdot \tilde{G}$ $G \cdot \tilde{G}$

Jargon: G and \widetilde{G} are called Poisson-Lie groups

4

The doubled structure of the η -deformation

The **η-deformation/Yang-Baxter model** were first constructed as **example of Poisson-Lie-dualisable models** [Klimčik,Ševera '95] and **"accidentally"** turned out to be **integrable**

$$S_{\eta \text{PCM}} = \frac{1}{2\pi t} \int d^2 \sigma \operatorname{tr} \left(\partial_+ g g^{-1} \frac{1}{1 + \eta \mathcal{R}} \partial_- g g^{-1} \right) \qquad g: \Sigma \to G$$

The R-matrix defines a second Lie algebra

$$G \equiv \operatorname{Lie}(\mathfrak{g}, [-, -]) \qquad G_{\mathcal{R}} \equiv \operatorname{Lie}(\mathfrak{g}, [-, -]_{\mathcal{R}}) \equiv \operatorname{Lie} \tilde{\mathfrak{g}} = \widetilde{G}$$

Form together the Drinfel'd double $D = G \cdot \widetilde{G}$

The doubled structure of the η -deformation

The **η-deformation/Yang-Baxter model** were first constructed as **example of Poisson-Lie-dualisable models** [Klimčik,Ševera '95] and **"accidentally"** turned out to be **integrable** [Klimčik '02]

$$S_{\eta \text{PCM}} = \frac{1}{2\pi t} \int d^2 \sigma \operatorname{tr} \left(\partial_+ g g^{-1} \frac{1}{1 + \eta \mathcal{R}} \partial_- g g^{-1} \right) \qquad g: \Sigma \to G$$

$$S_{\widetilde{\eta \text{PCM}}} = \frac{1}{2\pi t} \int d^2 \sigma \operatorname{tr} \left(\partial_+ \tilde{g} \tilde{g}^{-1} \frac{1}{1 + \eta \widetilde{\mathcal{R}}} \partial_- \tilde{g} \tilde{g}^{-1} \right) \qquad \tilde{g}: \Sigma \to \widetilde{G}$$

Poisson-Lie T-duality [Klimčik,Ševera '95]

▷ Examples

