# Looking for beauty using truth: top and bottom quark results from ATLAS

Veronique Boisvert (@VBoisvertRHULPP)

Institute de Physique des 2 Infinies, Lyon, 19<sup>th</sup> April 2024



### The Standard Model





#### What we don't know...

- Incorporate neutrino mass in the SM in a natural way
- More matter than anti-matter
- Strong CP problem: Why QCD does not break CP?
  - Electric dipole of the neutron:  $dN \sim 5 \times 10^{-16} \theta_{QCD}$  e cm
  - dN< 3.0x10<sup>-26</sup> e cm so  $\theta_{QCD}$  < 10<sup>-10</sup>
  - naturalness:  $\theta_{QCD}$  O(1) so fine tuning
- Hierarchy Problem:
  - Higgs mass should be 10<sup>16</sup> GeV not O(100GeV)
  - Planck scale so different from the Electroweak scale
- Origin of Dark Matter & Dark Energy





## Higgs Mass

ROYAL HOLLOWAY UNIVERSITY

- Electroweak observables put strong constraints on the Higgs mass
- Higgs enters into radiative corrections of EW boson
  - Only logarithmically
  - Top mass enters quadratically...
- Higgs largest coupling is to the top quark







#### Top is so heavy!





# Producing top quarks



ROYAL HOLLOWAY UNIVERSITY OF LONDON

#### The LHC: a top quark factory





Mean Number of Interactions per Crossing

0<sup>L</sup>



ROYAL

#### Top – Antitop production

8

#### Top – Antitop production







# Experimental methods



## The SM top quark

ROYAL HOLLOWAY UNIVERSITY OF LONDON

- Top quark is isospin partner of b quark:
  - Charge = +2/3
  - Spin = 1/2
  - Mass = ???
- m<sub>t</sub>>m<sub>W</sub>+m<sub>b</sub> so dominant decay t→Wb
- If assume unitarity: B(t  $\rightarrow$  Wb)~100%  $\Gamma(t \rightarrow bW) = \frac{G_{\rm F}m_t^3}{8\pi\sqrt{2}}|V_{tb}|^2 \approx 1.74 \ {
  m GeV}$
- Top decays before it feels nonperturbative strong interaction
  - Can study the bare quark (eg spin)
  - No top-hadrons or tt-quarkonium
  - Top spin transferred to decay products



| (not inc. $\tau$ ) | BR   | background |
|--------------------|------|------------|
| dilepton           | ~5%  | low        |
| lepton + jets      | ~30% | moderate   |
| all hadronic       | ~44% | high       |

#### tt decay modes

## Example: Lepton+jets t<u>t</u> events





## ATLAS







## Top mass measurements



- 1. Using leptonic invariant mass at 13 TeV using 36 fb<sup>-1</sup>: JHEP 06 (2023) 019
- 2. ATLAS+CMS Run 1 combination: <u>submitted to PRL</u>

#### **Object & Event selection**





≥ 4 jets (anti-kt R=0.4) p<sub>T</sub>>30 GeV  $|\eta|$ <2.5

≥ SMT tagged jet  $p_T>25$  GeV  $|\eta|<2.5$ (can be same as b-tagged jet, if more than 1 SMT, for measurement use the one with highest  $p_T$  muon)

## **B-tagging**





#### "soft" muons





## SMT calibration & Yields



- SMT eff calibration: SF data/MC:
  - Use J/Psi and Z data samples
  - SF vs track and calo activity and vs d<sub>o</sub>
  - $\rightarrow$  no trends and SF close to 1.0
- SMT mistag rate: SF data/MC:
  - Mostly from dif of  $\pi/K$
  - Light –jet data sample: W+1 jet where jet is SMT-tagged but not b-tagged
  - $\rightarrow$  SF on normalization: 1.10±0.14
  - → scale p<sub>T</sub> of SMT-tagged jet: 0.967±0.024 (using p<sub>T</sub> SMT-tagged jet/ p<sub>T</sub> non-SMT-tagged jet)

#### Background estimations:

- MC for single top, Z+jets, Diboson
- Data-driven for: W+jets (using "Charge Asymmetry method") and Multijet (using "Matrix Method")

| Process                                              | Yield (OS)       | Yield (SS)       |
|------------------------------------------------------|------------------|------------------|
| $t\bar{t}$ (SMT from <i>b</i> - or <i>c</i> -hadron) | ) $55700\pm3400$ | $34800 \pm 2300$ |
| $t\bar{t}$ (SMT from $W \rightarrow \mu \nu$ )       | $2190\pm310$     | $4.9 \pm 3.6$    |
| $t\bar{t}$ (SMT fake)                                | $1490\pm210$     | $1240 \pm 170$   |
| Single top <i>t</i> -channel                         | $770 \pm 70$     | $490 \pm 40$     |
| Single top <i>s</i> -channel                         | $63 \pm 6$       | $49 \pm 4$       |
| Single top <i>Wt</i> channel                         | $1840 \pm 140$   | $1260 \pm 100$   |
| W+jets                                               | $1600 \pm 400$   | $1080 \pm 240$   |
| Z+light jets                                         | $210 \pm 80$     | $15 \pm 6$       |
| Z+HF jets                                            | $550 \pm 180$    | $310 \pm 100$    |
| Diboson                                              | $17.2 \pm 2.9$   | $6.3 \pm 1.4$    |
| Multijet                                             | $530 \pm 140$    | $480 \pm 130$    |
| Total Expected                                       | $65000 \pm 4000$ | $39700 \pm 2500$ |
| Data                                                 | 66 891           | 42 087           |
|                                                      | 86% signal       | 88% signal       |

#### Opposite Sign vs Same Sign





#### Opposite Sign vs Same Sign





## Observable: $m_{inv}(I, \mu)$





## Observable: $m_{inv}(I, \mu)$





#### Tt MC simulation



- Hvq program in Powheg-Box v2 using NNPDF3.oNLO
- PS and hadronisation: Pythia 8.2 using A 14-rb setting based on A 14 ATLAS tune
- Bottom and charm mixing and decays: EvtGen v1.2.0
- Modelling of momentum transfer between b-quark and b-hadron:
  - Pythia8 uses parametric functions to describe b fragmentation
  - Fit to e+e- data (applies to pp)

Pythia Lund-Bowler fragmentation function:

$$f(z) = \frac{1}{z^{1+br_b m_b^2}} (1-z)^a \exp(-bm_{\rm T}^2/z)$$

- a,b: data-fitted parameters, universal between light and heavy quarks
- r<sub>b</sub>: specific to b quark fragmentation
- m<sub>T</sub>: b-hadron transverse mass
- z: E<sub>z</sub> (b-had)/E<sub>z</sub> (b) in light-cone reference frame
- Controlled by both  $\alpha_s$  and  $r_b$ , since  $\alpha_s$ =0.127 in A14,  $r_b$  needs to be tuned ( $r_b$  = 0.855)
- Fit uses A14 tune with e+e- → Z → bb data from ALEPH, OPEAL, DELPHI and SLD
- Use RIVET v3.1.0 and :

$$x_B = 2p_B \cdot p_Z / m_Z^2 = 2E_B / m_Z$$

#### Tt MC simulation



• Result of the fit:  $r_b = 1.05 \pm 0.02$ 



1 x<sub>B</sub>

| Experiment | r <sub>b</sub>    | $\chi^2/\mathrm{ndf}$ |
|------------|-------------------|-----------------------|
| ALEPH      | $1.070 \pm 0.035$ | 21/18                 |
| DELPHI     | $1.094\pm0.030$   | 73/8                  |
| OPAL       | $1.023\pm0.019$   | 18/19                 |
| SLD        | $1.092\pm0.018$   | 58/21                 |



#### Fit to extract top mass

ROYAL HOLLOWAY UNIVERSITY OF LONDON

- Binned-template (smoothed) profile likelihood fit
  - Poisson likelihood model
  - Gaussian-constrained nuisance parameters (pruned)
- OS and SS simultaneously
  - SS less sensitivity to top mass



- 3 fit parameters:
  - Top mass
  - N tt in OS and SS
- Pseudo-experiments: fit is linear, unbiased and correct stat unc.
- Slight trend in lepton p<sub>T</sub>: from boost of ttbar, various checks done



## Profiled Systematic uncertainties

ROYAL HOLLC UNIVE

- Detector systematics (JES, lepton ID, btagging SF, etc.)
- Modelling systematics:
  - Generator: compare with Madgraph5\_aMC@NLO+Pythia8 (with pT(tt) reweighted to the Powheg+P8 one)
  - PS and hadronization:
    - Compare with Herwig 7.1.3 (angle-ordered shower alg)
    - r<sub>b</sub> unc.
    - Final State Radiation: renormalization and factorization scales with rb fitted for each (called α<sub>S</sub><sup>FSR</sup>)
  - Initial State Radiation
  - PDF
  - B production fraction and decay BR
  - Background modelling/normalizations



## Recoil uncertainty: New!

- In Pythia: setting to model the 2<sup>nd</sup>+n gluon radiation from b in t→Wb
  - RecoilToColoured=off, on or userHook
- Tune will influence the impact of setting
- RTW and RTT: wider-angle gluon radiation and lower gluon emissions: change b p<sub>T</sub>, W p<sub>T</sub> and angle between W and b
- Top mass extracted from RTT and RTB leads to a 0.25 GeV shift: added as extra uncertainty outside of the profile likelihood fit





 $m_t = 174.41 \pm 0.39 \text{ (stat.)} \pm 0.66 \text{ (syst.)} \pm 0.25 \text{ (recoil) GeV}$ 

#### Recoil Uncertainty





28



0.14%

#### $m_t = 174.41 \pm 0.39 \text{ (stat.)} \pm 0.66 \text{ (syst.)} \pm 0.25 \text{ (recoil) GeV}$

0.22% 0.38%

 $m_t = 174.41 \pm 0.81 (0.46\%)$ 



## ATLAS and CMS measurements



| ATLAS+CMS Preliminary<br>LHC <i>top</i> WG                               | m <sub>top</sub> summary, √s = 1.96-13 TeV Nove                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mber 2023                                                                                                          |              |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------|
| LHC comb. (Sep 2023*), 7+8 TeV LHC <i>top</i><br>statistical uncertainty | wg [1][16] Hereita total stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ſ                                                                                                                  |              |
|                                                                          | $m_{top} \pm total (stat \pm syst \pm recoil) [GeV$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ] L dt Ref.                                                                                                        |              |
| LHC comb. (Sep $2023^*$ ), 7+8 IeV HTH                                   | $172.52 \pm 0.33 (0.14 \pm 0.30)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ≤20 fb <sup>-1</sup> [1][16]                                                                                       |              |
| World comb. (Mar 2014), 1.9+7 TeV                                        | $- 173.34 \pm 0.76 (0.36 \pm 0.67)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≤8.7 fb <sup>-+</sup> , [2]                                                                                        |              |
| ATLAS, I+jels, / TeV                                                     | $172.33 \pm 1.27 (0.73 \pm 1.02)$<br>$173.79 \pm 1.42 (0.54 \pm 1.31)$                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.6 fb <sup>-1</sup> [3]                                                                                           |              |
| ATLAS, dilepton, 7 TeV                                                   | $175.79 \pm 1.42 (0.54 \pm 1.51)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.6 fb <sup>-1</sup> [3]                                                                                           |              |
| ATLAS, dillerton 8 TeV                                                   | $= 172.99 \pm 0.84 (0.41 \pm 0.74)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.010, [4]                                                                                                         |              |
| ATLAS, dilepton, o rev                                                   | $172.00 \pm 0.04 (0.41 \pm 0.14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.3 fb <sup>-1</sup> [6]                                                                                          |              |
| ATLAS I+iets 8 TeV                                                       | $172.08 \pm 0.91$ (0.39 $\pm 0.82$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $20.2 \text{ fb}^{-1}$ [7]                                                                                         |              |
| ATLAS comb. (Sep 2023*) 7+8 TeV                                          | $172.71 \pm 0.48 (0.25 \pm 0.41)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $< 20.3 \text{ fb}^{-1}$ [1]                                                                                       |              |
| ATLAS, leptonic inv. mass, 13 TeV                                        | 174.41±0.81 (0.39±0.66±0.25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36.1 fb <sup>-1</sup> . [8]                                                                                        | (0, 60%)     |
| ATLAS, dilepton (*), 13 TeV                                              | $172.21 \pm 0.80 \; (0.20 \pm 0.67 \pm 0.39)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 139 fb <sup>-1</sup> [9]                                                                                           | (0.4070)     |
| CMS, I+jets, 7 TeV                                                       | 173.49 ± 1.07 (0.43 ± 0.98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.9 fb <sup>-1</sup> , [10]                                                                                        |              |
| CMS, dilepton, 7 TeV                                                     | <b>172.5 ± 1.6 (0.4 ± 1.5)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.9 fb <sup>-1</sup> , [11]                                                                                        |              |
| CMS, all jets, 7 TeV                                                     | 173.49 ± 1.39 (0.69 ± 1.21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.5 fb <sup>-1</sup> , [12]                                                                                        |              |
| CMS, I+jets, 8 TeV                                                       | 172.35 ± 0.51 (0.16 ± 0.48)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.7 fb <sup>-1</sup> , [13]                                                                                       | (0.20%)      |
| CMS, dilepton, 8 TeV                                                     | $172.22 \begin{array}{c} 1001\\ -0.95 \end{array} (0.18 \begin{array}{c} 1003\\ -0.93 \end{array})$                                                                                                                                                                                                                                                                                                                                                                                                           | 19.7 fb <sup>-1</sup> , [14]                                                                                       |              |
| CMS, all jets, 8 TeV                                                     | $172.32 \pm 0.64 \ (0.25 \pm 0.59)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.7 fb <sup>-1</sup> , [13]                                                                                       |              |
| CMS, single top, 8 TeV                                                   | 172.95 ± 1.22 (0.77 +0.37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.7 fb <sup>-1</sup> , [15]                                                                                       |              |
| CMS comb. (Sep 2023*), 7+8 TeV                                           | 172.52 ± 0.42 (0.14 ± 0.39)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ≤ 19.7 fb <sup>-1</sup> [16]                                                                                       | (0.24%)      |
| CMS, all jets, 13 lev                                                    | $172.34 \pm 0.73 (0.20 + 0.72)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.9 fb <sup>-1</sup> [17]                                                                                         | <b>N I Z</b> |
| CMS, dilepton, 13 TeV                                                    | $1/2.33 \pm 0.70 \ (0.14 \pm 0.69)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.9 fb <sup>-1</sup> , [18]                                                                                       |              |
| CMS, I+jets, 13 IeV                                                      | $1/1.77 \pm 0.37$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.9 fb <sup>-1</sup> , [19]                                                                                       |              |
| CIVIS, single top, 13 TeV                                                | $172.13{0.77} (0.32{0.71})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35.9 fb ', [20]                                                                                                    |              |
|                                                                          | 1/3.00 ± 0.04 (0.24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 138 fb ', [21]                                                                                                     |              |
| * Preliminary                                                            | [1] ATLAS-COMP-2023-960         [6] JATLAS - COMP-2022-059         [16] CMS.           [2] arXi:1403-4427         [9] ATLAS - COMP-2022-059         [16] CMS.           [3] EPLO 75 (2015) 330         [10] JHEP 12 (2012) 105         [17] EPLO           [4] EPLO 75 (2015) 158         [11] EPLO 72 (2012) 202         [18] EPLO           [6] JHEP 09 (2017) 118         [13] PPD 93 (2016) 072004         [20] JHEP           [7] EPLC 79 (2019) 290         [14] PRD 93 (2016) 072004         [21] EPLO | 7 (2017) 334<br>79 (2019) 313<br>79 (2019) 313<br>79 (2019) 368<br>83 (2023) 963<br>12 (2021) 161<br>83 (2023) 560 |              |
| 165 170                                                                  | 175 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 185                                                                                                                |              |
| m <sub>to</sub>                                                          | <sub>p</sub> [GeV]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    |              |

#### Run 1 ATLAS+CMS Mass combination



#### submitted to PRL





|                                  | Uncertainty impact [GeV] |       |        |  |  |
|----------------------------------|--------------------------|-------|--------|--|--|
| Uncertainty category             | LHC                      | ATLAS | CMS    |  |  |
| b-JES                            | 0.18                     | 0.17  | 0.25   |  |  |
| b tagging                        | 0.09                     | 0.16  | 0.03   |  |  |
| ME generator                     | 0.08                     | 0.13  | 0.14   |  |  |
| JES 1                            | 0.08                     | 0.18  | 0.06   |  |  |
| JES 2                            | 0.08                     | 0.11  | 0.10   |  |  |
| Method                           | 0.07                     | 0.06  | 0.09   |  |  |
| CMS b hadron ${\cal B}$          | 0.07                     |       | 0.12   |  |  |
| QCD radiation                    | 0.06                     | 0.07  | 0.10   |  |  |
| Leptons                          | 0.05                     | 0.08  | 0.07   |  |  |
| JER                              | 0.05                     | 0.09  | 0.02   |  |  |
| CMS top quark $p_{\rm T}$        | 0.05                     |       | 0.07   |  |  |
| Background (data)                | 0.05                     | 0.04  | 0.06   |  |  |
| Color reconnection               | 0.04                     | 0.08  | 0.03   |  |  |
| Underlying event                 | 0.04                     | 0.03  | 0.05   |  |  |
| g-JES                            | 0.03                     | 0.02  | 0.04   |  |  |
| Background (MC)                  | 0.03                     | 0.07  | 0.01   |  |  |
| Other                            | 0.03                     | 0.06  | 0.01   |  |  |
| 1-JES                            | 0.03                     | 0.01  | 0.05   |  |  |
| CMS JES 1                        | 0.03                     | —     | 0.04   |  |  |
| Pileup                           | 0.03                     | 0.07  | 0.03   |  |  |
| JES 3                            | 0.02                     | 0.07  | 0.01   |  |  |
| Hadronization                    | 0.02                     | 0.01  | 0.01   |  |  |
| $p_{\mathrm{T}}^{\mathrm{miss}}$ | 0.02                     | 0.04  | 0.01   |  |  |
| PDF                              | 0.02                     | 0.06  | < 0.01 |  |  |
| Trigger                          | 0.01                     | 0.01  | 0.01   |  |  |
| Total systematic                 | 0.30                     | 0.41  | 0.39   |  |  |
| Statistical                      | 0.14                     | 0.25  | 0.14   |  |  |
| Total                            | 0.33                     | 0.48  | 0.42   |  |  |

#### Indirect top mass measurements



- Can unfold the m<sub>inv</sub>(l, μ) distribution to get differential distribution, which is then sensitive to top pole mass
- Alex Mitov et al now obtained the NNLO calculations needed for this:
- [2210.06078] NNLO Bfragmentation fits and their application to \$t\bar t\$ production and decay at the LHC (arxiv.org)

| ATLAS+CMS Preliminary<br>LHC <i>top</i> WG                                                                                   | m <sub>top</sub> from cross-s                | m <sub>top</sub> from cross-section measurements November 2023                                                                                                                                                                                            |                                                                                       |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                              | total stat                                   | $\rm m_{top}\pm$ tot (stat $\pm$ syst $\pm$ theo) [GeV]                                                                                                                                                                                                   | $\int$ L dt Ref.                                                                      |  |  |  |  |
| $\sigma(t\bar{t})$ inclusive, NNLO+NNLL                                                                                      |                                              |                                                                                                                                                                                                                                                           |                                                                                       |  |  |  |  |
| ATLAS, 7+8 TeV                                                                                                               |                                              | 172.9 <sup>+2.5</sup><br>-2.6                                                                                                                                                                                                                             | ≤20 fb <sup>-1</sup> [1]                                                              |  |  |  |  |
| CMS, 7+8 TeV                                                                                                                 | <b>—</b> ——————————————————————————————————— | <b>173.8</b> <sup>+1.7</sup> <sub>-1.8</sub>                                                                                                                                                                                                              | ≤19.7 fb <sup>-1</sup> [2]                                                            |  |  |  |  |
| CMS, 13 TeV                                                                                                                  |                                              | 169.9 $^{+1.9}_{-2.1}$ (0.1 $\pm$ 1.5 $^{+1.2}_{-1.5}$ )                                                                                                                                                                                                  | 35.9 fb <sup>-1</sup> [3]                                                             |  |  |  |  |
| ATLAS, 13 TeV                                                                                                                | F                                            | 173.1 <sup>+2.0</sup><br>-2.1                                                                                                                                                                                                                             | 36.1 fb <sup>-1</sup> [4]                                                             |  |  |  |  |
| LHC comb., 7+8 TeV                                                                                                           | <u> </u>                                     | 173.4 <sup>+1.8</sup><br>-2.0                                                                                                                                                                                                                             | ≤20 fb <sup>-1</sup> [5]                                                              |  |  |  |  |
| $\sigma$ (tī+1j) differential, NLO                                                                                           |                                              |                                                                                                                                                                                                                                                           |                                                                                       |  |  |  |  |
| ATLAS, 7 TeV                                                                                                                 |                                              | $173.7 \begin{array}{c} ^{+2.3}_{-2.1} (1.5 \pm 1.4 \begin{array}{c} ^{+1.0}_{-0.5}) \end{array}$                                                                                                                                                         | 4.6 fb <sup>-1</sup> [6]                                                              |  |  |  |  |
| ATLAS, 8 TeV                                                                                                                 | <b>⊢+=⊢-</b> I                               | 171.1 $^{+1.2}_{-1.0}$ (0.4 $\pm$ 0.9 $^{+0.7}_{-0.3}$ )                                                                                                                                                                                                  | 20.2 fb <sup>-1</sup> [7]                                                             |  |  |  |  |
| CMS, 13 TeV                                                                                                                  | <u> </u>                                     | 172.1 $^{+1.4}_{-1.3}$ (1.3 $^{+0.5}_{-0.4}$ )                                                                                                                                                                                                            | 36.3 fb <sup>-1</sup> [8]                                                             |  |  |  |  |
| $\sigma$ (tī) n-differential, NLO                                                                                            |                                              |                                                                                                                                                                                                                                                           |                                                                                       |  |  |  |  |
| ATLAS, n=1, 8 TeV                                                                                                            | <mark>⊢ + ●</mark> + 4                       | $173.2 \pm 1.6 \ (0.9 \pm 0.8 \pm 1.2$                                                                                                                                                                                                                    | ) 20.2 fb <sup>-1</sup> [9]                                                           |  |  |  |  |
| CMS, n=3, 13 TeV                                                                                                             | H++                                          | $170.5 \pm 0.8$                                                                                                                                                                                                                                           | 35.9 fb <sup>-1</sup> [10]                                                            |  |  |  |  |
| <ul> <li>m<sub>top</sub> from top quark decay</li> <li>CMS, 7+8 TeV comb. [11]</li> <li>ATLAS, 7+8 TeV comb. [12]</li> </ul> | [1] EPJC<br>[2] JHEP<br>[3] EPJC<br>[4] EPJC | 74 (2014) 3109       [5] JHEP 2307 (2023) 213       [9] E         08 (2016) 029       [6] JHEP 10 (2015) 121       [10] I         79 (2019) 368       [7] JHEP 11 (2019) 150       [11] I         80 (2020) 528       [8] JHEP 07 (2023) 077       [12] I | PJC 77 (2017) 804<br>EPJC 80 (2020) 658<br>PRD 93 (2016) 072004<br>EPJC 79 (2019) 290 |  |  |  |  |
|                                                                                                                              |                                              |                                                                                                                                                                                                                                                           |                                                                                       |  |  |  |  |
| 155 160 165                                                                                                                  | 170 175                                      | 180 185                                                                                                                                                                                                                                                   | 190                                                                                   |  |  |  |  |
|                                                                                                                              | m <sub>top</sub> [Ge                         | v                                                                                                                                                                                                                                                         |                                                                                       |  |  |  |  |

# CP violation in b decays using top events

- 1. 8 TeV measurement: JHEPo2 (2017) 071
- 2. 13 TeV update ongoing



## The Big Bang





Copyright C Addison Wesley.

#### Baryogenesis & CP violation



- Baryogenesis: n(baryons) = n(antibaryons) ~ 10<sup>-18</sup> n (photons)
- But actually in the early universe: for every 10<sup>9</sup> antibaryons: 10<sup>9</sup> + 1 baryons, giving 10<sup>9</sup> photons + 1 baryon!
- Sakharov conditions:
  - 1) baryon number violation
  - 2) C and CP violation
  - 3) departure from thermal equilibrium



#### CP violation and the CKM matrix

- Parity is conserved in QED and QCD but violated in weak interactions
- CP violated in weak interactions
- Need 3<sup>rd</sup> generation of quarks



ROYAL



$$V = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

 $\eta \neq o \Rightarrow CP$  violation CKM elements not predicted by the SM, need to measure them

## CP violation and the CKM unitarity triangle

- In SM CKM is unitary: V<sup>†</sup>V=1
- 3 types of CPV:
  - Direct CP violation:  $\Gamma(B \rightarrow X) \neq \Gamma(\underline{B} \rightarrow \underline{X})$ 
    - SM: smallest
  - CP violation in mixing (indirect): :  $\Gamma(B^{\circ} \rightarrow \underline{B^{\circ}} \rightarrow X) \neq \Gamma(\underline{B^{\circ}} \rightarrow B^{\circ} \rightarrow \underline{X})$ 
    - SM: small
  - CP violation in interference between decays to a common final state with and without mixing: Γ(B°→X)≠Γ(B°→<u>B</u>°→X)
    - SM: larger
- Lots of BSM models predict large CP violation effects: fertile group to make precise measurements!









# $b \rightarrow \mu$ decay modes

#### • Opposite Sign (OS):

$$t \to \ell^+ \nu b \to \ell^+ \ell^- X$$
  

$$t \to \ell^+ \nu (b \to \overline{b} \to \overline{c}) \to \ell^+ \ell^- X$$
  

$$t \to \ell^+ \nu (b \to c\overline{c}) \to \ell^+ \ell^- X$$

• Same Sign (SS):  

$$t \to \ell^+ \nu (b \to \overline{b}) \to \ell^+ \ell^+ X$$
  
 $t \to \ell^+ \nu (b \to c) \to \ell^+ \ell^+ X$   
 $t \to \ell^+ \nu (b \to \overline{b} \to c\overline{c}) \to \ell^+ \ell^+ X$ 





 $W^+$ 

b

(μ)

t

55%

4%

3%

7%

28%

3%

#### PRL 110 232002 (2013)

## Charge Asymmetries





Those charge asymmetries are functions of asymmetries associated with CP Violation in decay and mixing Measurements are unfolded to particle-level in a fiducial phase-space to minimize the uncertainties



# Charge asymmetries ingredients





If event is DT: flip charge of W-lepton

## ST/DT Assignment

ROYAL HOLLOWAY OWAY

Feature

prom transve de

promptLep

prompt

softMuonZ soft№

deltaRSMTJetL

softMuonPt

deltaEtaLMu

jet11sBTagged

BDT Score

deltaRLMu

jet2Pt

jet1Pt

promptLeptor 50

- 8 TeV: Kinematic Likelihood fitter, purity: 79%
- 13 TeV: 3 methods tc
  - Simple DR(l, μ), puri
  - Simple kinematic m
  - BDT:
    - Including jet featu
    - Not including jet 1
- Final choice based o..... measurements



 $\sim, \sim$ 





## Unfolding from reconstruction to particle



particle  

$$N^{i} = \frac{1}{\epsilon^{i}} \cdot \sum_{j} \mathcal{M}_{ij}^{-1} \cdot f_{acc}^{j} \cdot (N_{data}^{j} - N_{bkg}^{j})$$
reconstructed  
 $i, j = \{N^{++}, N^{--}, N^{+-}, N^{-+}\}$ 



8 TeV: Unfolding done using unregularized matrix inversion 13 TeV: Profile Likelihood unfolding

## Unfolding from reconstruction to particle



$$\widehat{N}^{i} = \frac{1}{\epsilon^{i}} \cdot \sum_{j} \mathcal{M}_{ij}^{-1} \cdot f_{acc}^{j} \cdot (N_{data}^{j} - N_{bkg}^{j}) \qquad \text{reconstructed}$$
$$i, j = \{N^{++}, N^{--}, N^{+-}, N^{-+}\}$$



r > 1

|           | $N^{++}{}_j$ | $N^{}_{j}$ | $N^{+-}{}_j$ | $N^{-+}{}_{j}$                  |
|-----------|--------------|------------|--------------|---------------------------------|
| NT++      | 0.70         | 0.00       | 0.00         | 0.21                            |
| $N''_i$   | 0.79         | 0.00       | 0.00         | 0.21                            |
| $N^{}i$   | 0.00         | 0.79       | 0.21         | 0.00                            |
| $N^{+-}i$ | 0.00         | 0.21       | 0.79         | 0.00                            |
| $N^{-+}i$ | 0.21         | 0.00       | 0.00         | 0.79                            |
|           | I            | Î          | Di<br>pe     | agonal = KLFitter<br>erformance |

ε is about 28% f<sub>acc</sub> is about 64% for SS 69% for OS (because of tt background)

Off-Diagonal = Charge mis-ID (negligible)

#### Systematic Uncertainties 8 TeV



#### ROYAL HOLLOWAY UNIVERSITY OF LONDON

#### Experimental ones:

 Leptons, jets, backgrounds, MV1 and SMT tagging, etc.

#### Modelling:

- Usual tt signal modelling:
  - PDF
  - Initial/Final State Radiation
  - Generators (Powheg vs MC@NLO)
  - Parton shower & hadronization (Pythia vs Herwig)
- Specific ones:
  - b-hadron production rates (scale to RPP and reweight according to uncertainty)
  - b-hadron to mu decay fractions (scale to RPP and reweight according to uncertainty)

| $\sigma_{t\bar{t}}$ [pb]249.6Statistical uncertainty in % $\pm 0.4$ Sources of experimental uncertainty in % $\pm 0.4$ Lepton charge misidentification $\pm 0.0 - 0.0$ Lepton energy resolution $\pm 1.0 - 1.0$ Lepton trigger, reco, identification $\pm 2.1 - 2.0$ Jet energy scale $\pm 5.0 - 4.8$ Jet energy resolution $\pm 0.1 - 0.1$ Jet reco efficiency $\pm 0.1 - 0.1$ Jet vertex fraction $\pm 1.0 - 1.0$ Fake lepton estimate $\pm 2.7 - 2.7$ Background normalisation $\pm 0.2 - 0.2$ $W + jets estimate (statistical)\pm 0.0 - 0.0Single-top production asymmetry\pm 0.1 - 0.1b^{-}tagging efficiency\pm 2.2 - 2.1c^{-j}et mistag rate\pm 0.4 - 0.4Light-jet mistag rate\pm 0.4 - 0.4Sources of modelling uncertainty in %\pm 1.9Hadron-to-muon branching ratio\pm 2.8 - 2.6b^{-hadron} production fractions\pm 0.4 - 0.4Additional radiation\pm 4.5MC generator\pm 3.0Parton distribution function\pm 0.9Total experimental uncertainty\pm 6.9 - 6.7Total modelling uncertainty\pm 6.9 - 6.7Total modelling uncertainty\pm 1.9Luminosity uncertainty\pm 1.9LHC beam energy\pm 1.7$                                   |                                          | <i>ℓ</i> +jets |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------|
| Statistical uncertainty in % $\pm 0.4$ Sources of experimental uncertainty in % $\pm 0.4$ Sources of experimental uncertainty in % $+0.0 - 0.0$ Lepton charge misidentification $+1.0 - 1.0$ Lepton trigger, reco, identification $+2.1 - 2.0$ Jet energy scale $+5.0 - 4.8$ Jet energy resolution $+0.1 - 0.1$ Jet reco efficiency $+0.1 - 0.1$ Jet vertex fraction $+1.0 - 1.0$ Fake lepton estimate $+2.7 - 2.7$ Background normalisation $+0.2 - 0.2$ $W+jets estimate (statistical)+0.0 - 0.0Single-top production asymmetry+0.1 - 0.0b-tagging efficiency+2.2 - 2.1c-jet mistag rate+0.4 - 0.4Light-jet mistag rate+0.4 - 0.4SMT reco identification+1.5 - 1.5SMT momentum imbalance+1.0 - 1.0SMT light-jet mistag rate+0.4 - 0.5Sources of modelling uncertainty in %+2.8 - 2.6h-hadron production fractions+0.4 - 0.4Additional radiation\pm 4.5MC generator\pm 3.0Parton distribution function\pm 0.9Total experimental uncertainty+6.9 - 6.7Total modelling uncertainty+6.4 - 9.3Luminosity uncertainty\pm 1.9LHC beam energy\pm 1.7$                                                                                    | $\sigma_{t\bar{t}}$ [pb]                 | 249.6          |
| Sources of experimental uncertainty in %<br>Lepton charge misidentification $+0.0 - 0.0$ Lepton charge misidentification $+0.0 - 0.0$ Lepton energy resolution $+1.0 - 1.0$ Lepton trigger, reco, identification $+2.1 - 2.0$ Jet energy scale $+5.0 - 4.8$ Jet energy resolution $+0.1 - 0.1$ Jet reco efficiency $+0.1 - 0.1$ Jet vertex fraction $+1.0 - 1.0$ Fake lepton estimate $+2.7 - 2.7$ Background normalisation $+0.2 - 0.2$ $W+$ jets estimate (statistical) $+0.0 - 0.0$ Single-top production asymmetry $+0.1 - 0.1$ $b^-$ tagging efficiency $+2.2 - 2.1$ $c$ -jet mistag rate $+0.4 - 0.4$ Light-jet mistag rate $+0.4 - 0.4$ SMT reco identification $+1.5 - 1.5$ SMT momentum imbalance $+1.0 - 1.0$ SMT light-jet mistag rate $+0.4 - 0.5$ Sources of modelling uncertainty in % $+2.8 - 2.6$ $h$ -hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton shower $\pm 1.9$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.5 - 6.4$ Total systematic uncertainty $\pm 1.9$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$ | Statistical uncertainty in %             | ±0.4           |
| Lepton charge misidentification $+0.0 - 0.0$ Lepton energy resolution $+1.0 - 1.0$ Lepton trigger, reco, identification $+2.1 - 2.0$ Jet energy scale $+5.0 - 4.8$ Jet energy resolution $+0.1 - 0.1$ Jet reco efficiency $+0.1 - 0.1$ Jet vertex fraction $+1.0 - 1.0$ Fake lepton estimate $+2.7 - 2.7$ Background normalisation $+0.2 - 0.2$ $W+jets$ estimate (statistical) $+0.0 - 0.0$ Single-top production asymmetry $+0.1 - 0.0$ $b$ -tagging efficiency $+2.2 - 2.1$ $c$ -jet mistag rate $+0.4 - 0.4$ Light-jet mistag rate $+0.4 - 0.4$ SMT reco identification $+1.5 - 1.5$ SMT momentum imbalance $+1.0 - 1.0$ SMT light-jet mistag rate $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total modelling uncertainty $+6.9 - 6.7$ Total systematic uncertainty $\pm 1.9$ Luminosity uncertainty $\pm 1.9$ Luth beam energy $\pm 1.7$                                                                                                                                                                           | Sources of experimental uncertainty in % |                |
| Lepton energy resolution $\pm 1.0 - 1.0$ Lepton trigger, reco, identification $\pm 2.1 - 2.0$ Jet energy scale $\pm 5.0 - 4.8$ Jet energy resolution $\pm 0.1 - 0.1$ Jet reco efficiency $\pm 0.1 - 0.1$ Jet vertex fraction $\pm 1.0 - 1.0$ Fake lepton estimate $\pm 2.7 - 2.7$ Background normalisation $\pm 0.2 - 0.2$ $W + jets estimate (statistical)\pm 0.0 - 0.0Single-top production asymmetry\pm 0.1 - 0.1b-tagging efficiency\pm 2.2 - 2.1c-jet mistag rate\pm 0.4 - 0.4Light-jet mistag rate\pm 0.1 - 0.1SMT reco identification\pm 1.5 - 1.5SMT momentum imbalance\pm 1.0 - 1.0SMT light-jet mistag rate\pm 0.4 - 0.5Sources of modelling uncertainty in %\pm 4.5Hadron-to-muon branching ratio\pm 2.8 - 2.6b-hadron production fractions\pm 0.4 - 0.4Additional radiation\pm 4.5MC generator\pm 3.0Parton distribution function\pm 0.9Total experimental uncertainty\pm 6.9 - 6.7Total modelling uncertainty\pm 6.5 - 6.4Total systematic uncertainty\pm 1.9Luminosity uncertainty\pm 1.9LHC beam energy\pm 1.7$                                                                                                     | Lepton charge misidentification          | +0.0 - 0.0     |
| Lepton trigger, reco, identification $+2.1 - 2.0$ Jet energy scale $+5.0 - 4.8$ Jet energy resolution $+0.1 - 0.1$ Jet reco efficiency $+0.1 - 0.1$ Jet vertex fraction $+1.0 - 1.0$ Fake lepton estimate $+2.7 - 2.7$ Background normalisation $+0.2 - 0.2$ $W+$ jets estimate (statistical) $+0.0 - 0.0$ Single-top production asymmetry $+0.1 - 0.1$ $b$ -tagging efficiency $+2.2 - 2.1$ $c$ -jet mistag rate $+0.4 - 0.4$ Light-jet mistag rate $+0.4 - 0.4$ SMT reco identification $+1.5 - 1.5$ SMT momentum imbalance $+1.0 - 1.0$ SMT light-jet mistag rate $+0.4 - 0.5$ Sources of modelling uncertainty in % $+2.8 - 2.6$ Hadron-to-muon branching ratio $\pm 4.5$ MC generator $\pm 3.0$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $\pm 6.9 - 6.7$ Total systematic uncertainty $\pm 1.9$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                       | Lepton energy resolution                 | +1.0 - 1.0     |
| Jet energy scale $+5.0 - 4.8$ Jet energy resolution $+0.1 - 0.1$ Jet reco efficiency $+0.1 - 0.1$ Jet vertex fraction $+1.0 - 1.0$ Fake lepton estimate $+2.7 - 2.7$ Background normalisation $+0.2 - 0.2$ $W+$ jets estimate (statistical) $+0.0 - 0.0$ Single-top production asymmetry $+0.1 - 0.1$ $b$ -tagging efficiency $+2.2 - 2.1$ $c$ -jet mistag rate $+0.4 - 0.4$ Light-jet mistag rate $+0.1 - 0.1$ SMT reco identification $+1.5 - 1.5$ SMT momentum imbalance $+1.0 - 1.0$ SMT light-jet mistag rate $+0.4 - 0.5$ Sources of modelling uncertainty in % $+2.8 - 2.6$ $h$ -hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total systematic uncertainty $+9.4 - 9.3$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                     | Lepton trigger, reco, identification     | +2.1 -2.0      |
| Jet energy resolution $+0.1 - 0.1$ Jet reco efficiency $+0.1 - 0.1$ Jet vertex fraction $+1.0 - 1.0$ Fake lepton estimate $+2.7 - 2.7$ Background normalisation $+0.2 - 0.2$ $W+$ jets estimate (statistical) $+0.0 - 0.0$ Single-top production asymmetry $+0.1 - 0.0$ $b$ -tagging efficiency $+2.2 - 2.1$ $c$ -jet mistag rate $+0.4 - 0.4$ Light-jet mistag rate $+0.1 - 0.1$ SMT reco identification $+1.5 - 1.5$ SMT momentum imbalance $+1.0 - 1.0$ SMT light-jet mistag rate $+0.4 - 0.5$ Sources of modelling uncertainty in % $+2.8 - 2.6$ $b$ -hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total modelling uncertainty $+6.5 - 6.4$ Total systematic uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                              | Jet energy scale                         | +5.0 - 4.8     |
| Jet reco efficiency $+0.1 - 0.1$ Jet vertex fraction $+1.0 - 1.0$ Fake lepton estimate $+2.7 - 2.7$ Background normalisation $+0.2 - 0.2$ $W+$ jets estimate (statistical) $+0.0 - 0.0$ Single-top production asymmetry $+0.1 - 0.0$ $b$ -tagging efficiency $+2.2 - 2.1$ $c$ -jet mistag rate $+0.4 - 0.4$ Light-jet mistag rate $+0.1 - 0.1$ SMT reco identification $+1.5 - 1.5$ SMT momentum imbalance $+1.0 - 1.0$ SMT light-jet mistag rate $+0.4 - 0.5$ Sources of modelling uncertainty in % $+2.8 - 2.6$ $b$ -hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton shower $\pm 1.9$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.5 - 6.4$ Total systematic uncertainty $\pm 1.9$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                 | Jet energy resolution                    | +0.1 - 0.1     |
| Jet vertex fraction $+1.0 - 1.0$ Fake lepton estimate $+2.7 - 2.7$ Background normalisation $+0.2 - 0.2$ $W+$ jets estimate (statistical) $+0.0 - 0.0$ Single-top production asymmetry $+0.1 - 0.0$ $b$ -tagging efficiency $+2.2 - 2.1$ $c$ -jet mistag rate $+0.4 - 0.4$ Light-jet mistag rate $+0.1 - 0.1$ SMT reco identification $+1.5 - 1.5$ SMT momentum imbalance $+1.0 - 1.0$ SMT light-jet mistag rate $+0.4 - 0.5$ Sources of modelling uncertainty in % $+2.8 - 2.6$ $h$ -hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total modelling uncertainty $+6.5 - 6.4$ Total systematic uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                  | Jet reco efficiency                      | +0.1 - 0.1     |
| Fake lepton estimate $+2.7 - 2.7$ Background normalisation $+0.2 - 0.2$ $W+$ jets estimate (statistical) $+0.0 - 0.0$ Single-top production asymmetry $+0.1 - 0.0$ $b$ -tagging efficiency $+2.2 - 2.1$ $c$ -jet mistag rate $+0.4 - 0.4$ Light-jet mistag rate $+0.1 - 0.1$ SMT reco identification $+1.5 - 1.5$ SMT momentum imbalance $+1.0 - 1.0$ SMT light-jet mistag rate $+0.4 - 0.5$ Sources of modelling uncertainty in % $+2.8 - 2.6$ $b$ -hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total systematic uncertainty $+9.4 - 9.3$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                        | Jet vertex fraction                      | +1.0 - 1.0     |
| Background normalisation $+0.2 - 0.2$ $W+$ jets estimate (statistical) $+0.0 - 0.0$ Single-top production asymmetry $+0.1 - 0.0$ $b$ -tagging efficiency $+2.2 - 2.1$ $c$ -jet mistag rate $+0.4 - 0.4$ Light-jet mistag rate $+0.1 - 0.1$ SMT reco identification $+1.5 - 1.5$ SMT momentum imbalance $+1.0 - 1.0$ SMT light-jet mistag rate $+0.4 - 0.5$ Sources of modelling uncertainty in % $+2.8 - 2.6$ Hadron-to-muon branching ratio $+2.8 - 2.6$ $b$ -hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton shower $\pm 1.9$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.5 - 6.4$ Total systematic uncertainty $+9.4 - 9.3$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                      | Fake lepton estimate                     | +2.7 -2.7      |
| $W$ +jets estimate (statistical) $+0.0 - 0.0$ Single-top production asymmetry $+0.1 - 0.0$ $b$ -tagging efficiency $+2.2 - 2.1$ $c$ -jet mistag rate $+0.4 - 0.4$ Light-jet mistag rate $+0.1 - 0.1$ SMT reco identification $+1.5 - 1.5$ SMT momentum imbalance $+1.0 - 1.0$ SMT light-jet mistag rate $+0.4 - 0.5$ Sources of modelling uncertainty in % $+2.8 - 2.6$ $b$ -hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton shower $\pm 1.9$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.5 - 6.4$ Total systematic uncertainty $\pm 1.9$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                           | Background normalisation                 | +0.2 - 0.2     |
| Single-top production asymmetry $+0.1 - 0.0$ b-tagging efficiency $+2.2 - 2.1$ c-jet mistag rate $+0.4 - 0.4$ Light-jet mistag rate $+0.1 - 0.1$ SMT reco identification $+1.5 - 1.5$ SMT momentum imbalance $+1.0 - 1.0$ SMT light-jet mistag rate $+0.4 - 0.5$ Sources of modelling uncertainty in %Hadron-to-muon branching ratio $+2.8 - 2.6$ b-hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton shower $\pm 1.9$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total modelling uncertainty $+6.5 - 6.4$ Total systematic uncertainty $\pm 1.9$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>W</i> +jets estimate (statistical)    | +0.0 - 0.0     |
| b-tagging efficiency $+2.2 - 2.1$ c-jet mistag rate $+0.4 - 0.4$ Light-jet mistag rate $+0.1 - 0.1$ SMT reco identification $+1.5 - 1.5$ SMT momentum imbalance $+1.0 - 1.0$ SMT light-jet mistag rate $+0.4 - 0.5$ Sources of modelling uncertainty in % $+2.8 - 2.6$ Hadron-to-muon branching ratio $+2.8 - 2.6$ b-hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton shower $\pm 1.9$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total systematic uncertainty $+9.4 - 9.3$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Single-top production asymmetry          | +0.1 - 0.0     |
| $c$ -jet mistag rate $+0.4 - 0.4$ Light-jet mistag rate $+0.1 - 0.1$ SMT reco identification $+1.5 - 1.5$ SMT momentum imbalance $+1.0 - 1.0$ SMT light-jet mistag rate $+0.4 - 0.5$ Sources of modelling uncertainty in % $+2.8 - 2.6$ Hadron-to-muon branching ratio $+2.8 - 2.6$ $b$ -hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton shower $\pm 1.9$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total modelling uncertainty $+9.4 - 9.3$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>b</i> -tagging efficiency             | +2.2 -2.1      |
| Light-jet mistag rate $+0.1 - 0.1$ SMT reco identification $+1.5 - 1.5$ SMT momentum imbalance $+1.0 - 1.0$ SMT light-jet mistag rate $+0.4 - 0.5$ Sources of modelling uncertainty in %Hadron-to-muon branching ratioHadron-to-muon branching ratio $+2.8 - 2.6$ b-hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton shower $\pm 1.9$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total modelling uncertainty $+6.5 - 6.4$ Total systematic uncertainty $\pm 1.9$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>c</i> -jet mistag rate                | +0.4 - 0.4     |
| SMT reco identification $+1.5 - 1.5$ SMT momentum imbalance $+1.0 - 1.0$ SMT light-jet mistag rate $+0.4 - 0.5$ Sources of modelling uncertainty in % $+2.8 - 2.6$ Hadron-to-muon branching ratio $+2.8 - 2.6$ b-hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton shower $\pm 1.9$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total modelling uncertainty $+6.5 - 6.4$ Total systematic uncertainty $\pm 1.9$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Light-jet mistag rate                    | +0.1 - 0.1     |
| SMT momentum imbalance $+1.0 - 1.0$ SMT light-jet mistag rate $+0.4 - 0.5$ Sources of modelling uncertainty in % $+2.8 - 2.6$ Hadron-to-muon branching ratio $+2.8 - 2.6$ b-hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton shower $\pm 1.9$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total modelling uncertainty $+6.5 - 6.4$ Total systematic uncertainty $\pm 1.9$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SMT reco identification                  | +1.5 -1.5      |
| SMT light-jet mistag rate $+0.4 - 0.5$ Sources of modelling uncertainty in %Hadron-to-muon branching ratio $+2.8 - 2.6$ <i>b</i> -hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton shower $\pm 1.9$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total modelling uncertainty $+6.5 - 6.4$ Total systematic uncertainty $\pm 1.9$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SMT momentum imbalance                   | +1.0 - 1.0     |
| Sources of modelling uncertainty in %<br>Hadron-to-muon branching ratio $+2.8 - 2.6$<br>$+0.4 - 0.4$ b-hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton shower $\pm 1.9$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total modelling uncertainty $+6.5 - 6.4$ Total systematic uncertainty $\pm 1.9$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SMT light-jet mistag rate                | +0.4 - 0.5     |
| Hadron-to-muon branching ratio $+2.8 - 2.6$ b-hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton shower $\pm 1.9$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total modelling uncertainty $+6.5 - 6.4$ Total systematic uncertainty $\pm 1.9$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sources of modelling uncertainty in %    |                |
| b-hadron production fractions $+0.4 - 0.4$ Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton shower $\pm 1.9$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total modelling uncertainty $+6.5 - 6.4$ Total systematic uncertainty $\pm 1.9$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hadron-to-muon branching ratio           | +2.8 -2.6      |
| Additional radiation $\pm 4.5$ MC generator $\pm 3.0$ Parton shower $\pm 1.9$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total modelling uncertainty $+6.5 - 6.4$ Total systematic uncertainty $+9.4 - 9.3$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b-hadron production fractions            | +0.4 - 0.4     |
| MC generator $\pm 3.0$ Parton shower $\pm 1.9$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total modelling uncertainty $+6.5 - 6.4$ Total systematic uncertainty $+9.4 - 9.3$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Additional radiation                     | ±4.5           |
| Parton shower $\pm 1.9$ Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total modelling uncertainty $+6.5 - 6.4$ Total systematic uncertainty $+9.4 - 9.3$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MC generator                             | ±3.0           |
| Parton distribution function $\pm 0.9$ Total experimental uncertainty $+6.9 - 6.7$ Total modelling uncertainty $+6.5 - 6.4$ Total systematic uncertainty $+9.4 - 9.3$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Parton shower                            | ±1.9           |
| Total experimental uncertainty $+6.9 - 6.7$ Total modelling uncertainty $+6.5 - 6.4$ Total systematic uncertainty $+9.4 - 9.3$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Parton distribution function             | ±0.9           |
| Total modelling uncertainty $+6.5 - 6.4$ Total systematic uncertainty $+9.4 - 9.3$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total experimental uncertainty           | +6.9 - 6.7     |
| Total systematic uncertainty $+9.4 - 9.3$ Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total modelling uncertainty              | +6.5 -6.4      |
| Luminosity uncertainty $\pm 1.9$ LHC beam energy $\pm 1.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total systematic uncertainty             | +9.4 -9.3      |
| LHC beam energy ±1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Luminosity uncertainty                   | ±1.9           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LHC beam energy                          | ±1.7           |

# Systematic Uncertainties on the asymmetries 8 TeV



- Statistical uncertainties largest
- Since asymmetries are ratios, most cancel out, remaining ones:
  - IFSR: affects the KLFitter performance, modifies the response matrix, so large effect on asymmetries

PDF

|                                       | $A^{\rm ss}$ | $10^{-2})$ | $A^{ m os}(10^{-2})$ |        |
|---------------------------------------|--------------|------------|----------------------|--------|
| Measured value                        |              | , í        |                      |        |
| Statistical uncertainty               | ±(           | ).6        | ±0                   | .35    |
| Sources of experimental uncertainty   |              |            |                      |        |
| Lepton charge misidentification       | +0.002       | -0.002     | +0.001               | -0.001 |
| Lepton energy resolution              | +0.09        | -0.11      | +0.07                | -0.06  |
| Lepton trigger, reco, identification  | +0.004       | -0.004     | +0.002               | -0.002 |
| Jet energy scale                      | +0.10        | -0.14      | +0.08                | -0.06  |
| Jet energy resolution                 | +0.019       | -0.019     | +0.009               | -0.009 |
| Jet reco efficiency                   | +0.010       | -0.010     | +0.006               | -0.006 |
| Jet vertex fraction                   | +0.09        | -0.09      | +0.05                | -0.05  |
| Fake lepton estimate                  | +0.05        | -0.05      | +0.025               | -0.025 |
| Background normalisation              | +0.002       | -0.002     | +0.001               | -0.001 |
| <i>W</i> +jets estimate (statistical) | +0.003       | -0.002     | +0.001               | -0.002 |
| Single-top production asymmetry       | +0.016       | -0.002     | +0.001               | -0.009 |
| <i>b</i> -tagging efficiency          | +0.008       | -0.008     | +0.004               | -0.004 |
| <i>c</i> -jet mistag rate             | +0.020       | -0.020     | +0.013               | -0.013 |
| Light-jet mistag rate                 | +0.022       | -0.023     | +0.013               | -0.012 |
| SMT reco identification               | +0.004       | -0.004     | +0.004               | -0.004 |
| SMT momentum imbalance                | +0.06        | -0.06      | +0.04                | -0.035 |
| SMT light-jet mistag rate             | +0.010       | -0.009     | +0.005               | -0.005 |
| Sources of modelling uncertainty      |              |            |                      |        |
| Hadron-to-muon branching ratio        | +0.04        | -0.05      | +0.026               | -0.022 |
| <i>b</i> -hadron production           | +0.013       | -0.008     | +0.003               | -0.008 |
| Additional radiation                  | ±(           | ).4        | ±0                   | .23    |
| MC generator                          | ±(           | ).05       | ±0                   | .025   |
| Parton shower                         | ±(           | ).04       | ±0                   | .017   |
| Parton distribution function          | ±(           | ).22       | ±0                   | .13    |
| Total experimental uncertainty        | +0.19        | -0.22      | +0.13                | -0.11  |
| Total modelling uncertainty           | +0.5         | -0.5       | +0.27                | -0.27  |
| Total systematic uncertainty          | +0.5         | -0.5       | +0.30                | -0.29  |

### Charge Asymmetries: consistent with o!





 $A^{ss} = -0.007 \pm 0.006 \text{ (stat.)} {}^{+0.002}_{-0.002} \text{ (expt.)} \pm 0.005 \text{ (model)}$  $A^{os} = 0.0041 \pm 0.0035 \text{ (stat.)} {}^{+0.0013}_{-0.0011} \text{ (expt.)} \pm 0.0027 \text{ (model)}$ 

#### PRL 110 232002 (2013)

# Connecting charge asymmetries with CP ones



$$A_{\text{mix}}^{b\ell} = \frac{\Gamma(b \to \overline{b} \to \ell^{+}X) - \Gamma(\overline{b} \to b \to \ell^{-}X)}{\Gamma(b \to \overline{b} \to \ell^{+}X) + \Gamma(\overline{b} \to b \to \ell^{-}X)},$$

$$Probes CPV \text{ in mixing}$$

$$A_{\text{mix}}^{bc} = \frac{\Gamma(b \to \overline{b} \to \overline{c}X) - \Gamma(\overline{b} \to b \to cX)}{\Gamma(b \to \overline{b} \to \overline{c}X) + \Gamma(\overline{b} \to b \to cX)},$$

$$A_{\text{dir}}^{b\ell} = \frac{\Gamma(b \to \ell^{-}X) - \Gamma(\overline{b} \to \ell^{+}X)}{\Gamma(b \to \ell^{-}X) + \Gamma(\overline{b} \to \ell^{+}X)},$$

$$A_{\text{dir}}^{c\ell} = \frac{\Gamma(\overline{c} \to \ell^{-}X_{L}) - \Gamma(c \to \ell^{+}X_{L})}{\Gamma(\overline{c} \to \ell^{-}X_{L}) + \Gamma(c \to \ell^{+}X_{L})},$$

$$A_{\text{dir}}^{c\ell} = \frac{\Gamma(b \to cX_{L}) - \Gamma(\overline{b} \to \overline{c}X_{L})}{\Gamma(b \to cX_{L}) + \Gamma(\overline{b} \to \overline{c}X_{L})},$$

$$Probes \text{ direct CPV} \begin{array}{c} SS \\ t \to \ell^{+}\nu(b \to \overline{b}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\ell^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\mu^{+}X \\ t \to \ell^{+}\nu(b \to \overline{b} \to c\overline{c}) \to \ell^{+}\mu^{+}X \\$$

$$A^{ss} = r_b A^{b\ell}_{mix} + r_c \left( A^{bc}_{dir} - A^{c\ell}_{dir} \right) + r_{c\bar{c}} \left( A^{bc}_{mix} - A^{c\ell}_{dir} \right)$$

$$A^{os} = \tilde{r}_b A^{b\ell}_{dir} + \tilde{r}_c \left( A^{bc}_{mix} + A^{c\ell}_{dir} \right) + \tilde{r}_{c\bar{c}} A^{c\ell}_{dir}$$
5 parameters, 2 (correlated)

equations...



Also, if no direct CPV, then

$$A_{\text{mix}}^{b\ell} = A_{\text{mix}}^{bc} \equiv A_{\text{mix}}^{b} = f_{d}a_{\text{SL}}^{d} + f_{s}a_{\text{SL}}^{s} = f_{d}\frac{1 - |q_{B_{d}}/p_{B_{d}}|^{4}}{1 + |q_{B_{d}}/p_{B_{d}}|^{4}} + f_{s}\frac{1 - |q_{B_{s}}/p_{B_{s}}|^{4}}{1 + |q_{B_{s}}/p_{B_{s}}|^{4}}$$

$$a_{\text{sl}}^{q} = \frac{\Gamma\left(\bar{B}_{q}^{0} \to B_{q}^{0} \to f\right) - \Gamma\left(B_{q}^{0} \to \bar{B}_{q}^{0} \to \bar{f}\right)}{\Gamma\left(\bar{B}_{q}^{0} \to B_{q}^{0} \to f\right) + \Gamma\left(B_{q}^{0} \to \bar{B}_{q}^{0} \to \bar{f}\right)} \qquad |B_{L}\rangle = p |B^{0}\rangle + q |\bar{B}^{0}\rangle, \qquad |B_{H}\rangle = p |B^{0}\rangle - q |\bar{B}^{0}\rangle,$$

$$A_{\text{mix}}^{b} = \frac{A^{\text{ss}}}{r_{b} + r_{c\bar{c}}} = -0.025 \pm 0.021 \text{ (stat.)} \pm 0.008 \text{ (expt.)} \pm 0.017 \text{ (model)}$$

$$A_{\text{dir}}^{b\ell} = \frac{A^{\text{os}}}{\tilde{r}_{b}} = 0.005 \pm 0.004 \text{ (stat.)} \pm 0.001 \text{ (expt.)} \pm 0.003 \text{ (model)}$$

$$A_{\text{dir}}^{c\ell} = \frac{-A^{\text{ss}}}{r_{c} + r_{c\bar{c}}} = 0.009 \pm 0.007 \text{ (stat.)} \pm 0.003 \text{ (expt.)} \pm 0.006 \text{ (model)}$$

$$A_{\text{dir}}^{bc} = \frac{A^{\text{ss}}}{r_{c}} = -0.010 \pm 0.008 \text{ (stat.)} \pm 0.003 \text{ (expt.)} \pm 0.007 \text{ (model)}$$

#### **CP** Asymmetries

50



| Results                       | Data (10 <sup>-2</sup> ) | Existing limits ( $2\sigma$ (10 <sup>-2</sup> ) | SM (10 <sup>-2</sup> | <sup>2</sup> ) |
|-------------------------------|--------------------------|-------------------------------------------------|----------------------|----------------|
| A <sup>SS</sup>               | $-0.7 \pm 0.8$           | —                                               | <10 <sup>-2</sup>    | [1]            |
| A <sup>os</sup>               | $0.4 \pm 0.5$            | —                                               | <10 <sup>-2</sup>    | [1]            |
| A <sup>b</sup> <sub>mix</sub> | $-2.5 \pm 2.8$           | < 0.1 [3]                                       | <10 <sup>-3</sup>    | [2,3]          |
| A <sup>bl</sup> dir           | $0.5 \pm 0.5$            | < 1.2 [4]                                       | <10 <sup>-5</sup>    | [1]            |
| A <sup>cl</sup> dir           | $1.0 \pm 1.0$            | < 6.0 [4]                                       | <10 <sup>-9</sup>    | [1]            |
| A <sup>bc</sup> dir           | $-1.0 \pm 1.1$           | _                                               | <10 <sup>-7</sup>    | [5]            |

More competitive result for  $A^{cl}_{dir}$  ! First **direct** measurements of  $A^{bl}_{dir} A^{cl}_{dir} A^{bc}_{dir}$  !

## D0 and LHCb

D0: Inclusive single-muon and dimuon CP Asymmetries

A<sup>bl</sup><sub>dir</sub>~(0.3±0.1)% A<sup>cl</sup><sub>dir</sub>~(0.9±0.3)% 0.02 ð 0.01  $A^{c}_{
m dir}$ 0.00 -0.01-0.02-0.0050.000 0.005 0.010 -0.010 $A^b_{\rm dir}$ 

PRD 87, 074036 (2013)

 $A^{b}_{mix}$ =(-0.496±0.168)%

 $a = \frac{(N^+ - N^-)}{(N^+ + N^-)}$ 

PRD 89, (2014) 012002





 $A = \frac{(N^{++} - N^{--})}{(N^{++} + N^{--})}$ 

## Conclusions and prospects



- First top mass analysis using novel method not relying on jet measurements, first and most precise published single analysis from ATLAS at 13 TeV
- Fragmentation simulation quite challenging
- Soft Muon Tagging can be used for other novel measurements:
  - CP violation in b-quark sector using tt events:
    - first measurement at 8 TeV: stat limited, but makes first direct CP violation measurements
    - Updating for 13 TeV:
      - syst. limited
      - will be able to confirm/refute Do measurement for direct CP violation
      - Enough data to do time dependent measurement of asymmetry (vs muon production vertex)

# Backups



\_\_\_\_\_

#### Potential asymmetric worries...

#### ROYAL HOLLOWAY UNIVERSITY

#### Theoretical asymmetries:

- tt has a charge asymmetry coming from NLO interference effects at 1% level
  - Leads to different initial number of b vs <u>b</u>
- Experimental asymmetries:
  - MV1 tagging asymmetries: does it tag in the same rate b vs b?
  - Lepton reconstruction and identification: do we get more l+ vs l-?
  - SMT efficiency and fake rate:
    - Eg K+p vs K-p cross section is different!

#### Solutions:

- SMT efficiency and fake rates are calibrated as a function of charge in the data
- For all the others: we have a ratio of ratio!



$$A^{\text{os}} = \frac{\begin{pmatrix} N^{+-} & N^{-+} \\ N^{+-} & N^{-+} \\ \hline \begin{pmatrix} N^{+-} & N^{-+} \\ N^{+-} & N^{--} \end{pmatrix}}{\begin{pmatrix} N^{++} & N^{-+} \\ N^{+-} & N^{--} \end{pmatrix}} \qquad A^{\text{ss}} = \frac{\begin{pmatrix} N^{++} & N^{--} \\ N^{++} & N^{--} \\ \hline \begin{pmatrix} N^{++} & N^{--} \\ N^{++} & N^{--} \end{pmatrix}}{\begin{pmatrix} N^{++} & N^{-+} \\ N^{+-} & N^{--} \end{pmatrix}}$$

 $N^+ \equiv N^{++} + N^{+-}$   $N^- \equiv N^{-+} + N^{--}$ 

## Control plots







Entries 5000 5000

15000

10000

5000

1.2

0.8

45000

40000

35000

30000

25000

20000

15000

10000

5000

Data/MC

Entries

Data/MC

ROYAL HOLLOWAY UNIVERSITY

## Control plots







#### W+jets



- Determine charge asymmetry and flavor fractions from data
- Use 2 jet exclusive bin and extrapolate to 4 jet inclusive
- Solve the following matrix via iteration:

 $\begin{bmatrix} CA \cdot \left(N_{MC,W^{-}}^{bb} + N_{MC,W^{-}}^{cc}\right) & CA \cdot N_{MC,W^{-}}^{c} & CA \cdot N_{MC,W^{-}}^{lf} \\ (f_{bb} + f_{cc}) & f_{c} & f_{LF} \\ CA \cdot \left(N_{MC,W^{+}}^{bb} + N_{MC,W^{+}}^{cc}\right) & CA \cdot N_{MC,W^{+}}^{c} & CA \cdot N_{MC,W^{+}}^{lf} \end{bmatrix} \cdot \begin{bmatrix} K_{bb,cc} \\ K_{c} \\ K_{LF} \end{bmatrix} = \begin{bmatrix} D_{W^{-}} \\ 1.0 \\ D_{W^{+}} \end{bmatrix}$ 

- $CA = charge asymmetry, K_i = scaling factors$
- $f_i$  = flavor fractions,  $D_{W^{\pm}}$  = Tagged Data Bkg

• Fix scaling 
$$K_{bb} = K_{cc} = K_{bb,cc}$$

•  $\Rightarrow$  3 equations and 3 unknowns

Iterate until stable ( $\sim$  10 times)

- 1 Start with  $K_{bb,cc} = K_c = K_{LF} = 1.0$
- **2** Apply scaling factors  $K_i$  to MC pretag yields
- 8 Re-calculate charge asymmetry normalization
- **4** Build matrix above, invert, extract scaling factors  $K_i$
- **3** If  $K_i$  are stable, end iterations. If not, go back to step 2

# Decay chain fractions



|                                | $r_b$      | $r_c$      | $r_{c\overline{c}}$ | $\widetilde{r}_b$ | $\widetilde{r}_c$ | $\widetilde{r}_{c\overline{c}}$ |
|--------------------------------|------------|------------|---------------------|-------------------|-------------------|---------------------------------|
| Nominal                        | 0.200      | 0.715      | 0.085               | 0.882             | 0.069             | 0.048                           |
| Relative uncertainty in %      |            |            |                     |                   |                   |                                 |
| Hadron-to-muon branching ratio | +3.8 -3.2  | +2.9 -2.3  | +23 -30             | +1.6 -1.3         | +3.3 -3.3         | +25 - 31                        |
| <i>b</i> -hadron production    | +1.8 - 1.8 | +0.5 - 0.5 | +0.3 -0.3           | +0.2 - 0.2        | +1.9 -1.9         | +0.2 - 0.2                      |
| Additional radiation           | ±2.4       | ±0.6       | ±0.4                | ±0.1              | ±0.9              | ±1.1                            |
| MC generator                   | ±0.2       | ±0.1       | ±0.1                | ±0.1              | ±0.5              | ±0.7                            |
| Parton shower                  | ±6.8       | ±2.2       | ±2.6                | ±0.6              | ±12               | ±6.1                            |
| Parton distribution function   | ±0.1       | ±0.1       | ±0.9                | ±0.0              | ±0.3              | ±0.2                            |
| Total uncertainty              | +8.4 - 8.1 | +3.7 -3.3  | +23 -30             | +1.7 -1.4         | +13 -13           | +25 - 31                        |

# CP asymmetries



|                                      | $A_{\rm mix}^{b}(10^{-2})$ |        | $A_{\mathrm{dir}}^{b\ell}(10^{-2})$ |        | $A_{\rm dir}^{c\ell}(10^{-2})$ |        | $A_{\rm dir}^{bc}(10^{-2})$ |        |
|--------------------------------------|----------------------------|--------|-------------------------------------|--------|--------------------------------|--------|-----------------------------|--------|
| Measured value                       | -1                         | 2.5    | 0.5                                 |        | 0.9                            |        | -1.0                        |        |
| Statistical uncertainty              | ±                          | 2.1    | ±                                   | 0.4    | ±                              | 0.7    | ± 0.8                       |        |
| Sources of experimental uncertainty  |                            |        |                                     |        |                                |        |                             |        |
| Lepton charge misidentification      | +0.008                     | -0.007 | +0.001                              | -0.002 | +0.002                         | -0.003 | +0.003                      | -0.003 |
| Lepton energy resolution             | +0.33                      | -0.39  | +0.07                               | -0.06  | +0.14                          | -0.12  | +0.13                       | -0.15  |
| Lepton trigger, reco, identification | +0.016                     | -0.015 | +0.003                              | -0.003 | +0.005                         | -0.006 | +0.006                      | -0.006 |
| Jet energy scale                     | +0.4                       | -0.5   | +0.09                               | -0.07  | +0.17                          | -0.13  | +0.15                       | -0.19  |
| Jet energy resolution                | +0.07                      | -0.07  | +0.011                              | -0.011 | +0.024                         | -0.024 | +0.027                      | -0.027 |
| Jet reco efficiency                  | +0.034                     | -0.034 | +0.006                              | -0.006 | +0.012                         | -0.012 | +0.014                      | -0.014 |
| Jet vertex fraction                  | +0.33                      | -0.33  | +0.06                               | -0.06  | +0.12                          | -0.12  | +0.13                       | -0.13  |
| Fake lepton estimate                 | +0.18                      | -0.19  | +0.029                              | -0.029 | +0.07                          | -0.07  | +0.07                       | -0.08  |
| Background normalisation             | +0.008                     | -0.009 | +0.001                              | -0.001 | +0.003                         | -0.003 | +0.003                      | -0.003 |
| W+jets estimate (statistical)        | +0.009                     | -0.008 | +0.002                              | -0.002 | +0.003                         | -0.003 | +0.004                      | -0.003 |
| Single-top production asymmetry      | +0.06                      | -0.01  | +0.002                              | -0.011 | +0.002                         | -0.020 | +0.022                      | -0.003 |
| b-tagging efficiency                 | +0.028                     | -0.028 | +0.005                              | -0.005 | +0.010                         | -0.010 | +0.011                      | -0.011 |
| c-jet mistag rate                    | +0.07                      | -0.07  | +0.015                              | -0.015 | +0.025                         | -0.026 | +0.029                      | -0.027 |
| Light-jet mistag rate                | +0.08                      | -0.08  | +0.014                              | -0.014 | +0.028                         | -0.028 | +0.031                      | -0.032 |
| SMT reco identification              | +0.013                     | -0.012 | +0.004                              | -0.004 | +0.004                         | -0.005 | +0.005                      | -0.005 |
| SMT momentum imbalance               | +0.21                      | -0.22  | +0.04                               | -0.04  | +0.08                          | -0.08  | +0.09                       | -0.09  |
| SMT light-jet mistag rate            | +0.035                     | -0.031 | +0.005                              | -0.006 | +0.011                         | -0.012 | +0.014                      | -0.012 |
| Sources of modelling uncertainty     |                            |        |                                     |        |                                |        |                             |        |
| Hadron-to-muon branching ratio       | +0.25                      | -0.36  | +0.023                              | -0.020 | +0.06                          | -0.05  | +0.04                       | -0.04  |
| b-hadron production fractions        | +0.031                     | -0.021 | +0.004                              | -0.010 | +0.013                         | -0.020 | +0.022                      | -0.015 |
| Additional radiation                 | ±                          | 1.4    | ±0                                  | .26    | ±(                             | ).6    | ±(                          | 0.6    |
| MC generator                         | ±(                         | 0.17   | ±0                                  | .029   | ±(                             | ).07   | ±(                          | 0.08   |
| Parton shower                        | ±(                         | 0.08   | ±0                                  | .021   | ±(                             | ).06   | ±(                          | 0.07   |
| Parton distribution function         | ±(                         | 0.8    | ±0                                  | .15    | ±0.29                          |        | ±0.32                       |        |
| Total experimental uncertainty       | +0.7                       | -0.8   | +0.14                               | -0.12  | +0.27                          | -0.24  | +0.27                       | -0.31  |
| Total modelling uncertainty          | +1.6                       | -1.7   | +0.30                               | -0.30  | +0.6                           | -0.6   | +0.7                        | -0.7   |
| Total systematic uncertainty         | +1.8                       | -1.8   | +0.34                               | -0.33  | +0.7                           | -0.6   | +0.7                        | -0.7   |

## Detector effects



#### ATLAS is made of matter

- Kaons (and other hadrons) have different interaction lengths than their antiparticles
- When considering nuclear interactions, the  $K^-$  has more hyperon (strange-quark) final states than  $K^+$
- *K*<sup>+</sup> is therefore more likely to produce a muon final state, or to *punch-through* and fake a muon
  - Leads to unequal numbers of fake  $\mu^+$  and  $\mu^-$

 $K^- + n \rightarrow \Lambda^0 + \pi^ K^- + p \rightarrow \Sigma^+ + \pi^-$ 

#### Production rates



- Production fractions of  $B^0$ ,  $B^+$ ,  $B_s^0$  and *b*-baryons in MC differs from PDG
- Latest production fractions and uncertainties driven by CDF & LHCb data

#### PDG production fractions and uncertainties

| Hadron         | PDG (%)           | B <sup>±,0</sup> ↑ | B±,0 ↓ | B <sub>s</sub> <sup>0</sup> ↑ | $B_s^0 \downarrow$ | b-baryon ↑ | b-baryon ↓ |
|----------------|-------------------|--------------------|--------|-------------------------------|--------------------|------------|------------|
| B <sup>0</sup> | $0.402 \pm 0.007$ | 0.409              | 0.395  | 0.401                         | 0.403              | 0.395      | 0.409      |
| B <sup>+</sup> | $0.402 \pm 0.007$ | 0.409              | 0.395  | 0.401                         | 0.403              | 0.395      | 0.409      |
| Bs             | $0.104 \pm 0.006$ | 0.103              | 0.105  | 0.110                         | 0.098              | 0.102      | 0.106      |
| b-baryon       | $0.092 \pm 0.015$ | 0.078              | 0.106  | 0.088                         | 0.096              | 0.107      | 0.077      |

#### PowhegPythia (110404) production fractions and SF

| Hadron         | MC    | Nominal<br>SF | B <sup>±,0</sup> ↑<br>SF | B <sup>±,0</sup> ↓<br>SF | B <sup>0</sup> s↑<br>SF | B <sup>0</sup> s↓<br>SF | <i>b</i> -baryon ↑<br>SF | <i>b</i> -baryon ↓<br>SF |
|----------------|-------|---------------|--------------------------|--------------------------|-------------------------|-------------------------|--------------------------|--------------------------|
| B <sup>0</sup> | 0.422 | 0.954         | 0.971                    | 0.936                    | 0.951                   | 0.956                   | 0.938                    | 0.969                    |
| B <sup>+</sup> | 0.422 | 0.953         | 0.971                    | 0.936                    | 0.951                   | 0.956                   | 0.938                    | 0.969                    |
| B              | 0.082 | 1.273         | 1.265                    | 1.280                    | 1.346                   | 1.200                   | 1.252                    | 1.294                    |
| b-baryon       | 0.075 | 1.231         | 1.046                    | 1.416                    | 1.175                   | 1.287                   | 1.431                    | 1.031                    |

#### branching ratio



- The  $b \rightarrow \mu$  branching ratios in MC differ from those in MC
- Need to correct for this otherwise we will get the SMT rate wrong
- Even if we used EvtGen, we still need this procedure for the uncertainties it's just that the nominal SF would be 1
- Uncertainties taken from Particle Data Group (PDG) and largely driven by LEP data

| Hadron                                                                                                                                                              | PDG                                                                                                                                                                | Py                                        | THIA                                                                                                                                                         | HERWIG                                    |                                                                                                                                                              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                     |                                                                                                                                                                    | MC Observed                               | SF                                                                                                                                                           | MC Observed                               | SF                                                                                                                                                           |  |
| $b \rightarrow \mu$<br>$b \rightarrow \tau \rightarrow \mu$<br>$b \rightarrow c \rightarrow \mu$<br>$b \rightarrow c\bar{c} \rightarrow \mu$<br>$c \rightarrow \mu$ | $\begin{array}{c} 0.1095 \substack{+0.0029 \\ -0.0025 \\ 0.004 \pm 0.0004 \\ 0.0802 \pm 0.0019 \\ 0.016 \substack{+0.004 \\ -0.005 \\ 0.082 \pm 0.005 \end{array}$ | 0.102<br>0.007<br>0.078<br>0.029<br>0.100 | $\begin{array}{r} 1.078 \substack{+0.029 \\ -0.025 \\ 0.573 \pm 0.055 \\ 1.023 \pm 0.024 \\ 0.546 \substack{+0.136 \\ -0.170 \\ 0.823 \pm 0.050 \end{array}$ | 0.086<br>0.007<br>0.023<br>0.008<br>0.083 | $\begin{array}{r} 1.266 \substack{+0.034 \\ -0.029 \\ 0.523 \pm 0.055 \\ 3.417 \pm 0.081 \\ 1.971 \substack{+0.493 \\ -0.616 \\ 0.982 \pm 0.060 \end{array}$ |  |

#### Single-top



- Single top production is charge asymmetric
- Vary relative cross section of t and  $\overline{t}$  according to theoretical uncertainties
- Do this for t-channel and s-channel
- Wt is of course charge symmetric

#### t-channel production asymmetry SF

| Systematic | Total Cross Section | Top XS | AntiTop XS | Top % | AntiTop % | Top SF | AntiTop SF |
|------------|---------------------|--------|------------|-------|-----------|--------|------------|
| Nominal    | 87.76               | 57.66  | 30.10      | 65.7  | 34.3      | 1.0    | 1.0        |
| Top ↑      | 91.20               | 61.10  | 30.10      | 67.0  | 33.0      | 1.020  | 0.962      |
| Top ↓      | 85.85               | 55.75  | 30.10      | 64.9  | 35.1      | 0.988  | 1.022      |
| AntiTop ↑  | 91.20               | 57.66  | 33.54      | 63.2  | 36.8      | 0.962  | 1.072      |
| AntiTop ↓  | 85.85               | 57.66  | 28.19      | 67.2  | 32.8      | 1.022  | 0.957      |

#### s-channel production asymmetry SF

| Systematic | Total Cross Section | Top XS | AntiTop XS | Top % | AntiTop % | Top SF | AntiTop SF |
|------------|---------------------|--------|------------|-------|-----------|--------|------------|
| Nominal    | 5.61                | 3.64   | 1.97       | 64.8  | 35.2      | 1.0    | 1.0        |
| Top ↑      | 5.83                | 3.86   | 1.97       | 66.1  | 33.9      | 1.021  | 0.962      |
| Top ↓      | 5.39                | 3.42   | 1.97       | 63.4  | 36.6      | 0.978  | 1.041      |
| AntiTop ↑  | 5.83                | 3.64   | 2.19       | 62.4  | 37.6      | 0.962  | 1.070      |
| AntiTop ↓  | 5.39                | 3.64   | 1.75       | 67.4  | 32.6      | 1.041  | 0.925      |

## Tt background

64



