From hadronic structure to heavy-ion collisions, June 9-15 2024, IJCLab, Orsay, France

Monte Carlo tools

Klaus Werner

SUBATECH, University of Nantes - IN2P3/CNRS - IMT Atlantique, Nantes, France
https://klaus.pages.in2p3.fr/epos4/physics/lectures -> Monte Carlo tools

Contents

1 Introduction 5
1.1 What means "Monte Carlo Method" 6
1.2 Monte Carlo and Factorization 11
1.3 Monte Carlo Methods and the Ising Model 17
1.4 Ising Model and Markov chains 21
1.5 Parallel and sequential scattering in AA 24
1.6 Parallel scattering and factorization in pp 30
1.7 Some history (parallel scattering, factorization) 35
1.8 Poles and branch cuts 41
1.9 Cut diagrams 48
2 Parallel scattering in the GR approach 59
2.1 GR approach 60
2.2 Shadowing 61
2.3 AGK cancellations (crucial!) 64
2.4 Consistency checks 72
2.5 Nucleus-nucleus (A+B) scattering 74
3 EPOS4 primary interactions 77
3.1 EPOS4 general structure 79
3.2 EPOS4 S-matrix approach 80
3.3 The effect of energy sharing in EPOS4 98
3.4 The solution: Dynamical saturation scales in EPOS4104
3.5 Angantyr (basic) 117
4 EPOS4 secondary interactions 122
4.1 Role of core, corona, remnants 126
4.2 Microcanonical hadronization of plasma droplets 139
4.3 Core/corona contributions to hadrons production153
4.4 Core + corona results - multiplicity dependencies 156
5 Complements 163
5.1 Configurations via Markov chains 164

1 Introduction

1.1 What means "Monte Carlo Method"

Not simply a black box producing "events" of particles
based on some complex computer code with many if statements ...

Monte Carlo Method means
\square a tool to solve well defined mathematical problems
\square based on probability theory
(random variables and random numbers)
\square based on equations

Example: Compute $I=\int_{0}^{1} f(x) d x$, which may be written as

$$
I=\int_{-\infty}^{\infty} w(x) f(x) d x, \text { with } w(x)=\left\{\begin{array}{cc}
1 & \text { for } x \in[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

We may interprete w as probability distribution and I as expectation value (or mean value), so

$$
I=\langle f\rangle=\underbrace{\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)}_{\text {MCestimate }}+O\left(\frac{1}{\sqrt{N}}\right)
$$

with uniform (in $[0,1]$) random numbers x_{i}

An error of order $1 / \sqrt{N}$ is huge, nobody computes an 1Dintegral like that, BUT for computing high-dimensional integrals, the formula

$$
\begin{aligned}
I & =\int w\left(x_{1}, \ldots, x_{n}\right) f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} \\
& =\underbrace{\frac{1}{N} \sum_{i=1}^{N} f\left(x_{1}^{(i)}, \ldots, x_{n}^{(i)}\right)}+O\left(\frac{1}{\sqrt{N}}\right)
\end{aligned}
$$

is very useful.
Attention: generating $x_{1}^{(i)}, \ldots, x_{n}^{(i)}$ randomly arcording to some law $\mathrm{w}\left(x_{1}, \ldots, x_{n}\right)$ is not trivial.

Monte Carlo Method (as discussed in this talk) means

\square a tool to compute integrals $\int w(X) f(X) d X$ of a multidimensional variable X
\square as mean value $\langle f(X)\rangle$ with X distributed according to w (with w being a multi-dimensional distribution)

Generating random numbers: https://klaus.pages.in2p3.fr/epos4/physics/lectures -> Monte Carlo Simulation

1.2 Monte Carlo and Factorization

The most popular approach to treat HE pp, is based on "factorization", where the di-jet cross section is given as

$$
\begin{gathered}
\sigma_{\mathrm{dijet}}=\int \frac{d^{3} p_{3} d^{3} p_{4}}{E_{3} E_{4}} \sum_{k l m n} \int d x_{1} d x_{2} f_{\mathrm{PDF}}^{k}\left(x_{1}, \mu_{\mathrm{F}}^{2}\right) f_{\mathrm{PDF}}^{l}\left(x_{2}, \mu_{\mathrm{F}}^{2}\right) \\
\times \frac{1}{32 s \pi^{2}} \sum^{-}\left|\mathcal{M}^{k l \rightarrow m n}\right|^{2} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \\
\times 1 /\left(1+\delta_{m n}\right)
\end{gathered}
$$

Integrals can be done ${ }^{(1)}$ (4δ functions). But usually we need more details.
(1) arXiv:2306.02396, PRC 108, 034904 (also on https://klaus.pages.in2p3.fr/epos4/physics/papers)

Changing variables, integrating out five, dividing by $\sigma_{\text {dijet }}$:

$$
\begin{array}{r}
1=\int d x_{1} d x_{2} d t \underbrace{\frac{1}{\sigma_{\text {dijet }}} \sum_{k l m n} \int d x_{1} d x_{2} f_{\mathrm{PDF}}^{k}\left(x_{1}, \mu_{\mathrm{F}}^{2}\right) f_{\mathrm{PDF}}^{l}\left(x_{2}, \mu_{\mathrm{F}}^{2}\right)}_{w\left(x_{1}, x_{2}, t\right)} \\
\begin{array}{c}
\frac{\pi \alpha_{s}^{2}}{s^{2}}\left\{\left.\frac{1}{g^{4}} \sum^{-} \right\rvert\, \mathcal{M}^{k l \rightarrow m i l i t y}\right)
\end{array}
\end{array}
$$

How to get the cross section σ_{y} for particle production in the rapidity interval $I_{y}=[y-\Delta y / 2, y+\Delta y / 2] ?$

First: $\sigma_{y}=\sigma_{\text {dijet }} \times \bar{f}_{y} ; \quad \bar{f}_{y}=$ fraction of jets with $y_{\text {jet }} \in I_{y}$

$$
\bar{f}_{y}=\int d x_{1} d x_{2} d t w\left(x_{1}, x_{2}, t\right) \underbrace{\int_{I_{y}} d y^{\prime} \delta\left(y_{\mathrm{jet}}-y^{\prime}\right)}_{f_{y}\left(x_{1}, x_{2}, t\right)}
$$

Two ways to handle that:
\square work out $y_{\text {jet }}\left(x_{1}, x_{2}, t\right)$ and do the integral ${ }^{(1)}$
\square Monte Carlo method, based on

$$
\bar{f}_{y}=\left\langle f_{y}\right\rangle_{\mathrm{law} w}
$$

(1) arXiv:2306.02396, PRC 108, 034904 (also on https://klaus.pages.in2p3.fr/epos4/physics/papers)

Monte Carlo method
(A) Generate N triplets $x_{1}^{(i)}, x_{2}^{(i)}, t^{(i)}$ (events) according to the law $w\left(x_{1}, x_{2}, t\right)$
not trivial, but doable - done by the MC authors
(B) Compute the average

$$
\left\langle f_{y}\right\rangle_{\text {law } w}=\frac{1}{N} \sum_{i=1}^{n} f_{y}\left(x_{1}^{(i)}, x_{2}^{(i)}, t^{(i)}\right)
$$

with $\quad f_{y}\left(x_{1}, x_{2}, t\right)=\left\{\begin{array}{ll}1 & \text { if } y_{j e t} \in I_{y} \\ 0 & \text { otherwise }\end{array}\right\}$
trivial - done by the MC users

We see again: Monte Carlo Method means

\square a tool to solve well defined mathematical problems (compute integrals)
\square in the same way as classical numerical methods (Gaussian quadrature)

One uses even very similar techniques in both cases, the same variable changes to get a "well-behaved" function w, to apply
\square the rejection method in case of MC
\square Gaussian quadrature (with $n<20$) in the case of numerical integration

Events

An event in the MC procedure is the set of generated random numbers
like $x_{1}^{(i)}, x_{2}^{(i)}, t^{(i)}$ in our example
On may associate a picture

But here the MC event (and the picture) do not correpond to a real physics event

The known "QCD event generators" (Pythia, Herwig,...) generate the "hard processes" in this way - not EPOS

1.3 Monte Carlo Methods and the Ising Model

In general, we do not have to deal with triplets, but with n-tuples for large n.

Generating n-tuples distributed according to some given law $w\left(x_{1}, \ldots, x_{n}\right)$ is usually very complicated for large n
\square a problem well known in statistical physics since a long time
\square with intelligent solutions

Extremely useful: The Ising model of ferromagnetism

Box of $N \times N \times N$ atoms each one carrying a spin with possible values +1 and -1 (spin up, spin down)

\square Anyhow useful to know, one deals with phase trasitions very similar to the QGP phase transition
\square The MC methods used there are precisely what we need for heavy ion simulations
\square Good example of a multi-dimensional variable X, being here the N^{3} spin values, let us call it a "state"

The interesting quantity here is the average magnetization $\langle M\rangle$:

$$
\langle M\rangle=\sum w(X) M(X)
$$

with

$$
w(X)=\frac{1}{Z} e^{-\beta E(X)}
$$

with

$$
E=-\alpha \sum_{\text {neighbors } k, k^{\prime}} s_{k} s_{k^{\prime}}
$$

Journal of Computational Physics, 237, (2013) 224

Why difficult?

For N^{3} atoms, the number K of possible states is $2\left({ }^{3}\right)$ $N=100: K \approx 10^{300000}$

Solution: Monte-Carlo method :

$$
\langle M\rangle=\sum_{i=1}^{K} w\left(X_{i}\right) M\left(X_{i}\right) \quad \rightarrow \quad \frac{1}{J} \sum_{j=1}^{J} M\left(X_{j}\right)
$$

with "reasonable" J, and X_{j} distributed according to $w(X)$
... provided we know how to generate X according to $w(X)$

1.4 Ising Model and Markov chains

The problem is: generate a "state" X according to

$$
w(X)=\frac{1}{Z} e^{-\beta E(X)}
$$

corresponding to "themal equilibrium"

Simple "direct methods" (rejection sampling) do not work.

Idea: Let's copy nature which always finds eventually the "equilibrium distribution"
One considers a stochastic iterative process (Markov chain)

$$
w_{1} \rightarrow w_{2} \rightarrow \ldots
$$

A. Markov

with appropriate transitions $w_{t} \rightarrow w_{t+1}$ (Metropolis) such that w_{t} converges to $w_{\infty}=\frac{1}{Z} e^{-\beta E(X)}$ (it works, thanks to "fixed point theorems")

Why useful for us?

\square Markov chain + Metropolis is extremely powerful, it works for ANY distribution and not just Boltzmann distributions
\square It allows to treat "parallel interactions" in high energy scattering
\square We use it also for microcanonical QGP decay (needed for small systems)

Crucial for the whole dicussion in this lecture: parallel scattering

1.5 Parallel and sequential scattering in AA

What kind of model do we need depending on the collision energy
Crucial time scales
$\tau_{\text {collision }}$ is the duration of the AA collision
$\tau_{\text {interaction }}$ is the time between two NN interactions
$\tau_{\text {form }}$ is the hadron formation time after the interaction of two nucleons

At "low" energy

Sequential

 collisions (cascade)Condition:
$\boldsymbol{\tau}_{\text {form }}<\boldsymbol{\tau}_{\text {interaction }}$
$\tau_{\text {form }}$ is the particle formation time
$\tau_{\text {interaction }}$ is the time between two NN

A+A collision at low energy red lines: produced hadrons

At "high" energy
First all NN interactions occur, instantaneously, in parallel
Hadron production comes later

Condition:

$$
\tau_{\text {form }}>\boldsymbol{\tau}_{\text {collision }}
$$

$\tau_{\text {collision }}$ is the duration of the AA collision

A+A collision at very high energy
Collision zone pointlike

Low energy and high energy nuclear scattering are very different, and different theoretical methods are needed
\square At high energies, one can completely separate

- primary interactions (at $t \approx 0$)
- and secondary interactions (hydro evolution etc)
\square High energy approach = parallel primary interactions

> What means "high/low energy" ?
> Define (E in the sense of $\sqrt{s_{N N}}$:
> \square High energy thresholds E_{HE} by $\tau_{\text {form }}=\tau_{\text {collision }}$
> \square Low energy thresholds E_{LE} by $\tau_{\text {form }}=\tau_{\text {interaction }}$

Numerical estimates of thresholds

$\tau_{\text {form }}=\tau_{\text {form }}^{0} \gamma_{\text {hadr }}$, with $\tau_{\text {form }}^{0}=1 \mathrm{fm} / \mathrm{c}$, and $\gamma_{\text {hadr }}=1$ (\rightarrow upper limits for energy thresholds)

High energy threshold $\left(\tau_{\text {form }}=\tau_{\text {collision }}=\frac{2 R}{\gamma v}\right)$
Using $R=6.5 \mathrm{fm}$:

$$
E_{\mathrm{HE}}=24 \mathrm{GeV} \quad\left(\sqrt{s_{N N}}\right)
$$

Low energy threshold ($\tau_{\text {form }}=\tau_{\text {interaction }}=\frac{2 R / n}{\gamma v}$) Using $R=6.5 \mathrm{fm}, n=7$ ($n=\mathrm{nr}$ of nucleons in a row) :

$$
E_{\mathrm{LE}}=4 \mathrm{GeV}
$$

The intermediate range $4<\sqrt{s_{N N}}<24 \mathrm{GeV}$: hybrid

Which approach at what energy?

green lines:
Threshholds
$E_{\text {LE }}$ and $E_{\text {HE }}$
for $A=200$:
$E_{\mathrm{LE}}=4 \mathrm{GeV}$
$E_{\mathrm{HE}}=24 \mathrm{GeV}$

Parallel: EPOS4 = GR+ \& pQCD \& saturation

1.6 Parallel scattering and factorization in pp

At LHC energy: Interaction: successive parton emissions

Large gamma factors, very long lived ptls

The complete process takes a very long time

If a single collision takes several hundreds of fm / c :
\square Impossible to have several of these interactions in a row

So also in pp:
\square High energy approach = parallel interactions (as done in EPOS)

And we know that multiple scattering is important!

So double scattering in pp should look like this:

Here two parallel scatterings

No contradictions with respect to timescales

So it seems mandatory to use a parallel scattering scheme, for pp and AA, known since a long time ... but somewhat forgotten nowadays - why ?

Left: PDFs (f), makes only sense for a single diagram
Both pictures are correct! But depends on the purpose!
\square Left: MC event, to be used for inclusive cross sections
\square Right: Real event, needed for "beyond inclusive"

We need to understand the relation between
\square the factorization picture (single diagram, PDFs)
\square the parallel scattering picture

1.7 Some history (parallel scattering, factorization)

Before QCD

\square Gribov-Regge (GR) approach, for $\mathrm{pp}, \mathrm{pA}, \mathrm{AA}$
V. A. Abramovsky, V. N. Gribov, O. V. Kancheli, L. N. Lipatov (1967-1973)
\square S-matrix theory, parallel scattering scheme
\square Exchanged "objects" are called Pomerons
\square AGK theorem ($\sigma_{\text {incl }}^{A B}=A B \times \sigma_{\text {incl }}^{\text {single Pom }}$)
\square Infinite energy limit
(problematic...)

Perturbative QCD for pp

Asymptotic freedomD. Gross, F. Wilczek,H. Politzer (1973)
\square DGLAP (linear) evolution
V. N. Gribov, L. N. Lipatov (1973)
G. Altarelli, G. Parisi (1977), Y. L. Dokshitzer (1977)
\square Factorization J. Collins, D. Soper, G. Sterman (1989)
\square Covers only a small fraction of observables (inclusive, hard) NOT covered: Triggering on high multiplicity or on centrality classes (in connection with soft or hard probes)

Saturation (CGC, small-x physics,...)
\square Nonlinear evolution
L. V. Gribov, E. M. Levin, and M. G. Ryskin (1984)
L. D. McLerran and R. Venugopalan (1994), Y. V. Kovchegov (1996), ...

An attempt to couple GR and pQCD

\square NEXUS model, earlier EPOS versions H.J. Drescher, M. Hladik, Sergey Ostapchenko, Tanguy Pierog, K. Werner (2001)
\square Using: Pomeron = pQCD parton ladder
\square With energy sharing! $\left(\mathrm{GR}^{+}\right)$... crucial for MC applications Keeping parallel scattering scheme!!!
\square Problem: violates AGK (and binary scaling and factorization)

Solution: EPOS4 $=\mathrm{GR}^{+} \& \mathrm{pQCD} \&$ saturation

\square Redefine connection Pomeron <-> pQCD parton ladder by taking into account saturation in a very particular way
\square Fully recovers AGK (and geometric properties which follow) Parallel scattering scheme, going beyond factorization, perfectly covering "observables per event class", soft physics
but at the same time
factorization works for inclusive xsections for hard processes

(B) Parallel scattering (considering real events)

EPOS4: fully selfconsistent picture (B) to be used for "event class issues", which breaks down to (A) for inclusive hard particle production, due to lots of cancellations

Problematic to get from (A) to (B), the multiple scattering information is lost! (A) to (B) usually based on the eikonal model (from 1958)

Crucial to distinguish between "inclusive" and "beyond inclusive"

The di-jet cross section is an inclusive cross section, i.e. one counts di-jets, not di-jet events, so a 2-di-jet event counts twice

Summing N-di-jet events, we have

$$
\sigma_{\mathrm{dijet}}=\sum_{N} N \sigma_{\mathrm{dijet}}^{(N)}
$$

whereas the total cross section (forgetting soft for the moment)

$$
\sigma_{\mathrm{tot}}=\sum_{N} \sigma_{\mathrm{dijet}}^{(N)}
$$

For inclusive cross sections, enormous simplifications apply, but to understand this we have to first understand "parallel scattering" => Gribov-Regge (GR) approach

Gribov-Regge approach for $p p$ scattering, based on

\square S-matrix theory
\square cut diagrams, cutting rules
\square Regge poles (in the complex s-plane)
s = Mandelstam variable

In the following:
some very elementary facts about S-matrices, poles, and cuts

1.8 Poles and branch cuts

Even functions $f(x)$ of a real variable x may need to be continued into the complex plane, to understand their properties.

Example $\quad f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty}\left(\frac{x}{2 i}\right)^{n}$.
The radius of convergence is

$$
\rho=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{-1 / n}=2
$$

Which is obvious, since f considered as function of a complex variable z, writes

$$
f(z)=\frac{1}{1-z /(2 i)}
$$

having a pole at $z=2 i$,

whereas $f(x)$ has no singularity (for $x \in \mathbb{R}$)

We will see later: the asymptotic behavior of the T-matrix $\mathrm{T}(\mathrm{s}, \mathrm{t})$ is affected by poles in the complex s-plane.

Branch cuts

An example: The logarithm.

The exponential function defines a mapping M

$$
M: \begin{aligned}
& \mathbb{C} \rightarrow \mathbb{C} \\
& w \rightarrow z=\exp (w)
\end{aligned}
$$

which is well defined in the whole complex plane.

Consider $w=x+i y$, with x fixed and y going from $-\pi$ to π.
(Trajectory γ going from $w_{1}=x-i \pi$ to $\left.w_{2}=x+i \pi\right)$

The mapped trajectory $\gamma^{\prime}=M(\gamma)$ is given as

$$
z=\exp (w)=\exp (x) \exp (i y)
$$

$=>$ A circle with start and end point $z_{1}=z_{2}=-e^{x}$
$\mathrm{y}=\operatorname{Im} \mathrm{w}$

Doing the inverse mapping

$$
M^{-1}: z \rightarrow w=\log (z)
$$

we get for $z_{1}=z_{2}$ two different values w_{1} and $w_{2}!!$
One has to define \log in $C-\mathbb{R}_{\leq 0}$. The negative real axis is called branch cut.

The discontinuity at $z=-e^{x}$:

$$
\log (z+i \epsilon)-\log (z-i \epsilon)=2 \pi i
$$

1.9 Cut diagrams

The scattering operator \hat{S} is defined via

$$
|\psi(t=+\infty\rangle=\hat{S}| \psi(t=-\infty\rangle
$$

Unitarity relation $\hat{S}^{\dagger} \hat{S}=1$ gives (considering a discrete Hilbert space)

$$
\begin{aligned}
1 & =\langle i| \hat{S}^{\dagger} \hat{S}|i\rangle \\
& =\sum_{f}\langle i| \hat{S}^{\dagger}|f\rangle\langle f| \hat{S}|i\rangle \\
& =\sum_{f}\langle f| \hat{S}|i\rangle^{*}\langle f| \hat{S}|i\rangle
\end{aligned}
$$

Expressed in terms of the S-matrix:

$$
\begin{equation*}
1=\sum_{f} S_{f i}^{*} S_{f i} \tag{A}
\end{equation*}
$$

Using

$$
\begin{equation*}
S_{f i}=\delta_{f i}+i(2 \pi)^{4} \delta\left(p_{f}-p_{i}\right) T_{f i} \tag{B}
\end{equation*}
$$

one gets from (A):

$$
\begin{align*}
\frac{1}{i}\left(T_{i i}-T_{i i}^{*}\right) & =\sum_{f}(2 \pi)^{4} \delta\left(p_{f}-p_{i}\right)\left|T_{f i}\right|^{2} \tag{C}\\
& =2 s \sigma_{\text {tot }} \text { for } s \rightarrow \infty
\end{align*}
$$

Be ϕ le current of incoming particles hitting a target of area A containing
N particles. The transsition rate τ is

$$
\tau=\phi A \frac{\sigma N}{A}=\phi \sigma N
$$

The cross section is

$$
\sigma=\frac{\tau}{N \phi}=\frac{\tau}{V \phi \rho}=\frac{W}{T V \phi \rho} \equiv \frac{W}{T V w}
$$

The transition probability $W=\left|S_{f i}\right|^{2}$ is

$$
\left((2 \pi)^{4} \delta^{4}\left(p_{f}-p_{i}\right)\right)^{2}\left|T_{f i}\right|^{2}=T V(2 \pi)^{4} \delta^{4}\left(p_{f}-p_{i}\right)\left|T_{f i}\right|^{2}
$$

The cross section is then

$$
\sigma=\frac{1}{w}\left|T_{f i}\right|^{2}(2 \pi)^{4} \delta^{4}\left(p_{f}-p_{i}\right)
$$

with $w=2 E_{1} v_{1} 2 E_{2}$. We need a covariant form of $f=E_{1} v_{1} E_{2}$. In the lab frame, we have $f^{2}=\left|\vec{p}_{1}\right|^{2} m_{2}^{2}=\left(E_{1}^{2}-m_{1}^{2}\right) m_{2}^{2}$, which gives the invariant form $f=\sqrt{\left(p_{1} p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}}$. With $2 p_{1} p_{2}=s-m_{1}^{2}-m_{2}^{2}$, we get $2 f=\sqrt{\left(s-m_{1}^{2}-m_{2}^{2}\right)^{2}-4 m_{1}^{2} m_{2}^{2}}$, and thus

$$
w=4 f=2 \sqrt{\left(s-\left(m_{1}+m_{2}\right)^{2}\right)\left(s-\left(m_{1}-m_{2}\right)^{2}\right)} \rightarrow 2 s \text { for } s \rightarrow \infty
$$

Using

$$
\frac{1}{i}\left(T_{i i}-T_{i i}^{*}\right)=2 \operatorname{Im} T_{i i},
$$

we get the optical theorem

$$
2 \operatorname{Im} T_{i i}=\sum_{f}(2 \pi)^{4} \delta\left(p_{f}-p_{i}\right)\left|T_{f i}\right|^{2}=2 s \sigma_{\mathrm{tot}}
$$

Assume:
$\square T_{i i}$ is Lorentz invariant \rightarrow use s, t
$\square T_{i i}(s, t)$ is an analytic function ${ }^{(1)}$ of s, with s considered as a complex variable
(Hermitean analyticity)
$\square T_{i i}(s, t)$ is real on some part of the real axis

Using the Schwarz reflection principle, $T_{i i}(s, t)$ first defined for $\operatorname{Im} s \geq 0$ can be continued in a unique fashion via $T_{i i}\left(s^{*}, t\right)=T_{i i}(s, t)^{*}$.
(1) locally given by a convergent power series

Defining $\operatorname{disc} f(s)=f(s+i \epsilon)-f(s-i \epsilon)$:

$$
\frac{1}{i}\left(T_{i i}(s, t)-T_{i i}(s, t)^{*}\right)=\frac{1}{i}\left(T_{i i}(s, t)-T_{i i}\left(s^{*}, t\right)\right)
$$

i.e.:

$$
2 \operatorname{Im} T_{i i}=\frac{1}{\mathrm{i}} \operatorname{disc} T_{i i}
$$

In the following $T=T_{i i}$.

We have finally the following relation between elastic (T) and inelastic processes ($T_{f i}$) and $\sigma_{\text {tot }}$:

$$
\frac{1}{\mathrm{i}} \operatorname{disc} T=(2 \pi)^{4} \delta\left(p_{f}-p_{i}\right) \sum_{f}\left|T_{f i}\right|^{2}=2 s \sigma_{\mathrm{tot}}
$$

Interpretation: $\frac{1}{\mathrm{i}}$ disc T can be seen as a so-called "cut diagram", with modified Feynman rules, the "intermediate particles" are on mass shell.

Modified Feynman rules :
\square Draw a dashed line from top to bottom

\square Use "normal" Feynman rules to the left
\square Use the complex conjugate expressions to the right
\square For lines crossing the cut: Replace propagators by mass shell conditions $2 \pi \theta\left(p^{0}\right) \delta\left(p^{2}-m^{2}\right)$

Take a diagram representing elastic scattering,
uncut diagram:

Cutting it corresponds to inelastic scattering

> To treat inelastic scattering: simply take the elastic diagram and cut it

Cutting diagrams is extremely useful in case of substructures:

Precisely the multiple scattering structure in the GR approach and in EPOS4

Cut diagram
= sum of products of cut/uncut subdiagrams => Gribov-Regge approach of multiple scattering

2 Parallel scattering in the GR approach

Parallel multiple scattering in pp, pA, AA scattering
Without energy sharing ($s \rightarrow \infty$ limit)

Chapter 5, arXiv:2310.09380, PRC 109, 034918 (also on https:/ /klaus.pages.in2p3.fr/epos4/physics/papers)

2.1 GR approach

Based on the observation of multiple scattering at HE, and the necessity of parallel scatterings, one postulates a particular form of the (elastic scattering) T-matrix
being composed of multiple "Pomerons" as

$$
-i\left\{i T_{\text {Pom }} \times \ldots \times i T_{\text {Pom }}\right\}
$$

Microscopic structures are hidden in the "boxes" (Pomerons)

2.2 Shadowing

Let us consider GR picture (no energy sharing), using simple assumptions (in impact parameter representation ${ }^{(1)}$)

Consider multiple scattering amplitude $i T=\prod i T_{\mathrm{P}}$
cross section: sum over all cuts

${ }^{(1)} T=T(s, b)$ is the Fourier transformation of $T(s, t)$ with respect to the momentum transfer, divided by 2 s .
Optical theorem: $\sigma_{\text {tot }}=\int d^{2} b 2 \operatorname{Im} T=\int d^{2} b \tilde{\sigma}_{\text {tot }}$

For each cut Pom, assuming imaginary $T_{P}=\frac{i}{2} G \quad(G>0)$

$$
\frac{1}{i} \operatorname{disc} T_{\mathrm{P}}=2 \operatorname{Im} T_{\mathrm{P}}=G
$$

For each uncut one

$$
\begin{gathered}
i T_{\mathrm{P}}+\left\{i T_{\mathrm{P}}\right\}^{*} \\
=i \frac{i}{2} G+\left\{i \frac{i}{2} G\right\}^{*} \\
=-G
\end{gathered}
$$

Fundamental relation: cut Pom. = G => uncut Pom. = -G

Single cut Pomeron contributions

(upper two graphs)

$$
\begin{gathered}
G \times(-G)+(-G) \times G \\
=-2 G^{2}<0
\end{gathered}
$$

=> absortive contribution / shadowing / screening

2.3 AGK cancellations (crucial!)

Let us assume that each "box" represents di-jet production. Each cut Pomeron produces 1 di-jet.

Be n the number of Poms and k the number of cut Poms.
Inclusive cross section:

$$
\tilde{\sigma}_{\mathrm{incl}}=\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} k \times \tilde{\sigma}_{n k}
$$

Important: the factor k since we consider an inclusive cross section

Consider the contribution for $n=2$ (without $1 / \mathrm{n}!$):

$$
\begin{gathered}
0 \times \tilde{\sigma}_{20}+1 \times \tilde{\sigma}_{21}+2 \times \tilde{\sigma}_{22} \\
\propto 0 \times G^{2}+1 \times\left(-2 G^{2}\right)+2 \times G^{2}=0
\end{gathered}
$$

The absorbtive contribution $\tilde{\sigma}_{21}$ cancels exactly $\tilde{\sigma}_{22}$.

The double-Pomeron contribution

to the inclusive cross section is zero.

Consider the contribution for any $n>1$:

$$
\sum_{k=0}^{n} k \times \sigma_{n k}=\sum_{k=0}^{n} k \times G^{k}(-G)^{n-k}\binom{n}{k}=0
$$

The n-Pomeron contribution

to the inclusive cross section is zero for $n>1$.
Huge amount of cancellations!

Inelastic cross section: $\sum_{k=1}^{n} G^{k}(-G)^{n-k}\binom{n}{k} \neq 0$
\square Almost all of the diagrams (i.e. $n=2, n=3, \ldots$. $)$ do not contribute at all to the inclusive cross section
\square Enormous amount of cancellations (interference)
\square AGK cancellations
Abramovskii, Gribov and Kancheli (1973)
\square Only single-Pomron contribution ($\mathrm{n}=1$)
\square Generalization to pA and AA

Although reality looks like this

AA scattering withere several Pomeron exchanges (meaning of red dots ... later)
inclusive cross section calculation are based on a single Pomeron

which allows defing PDFs (and making life easier!)
Going beyond inclusive
=> FULL multiple Pomeron diagram

Models	Start with	then	comment
EPOS4	Multiple parallel scatterings	derive factorization	difficult
Pythia8 $^{(1)}$	Factorization	add multiple scattering	problematic

${ }^{(1)}$ essentially all "QCD Monte Carlo generators"

2.4 Consistency checks

The formalism accomodates elastic and inelastic scattering

$$
\begin{gathered}
\tilde{\sigma}_{\mathrm{tot}}=2 \operatorname{Im} T \\
\tilde{\sigma}_{\mathrm{el}}=|T|^{2}
\end{gathered}
$$

Using $T_{\mathrm{P}}=i G / 2$ with real G :

$$
i T=\sum_{n=1}^{\infty} \frac{1}{n!} \prod i T_{\mathrm{P}}=\sum_{n=1}^{\infty} \frac{1}{n!}\left(-\frac{G}{2}\right)^{n}=\exp \left(-\frac{G}{2}\right)-1
$$

and so

$$
\begin{gathered}
\tilde{\sigma}_{\text {tot }}=2\left\{1-\exp \left(-\frac{G}{2}\right)\right\} \\
\tilde{\sigma}_{\text {el }}=\left\{1-\exp \left(-\frac{G}{2}\right)\right\}^{2}, \quad \tilde{\sigma}_{\text {in }}=\{1-\exp (-G)\}
\end{gathered}
$$

Using cutting rules

$$
\tilde{\sigma}_{\text {in }}=\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{m=1}^{n}\binom{n}{m} G^{m}(-G)^{n-m}=\sum_{n=1}^{\infty} \frac{1}{n!}\left\{0-(-G)^{n}\right\}=1-\exp (-G) .
$$

For the total cross section, we have to subtract the case where all Pomerons are all to the left or right of the cut

$$
\tilde{\sigma}_{\text {tot }}=\sum_{n=1}^{\infty} \frac{1}{n!} \sum_{m=0}^{n}\binom{n}{m} G^{m}(-G)^{n-m}-2\left\{\exp \left(\frac{G}{2}\right)-1\right\}=2\left\{1-\exp \left(\frac{G}{2}\right)\right\} .
$$

All this "cutting"

\square not really needed to compute total, elastic, and inelastic cross sections
\square but it becomes crucial when we focus on "event classes" (multiplicity triggers)

2.5 Nucleus-nucleus (A+B) scattering

Define integration over b and transv. nucleon coordiates b_{i}^{A} and b_{j}^{B}

$$
\int d b_{A B}=\int d^{2} b \int \prod_{i=1}^{A} d^{2} b_{i}^{A} T_{A}\left(b_{i}^{A}\right) \int \prod_{j=1}^{B} d^{2} b_{j}^{B} T_{B}\left(b_{j}^{B}\right)
$$

with the nuclear thickness function

$$
T_{A}(b)=\int d z \rho_{A}\left(\sqrt{b^{2}+z^{2}}\right)
$$

where ρ_{A} is the (normalized) nuclear density for nucleus A. Then

$$
\sigma_{\mathrm{in}}^{A B}=\int d b_{A B} \tilde{\sigma}_{\mathrm{in}}^{A B}
$$

$\tilde{\sigma}_{\text {in }}^{A B}$ is a sum over all cut (dashed) and uncut (solid) Pomerons between all possible pairs of nucleons of nuclei A and B:

$$
\tilde{\sigma}_{\mathrm{in}}^{A B}=\sum_{m_{1} l_{1}} \cdots \sum_{m_{A B} l_{A B}} \prod_{k=1}^{A B} \frac{1}{\mathrm{~m}_{\mathrm{k}}!1_{\mathrm{k}}!}\left(G_{k}\right)^{m_{k}}\left(-G_{k}\right)^{l_{k}}
$$

$\sum \ldots \sum^{\prime}$ means at least one m_{k} being nonzero. We use $G_{k}=G\left(b_{k}\right)$ with $b_{k}=\left|b+b_{\pi(k)}^{A}-b_{\tau(k)}^{B}\right|$ referring to the impact par. of the NN pair k

Summing the uncut Pomerons

$$
\begin{gathered}
\tilde{\sigma}_{\mathrm{in}}^{A B}=\sum_{m_{1} l_{1}} \ldots \sum_{m_{A B} l_{A B}^{\prime}}^{\prod_{k=1}^{A B} \frac{1}{\mathrm{~m}_{\mathrm{k}}!1_{\mathrm{k}}!}\left(G_{k}\right)^{m_{k}}\left(-G_{k}\right)^{l_{k}}} \\
=\sum_{m_{1}} \ldots \sum_{m_{A B}}^{\prime} \underbrace{\prod_{k=1}^{A B} \frac{1}{m_{\mathrm{k}}!}\left(G_{k}\right)^{m_{k}} \exp \left(-G_{k}\right)}_{P\left(m_{1}, \ldots, m_{A B}\right)}
\end{gathered}
$$

Crucial: $\sum P\left(m_{1}, \ldots, m_{A B}\right)=1$ => probability interpretation $P\left(m_{1}, \ldots, m_{A B}\right)=$ probab. of configuration $\left\{m_{1}, \ldots, m_{A B}\right\}$

Basis of Monte Carlo treatment
Perfectly parallel scattering scenario! No sequence of collisons.
One considers all possible NN collisions instantaneously.

3 EPOS4 primary interactions

An attempt to do (from the beginning) full parallel scattering, but be compatible with factorization for inclusive cross sections
by taking into account saturation

EPOS4 documentation

\square Oct. 2022 EPOS4.0.0 release (no "official" EPOS3 release) https://klaus.pages.in2p3.fr/epos4/ thanks Laurent Aphecetche for explaining gitlab pages, nextjs etc thanks Damien Vintache for managing installation/technical issues
\square Papers (https://klaus.pages.in2p3.fr/epos4/physics/papers)

- arxiv:2301.12517 PRC 108, 064903 EPOS4 Overview
- arxiv:2306.02396 PRC 108, 034904 pQCD in EPOS4 with B. Guiot
- arxiv:2310.09380 PRC 109, 034918

Parallel scattering formalism, S-matrix theory \& pQCD \& saturation 46 pages, systematic and complete presentation of the theoretical basis,

- arxiv:2306.10277 PRC 109, 014910

Microcanonical hadronization, core-corona in EPOS4

- arxiv:2401.11275 EPOS4 results on RHIC with J. Jahan, I. Karpenko, T. Pierog, M. Stefaniak, D. Vintache
- arxiv:2310.08684 EPOS4HQ: Heavy flavor collectivity in pp
- arxiv:2401.17096 EPOS4HQ: Heavy flavour in HI at RHIC and LHC EPOS4HQ: Jiaxing Zhao, Joerg Aichelin, Pol-Bernard Gossiaux, KW

3.1 EPOS4 general structure

(Possible at "high energies")
\square Primary scatterings (at $t=0$)
parallel scattering approach based on S-matrix theory (Major changes)
\square Secondary scatterings (at $\mathbf{t}>0$)

- core-corona procedure (New methods)
- hydro evolution ${ }^{1}$
- microcanonical decay (New)
- hadronic rescattering ${ }^{2}$
${ }^{1}$) I. Karpenko et al, Computer Physics Communications 185, 3016 (2014), K. Werner,
B. Guiot, I. Karpenko, and T. Pierog, Phys. Rev. C 89, 064903 (2014), 1312.1233,
${ }^{2}$) S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998), M. Bleicher et al., J. Phys. G25, 1859 (1999)

3.2 EPOS4 S-matrix approach

Realistic scenario, (details: arXiv:2301.12517) parallel scattering, with energy sharing (GR^{+})

We generalize the GR formula ($\rightarrow \mathrm{GR}^{+}$)

$\begin{aligned} \tilde{\sigma}_{\text {in }}^{A B}= & \sum_{n_{1}=0}^{\infty} \ldots \sum_{n_{A B}=0}^{\infty} \sum_{m_{1} \leq n_{1}} \ldots \sum_{m_{A B} \leq n_{A B}}{ }^{\prime} \int d X_{A B} \\ & \prod_{k=1}^{A B} \frac{1}{n_{k}!}\binom{n_{k}}{m_{k}} \prod_{\mu=1}^{m_{k}} G_{k \mu} \prod_{\mu=m_{k}+1}^{n_{k}}-G_{k \mu} \\ & \prod_{i=1}^{A} V\left(x_{\text {remn }, i}^{+}\right) \prod_{j=1}^{B} V\left(x_{\text {remn }, j}^{-}\right) \end{aligned}$	
$G_{k \mu}=G\left(x_{k \mu}^{+}, x_{k \mu^{\prime}}^{-} s, b_{k}\right)$	$\int d X_{A B}=\int \prod_{k=1}^{A B} \prod_{v=1}^{n_{k}}$

All possible NN collisions considered instantaneously.

Again, uncut Pomerons are "summed over", and $\tilde{\sigma}_{\text {in }}^{A B}$ can be expressed in terms of

$$
P=\prod_{k=1}^{A B}\left[\frac{1}{m_{k}!} \prod_{\mu=1}^{m_{k}} G_{k \mu}\right] \times W_{A B}
$$

with some known $W_{A B}$ and

$$
\sum_{\left\{m_{k}\right\}} \int d X_{A B} P=1
$$

Interpretation:

$P=P(K)=$ probability of configuration $K=\left\{\left\{m_{k}\right\},\left\{x_{k \mu}^{ \pm}\right\}\right\}$,
representing m_{k} cut Pomerons per pair k, with light-cone momentum fractions $x_{k \mu}^{ \pm}$.
Basis of Monte Carlo, one determines K according to $P(K)$, instantaneously

For completeness: $W_{A B}$
(which amounts to summing over and integrating out all uncut Pomerons)

$$
\begin{aligned}
W_{A B}= & W_{A B}\left(\left\{x_{i}^{+}\right\},\left\{x_{j}^{-}\right\}\right)=\sum_{\left\{l_{k}\right\}} \int \prod_{k=1}^{A B}\left(\prod_{\lambda=1}^{l_{k}} d \tilde{x}_{k v}^{+} d \tilde{x}_{k v}^{-}\right) \\
& \left\{\prod_{k=1}^{A B}\left[\frac{1}{l_{k}!} \prod_{\lambda=1}^{l_{k}}-G_{\mathrm{QCDPar}}\left(\tilde{x}_{k \lambda}^{+}, \tilde{x}_{k \lambda}^{-}, s, b_{k}\right)\right]\right. \\
& \left.\prod_{i=1}^{A}\left(x_{i}^{+}-\sum_{\substack{k=1 \\
\pi(k)=i}}^{A B} \sum_{\lambda=1}^{l_{k}} \tilde{x}_{k \lambda}^{+}\right)^{\alpha_{\mathrm{remn}}} \prod_{j=1}^{B}\left(x_{j}^{-}-\sum_{\substack{k=1 \\
\tau(k)=j}}^{A B} \sum_{\lambda=1}^{l_{k}} \tilde{x}_{k \lambda}^{-}\right)^{\alpha_{\mathrm{remn}}}\right\},
\end{aligned}
$$

$\sum_{\left\{l_{k}\right\}}$ means summing all the indices l_{k}, with $1 \leq k \leq A B$, from zero to infinity. l_{k} refers to the number of uncut Pomerons of nucleon-nucleon pair k.
$W_{A B}$ is a function of the remnant LC momentum fractions

$$
x_{i}^{+}=1-\sum_{\substack{k=1 \\ \pi(k)=i}}^{A B} \sum_{\mu=1}^{m_{k}} x_{k \mu^{\prime}}^{+} \quad x_{j}^{-}=1-\sum_{\substack{k=1 \\ \tau(k)=j}}^{A B} \sum_{\mu=1}^{m_{k}} x_{k \mu}^{-} .
$$

Challenging. High-dimensional non-separable integrals. Major issue!

So far

\square general framework allowing to treat rigorously parallel scattering + energy sharing (the only one...)
\square formulas expressed in terms of an elementary "cut diagram" $G=\frac{1}{i}$ disc T
\square representing an elementary parton-parton scattering

What is the connection with QCD?

$T=$ Fourier transform w.r.t. to transv. momentum of the T-matrix element $\mathbf{T}_{i i}$ divided by $2 s$; relation S-matrix - T-matrix: $\left.\mathbf{S}_{f i}=\delta_{f i}+i(2 \pi)^{4} \delta\left(p_{f}-p_{i}\right) \mathbf{T}_{f i}\right)$

First try:
$G=G_{Q C D}=G_{Q C D}^{\text {sea-sea }}+G_{Q C D}^{\text {val-val }}+G_{Q C D}^{\text {sea-val }}+G_{Q C D}^{\text {val-sea }}$

Composed of modules (formulas see arXiv:2306.02396, PRC 108, 034904)

Technical issues: From diagrams to formulas details: arXiv:2306.02396, PRC 108, 034904

Symbols used in the EPOS4 framework

T	Diagonal element of the elastic scattering T-matrix as defined in stan- dard quantum mechanics textbooks, where the asymptotic state is a sys- tem of two protons or two nuclei
T	Fourier transform with respect to the transverse momentum exchange of the elastic scattering T-matrix T, divided by $2 s$ (formulas are simpler using this representation)
G	Defined as $G=$ cut $T=2$ Im $T=\frac{1}{i}$ disc T (where "disc" refers to the variable s), referring to the inelastic process associated with the cut of the elastic diagram corresponding to T
σ	Integrated inclusive parton-parton scattering cross section, which is useful because T, T, and G may be expressed in terms of σ

Example: Parton-parton scattering

$$
\begin{aligned}
& \sigma_{\text {hard }}^{i j}\left(Q_{1}^{2}, Q_{2}^{2}, s\right)=\sum_{k l m n} \int d x_{1} d x_{2} \int \frac{d^{3} p_{3} d^{3} p_{4}}{E_{3} E_{4}} \\
& \quad E_{\mathrm{QCD}}^{i k}\left(x_{1}, Q_{1}^{2}, \mu_{\mathrm{F}}^{2}\right) E_{\mathrm{QCD}}^{j l}\left(x_{2}, Q_{2}^{2}, \mu_{\mathrm{F}}^{2}\right) \\
& \quad \frac{1}{2 s} \frac{1}{16 \pi^{2}} \sum\left|\mathcal{M}^{k l \rightarrow m n}\right|^{2} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \frac{1}{1+\delta_{m n}}
\end{aligned}
$$

where the momenta of the outgoing partons (jets) are integrated out.

Very similar to the usual factorization formula
\square but with the PDFs replaced by $E_{\mathrm{QCD}}^{i k}\left(x_{K}, Q_{K}^{2}, \mu_{\mathrm{F}}^{2}\right)$,
\square for parton evolution starting at virtuality Q_{K}^{2} with a distribution $\delta(x-1) \delta_{k i}$,
\square but using the same DGLAP evolution

Considering first the corresponding elastic scattering T-matrix, we assume

$$
\mathbf{T}_{\text {hard }}^{i j}\left(Q_{1}^{2}, Q_{2}^{2}, s, t\right)=i s \sigma_{\text {hard }}^{i j}\left(Q_{1}^{2}, Q_{2}^{2}, s\right) \times \exp \left(R_{\text {hard }}^{2} t\right)
$$

compatible with the usual relation
$\sigma_{\text {hard }}^{i j}=2 \operatorname{Im} \mathbf{T}_{\text {hard }}^{i j}(t=0) /(2 s)$.

Assuming a purely transverse momentum exchange $t=-q_{\perp}^{2}$ the Fourier transform and division by $2 s$ gives

$$
\begin{aligned}
& T_{\text {hard }}^{i j}\left(Q_{1}^{2}, Q_{2}^{2}, s, b\right)=\frac{1}{8 \pi^{2} s} \int d^{2} q_{\perp} e^{-i q_{\perp} b} \mathbf{T}_{\text {hard }}^{i j}(s, t) \\
& =\frac{i}{2} \sigma_{\text {hard }}^{i j}\left(Q_{1}^{2}, Q_{2}^{2}, s\right) \frac{1}{4 \pi R_{\text {hard }}^{2}} \exp \left(-\frac{b^{2}}{4 R_{\text {hard }}^{2}}\right)
\end{aligned}
$$

For the corresponding $G=\operatorname{cut} T_{\text {hard }}=2 \operatorname{Im} T_{\text {hard }}$, we get

$$
\begin{aligned}
& G_{\mathrm{QCD}}^{\mathrm{hard}, \mathrm{ij}}\left(Q_{1}^{2}, Q_{2}^{2}, s, b\right) \\
& =\sigma_{\text {hard }}^{i j}\left(Q_{1}^{2}, Q_{2}^{2}, s\right) \frac{1}{4 \pi R_{\text {hard }}^{2}} \exp \left(-\frac{b^{2}}{4 R_{\text {hard }}^{2}}\right) .
\end{aligned}
$$

So the cut parton ladder expression G is simply \square the product of a Gaussian impact parameter dependence and
\square the dijet production cross section
$\sigma_{\text {hard }}^{i j}$ being of the form

$$
\int E_{\mathrm{QCD}} \times E_{\mathrm{QCD}} \times \underbrace{|\mathcal{M}|^{2}}_{\text {Born }}
$$

In a similar way, all contributions in

$$
G_{Q C D}=G_{Q C D}^{\text {sea-sea }}+G_{Q C D}^{\text {val-val }}+G_{Q C D}^{\text {sea-val }}+G_{Q C D}^{\text {val-sea }}
$$

can be expressed in terms of modules like
E_{QCD}, Born, $F_{\text {sea }}$, etc (formulas see arXiv:2306.02396, PRC 108, 034904)

Different ways to rearrange the modules. One may define (and tabulate) a PDF

$f_{\mathrm{PDF}}=$

allowing to compute the single Pomeron dijet cross section

$$
\begin{aligned}
& E_{3} E_{4} \frac{d^{6} \sigma}{d^{3} p_{3} d^{3} p_{4}} \\
& =\sum_{k l m n} \iint d \xi_{1} d \xi_{2} f_{\mathrm{PDF}}^{k}\left(\xi_{1}, \mu_{\mathrm{F}}^{2}\right) f_{\mathrm{PDF}}^{l}\left(\xi_{2}, \mu_{\mathrm{F}}^{2}\right) \\
& \quad \frac{1}{32 s \pi^{2}} \sum^{-}\left|\mathcal{M}^{k l \rightarrow m n}\right|^{2} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \frac{1}{1+\delta_{m n}}
\end{aligned}
$$

Electron-proton scattering F_{2} vs x

To check our $f_{\text {PDF }}$, we can compute

$$
F_{2}=\sum_{k} e_{k}^{2} x f_{\mathrm{PDF}}^{k}\left(x, Q^{2}\right)
$$

with

$$
x=x_{B}=\frac{Q^{2}}{2 p q}
$$

in the EPOS framework,
and compare with data from ZEUS, H1
and with calculations based on CTEQ14(5f)

Jet cross section vs pt for pp at 13 TeV

Looks good, but
\square Here we showed a 1-Pomeron result
\square In GR, the full multiple scattering scenario is equal to the 1-Pomeron result for inclusive cross sections (AGK theorem)
\square Does AGK hold in our case (GR+) ?
\square And does AGK hold for nuclear scattering (which would amount to binary scaling)?

Technical issues, for full multiple scattering scenario details: arXiv:2310.09380, PRC 109, 034918
\square Crucial: G_{QCD} can be parametrized as

$$
G_{\mathrm{QCDpar}}\left(x^{+}, x^{-}, s, b\right)=\sum_{N=1}^{N_{\mathrm{par}}} \alpha_{N} \times\left(x^{+} x^{-}\right)^{\beta_{N}},
$$

where α_{N} and β_{N} depend on s and b given in terms of a few parameters
\square Parametric form inspired by the asymptotic expressions for T-matrices $T\left(s_{\text {Pom }}, t_{\text {Pom }}\right) \propto s_{\text {Pom }}^{A(\text { t Pom })}, \quad s_{\text {Pom }}=x^{+} x^{-} s$
\square Integrals in $W_{A B}$ can be done!!!
\square Configurations $K=\left\{\left\{m_{k}\right\},\left\{x_{k \mu}^{ \pm}\right\}\right\}$ representing m_{k} cut Pomerons per pair k, with LC momentum fractions $x_{k \mu}^{ \pm}$ are generated randomly according to the law

$$
P(K)=\prod_{k=1}^{A B}\left[\frac{1}{m_{k}!} \prod_{\mu=1}^{m_{k}} G_{k \mu}\right] \times W_{A B}
$$

\square Can be done using Markov chain techniques!!! essentially mapping configurations to a 2D Ising model spin-flip corresponds to adding/removing a Pomeron
\square So the full MC is doable, one can start making tests...

Validity of AGK Check p_{t} of partons for minimum bias PbPb and $p p$ scatterings at 5.02 TeV .
Ratio $\quad R_{\text {AGK }}\left(p_{t}\right)=\frac{d \sigma_{\text {incl }}^{A B}}{d p_{t}} /\left\{A B \times \frac{d \sigma_{\text {incl }}^{\text {single Pom }}}{d p_{t}}\right\}$
should be unity

AGK badly violated!!!
The problem is the energy sharing among Pomerons

3.3 The effect of energy sharing in EPOS4

Inclusive particle spectra (like p_{t})
 are determined by the distribution of the LC momenta x^{+}and x^{-}.

Crucial variable: the Pomeron's squared CMS energy fraction

$$
x_{\mathrm{PE}}=x^{+} x^{-} \approx s_{\mathrm{Pom}} / s_{\mathrm{tot}}
$$

For a given Pomeron, connecting projectile nucleon i and target nucleon j
define:

$$
N_{\mathrm{conn}}=\frac{N_{\mathrm{P}}+N_{\mathrm{T}}}{2}
$$

$N_{\mathrm{P}}=$ number of Pomerons connected to i $N_{\mathrm{T}}=$ number of Pomerons connected to j

The $x_{\text {PE }}$ distributions $f\left(x_{\text {PE }}\right)$ depend on $N_{\text {conn }}$
Large $N_{\text {conn }}=>$ large $x_{\text {PE }}$ suppressed small $x_{\text {PE }}$ enhanced

We will use the notation $f^{\left(N_{\text {conn }}\right)}\left(x_{\text {PE }}\right)$

Large $N_{\text {conn }}=>$ large $x_{\text {PE }}$ suppressed => large p_{t} suppressed

Min, bias $p p$ or $A A=$ superposition of different $N_{\text {conn }}$ contributions
Cannot be equal to the 1-Pomeron case ($N_{\text {conn }}=1$) => violation of AGK

We define the "deformation" of $f^{\left(N_{\text {conn }}\right)}\left(x_{\text {PE }}\right)$ relative to the reference $f^{(1)}\left(x_{\mathrm{PE}}\right)$

$$
R_{\mathrm{deform}}=\frac{f^{\left(N_{\mathrm{conn}}\right)}\left(x_{\mathrm{PE}}\right)}{f^{(1)}\left(x_{\mathrm{PE}}\right)}
$$

$R_{\text {deform }} \neq 1$ creates the problem
But we are able to parameterize $R_{\text {deform }}$ and tabulate it, for all systems, all centrality classes

So

$$
R_{\text {deform }}=R_{\text {deform }}\left(N_{\text {conn }}, x_{\text {PE }}\right)
$$

can be considered to be known, it is tabulated and available via interpolation (to be used later).

Two problems

single cut Pomeron G is fundamental building block of the multiple scattering formalism

So far one assumes

$$
G=G_{\mathrm{QCD}} .
$$

Obviously wrong, it leads to a strong violation of binary scaling at large p_{t}

Another serious problem
$G_{\text {QCD }}$ based on DGLAP, but it is known that saturation phenomena (nonlinear effects) become important.

In the Pomeron language: diagrams with triple (and more) Pomeron vertices.

Such nonlinear effects are
 completely missing.

3.4 The solution: Dynamical saturation scales in EPOS4

The two problems:
\square wrong relation $G=G_{Q C D}$
\square missing saturation
are related, and can be solved simultaneously.

Saturation phenomena may be characterized by saturation scales
suggesting to treat nonlinear effects by introducing saturation scales as the lower limits Q_{0}^{2} of the virtualities for DGLAP evolutions
(i.e., nonlinear effects (inside the red circles) are "summarized" in the form of saturation scales)

We compute and tabulate $G_{Q C D}\left(Q_{0}^{2}, x^{+}, x^{-}, s, b\right)$ for a large range of Q_{0}^{2} values (see arXiv:2306.02396)

For the connection between the basic multiple scattering building block G and the QCD expression $G_{Q C D}$ one postulates:

For each cut Pomeron, for given $x^{ \pm}, s, b$, and $N_{\text {conn }}$:

$$
G\left(x^{+}, x^{-}, s, b\right)=\frac{n}{R_{\text {deform }}\left(N_{\text {conn }}, x_{\mathrm{PE}}\right)} \times G_{\mathrm{QCD}}\left(Q_{\mathrm{sat}}^{2}, x^{+}, x^{-}, s, b\right)
$$

such that G does not depend on $N_{\text {conn }}$, whereas $Q_{\text {sat }}^{2}$ does depend on $x^{+}, x^{-}, N_{\text {conn }}$
n is a normalization constant

This equation defines $Q_{\text {sat }}^{2}$

$N_{\text {conn }}$ dependencevery strong in $p p$
\square litte change form semi-peripheral to central $A A$

Considering the distribution of the LC momenta x^{+}and x^{-}, one tries to relate the $A+B$ result (for given $N_{\text {conn }}$)

$$
\frac{d^{2} \sigma_{\text {incl }}^{A B\left(N_{\text {conn }}\right)}}{d x^{+} d x^{-}}
$$

to the 1-Pomeron case

Explicitely:

$$
\begin{aligned}
\frac{d^{2} \sigma_{\text {incl }}^{A B\left(N_{\mathrm{conn}}\right)}}{d x^{+} d x^{-}}= & \sum_{\left\{m_{k}\right\} \neq 0} \int d b_{A B} \int d X_{A B} P(K) \\
& \times\left\{\sum_{k^{\prime}=1}^{A B} \sum_{\mu^{\prime}=1}^{m_{k^{\prime}}} \delta_{N_{\mathrm{conn}}\left(k^{\prime}, \mu^{\prime}\right)}^{N_{\mathrm{con}}} \delta\left(x^{+}-x_{k^{\prime} \mu^{\prime}}^{+}\right) \delta\left(x^{-}-x_{k^{\prime} \mu^{\prime}}^{-}\right)\right\}
\end{aligned}
$$

with

$$
P(K)=\prod_{k=1}^{A B}\left[\frac{1}{m_{k}!} \prod_{\mu=1}^{m_{k}} G_{k \mu}\right] \times W_{A B}\left(\left\{x_{i}^{+}\right\},\left\{x_{j}^{-}\right\}\right)
$$

and with

$$
W_{A B}=\prod_{i=1}^{A} c_{1}\left(x_{i}^{+}\right)^{\alpha_{\mathrm{remn}}} \prod_{j=1}^{B} c_{1}\left(x_{j}^{-}\right)^{\alpha_{\mathrm{remn}}} \prod_{k=1}^{A B} \exp \left(-\tilde{G}\left(x_{\pi(k)}^{+} x_{\tau(k)}^{-}\right)\right)
$$

On can show (arXiv:2310.09380, PRC 109, 034918)

$$
\frac{d^{2} \sigma_{\text {incl }}^{A B}\left(N_{\text {conn }}\right)}{d x^{+} d x^{-}} \propto \frac{d \sigma_{\text {incl }}^{\text {single Pom }}}{d x^{+} d x^{-}}\left[Q_{\mathrm{sat}}^{2}\left(N_{\mathrm{conn}}, x^{+}, x^{-}\right)\right]
$$

i.e., the $\mathrm{A}+\mathrm{B}$ cross section (given $N_{\text {conn }}$)
\square is equal to the 1-Pomeron case,
\square but with $Q_{\text {sat }}^{2}$ corresponding to $N_{\text {conn }}$

Same relation for p_{t} distributions (deduced from $x^{+} x^{-}$)
one gets for the min. bias cross section
$\frac{d \sigma_{\mathrm{incl}}^{A B(m b)}}{d p_{t}}=\sum_{N_{\mathrm{conn}}} w\left(N_{\mathrm{conn}}\right) \frac{d \sigma_{\mathrm{incl}}^{\text {single Pom }}}{d p_{t}}\left[Q_{\mathrm{sat}}^{2}\left(N_{\mathrm{conn}}, x^{+}, x^{-}\right)\right]$
i.e., the $A+B$ cross section is a weighted sum
\square of 1-Pomeron contributions,
\square but with $Q_{\text {sat }}^{2}$ corresponding to $N_{\text {conn }}$

one expects with increasing $N_{\text {conn }}$
\square an increasing $Q_{\text {sat }}^{2}$
\square and a reduction at $p_{t}^{2}<Q_{\text {sat }}^{2}$ compared to $N_{\text {conn }}=1$ (red)

But no change for large p_{t}
so for p_{t} squared larger than
 the relevant $Q_{\text {sat }}^{2}$ values, one replaces
$\frac{d \sigma_{\text {incl }}^{\text {single Pom }}}{d p_{t}}\left[Q_{\text {sat }}^{2}\left(N_{\text {conn }}, x^{+}, x^{-}\right)\right]$
by

$$
\frac{d \sigma_{\text {incl }}^{\text {single Pom }}}{d p_{t}}\left[Q_{0}^{2}\right]
$$

with constant Q_{0}^{2}

One gets finally

$$
\frac{d \sigma_{\text {incl }}^{A B(m b)}}{d p_{t}}=A B \frac{d \sigma_{\text {incl }}^{\text {single Pom }}}{d p_{t}}\left[Q_{0}^{2}\right]
$$

but only for p_{t}^{2} bigger than the relevant $Q_{\text {sat }}^{2}$ values (gAGK theorem)

Corollary: factorization ($p p$) and binary scaling ($A+B$)

EPOS4:

fully selfconsistent picture (B) to be used for "event class issues", which breaks down to (A) for inclusive hard particle production.

Crucial: saturation, fixes a problem caused by energy sharing

Jet cross section vs pt for pp at 13 TeV , factorization result

 vs full MC (points)

3.5 Angantyr (basic)

\square Papers (proposed by Christian Bierlich)

- arXiv:1806.10820 JHEP 10 (2018) 134
- arXiv:2205.11170 Phys.Lett.B 835 (2022) 137571
\square Authors
- Christian Bierlich, Smita Chakraborty, Gösta Gustafson, Leif Lönnblad, Harsh Shah
\square General structure
- Basic AA model S-matrix theory (Glauber formalism) => independent sub-processes
- String interactions / rescattering
- rope model
- to come: combining ropes with shoving \& hadronic cascade

Basic AA model (Glauber model)

\square Elastic scattering S-matrix

$$
\begin{gathered}
S^{A B}(b)=\prod_{i=1}^{A} \prod_{j=1}^{B} S^{i j}\left(b_{j}+b-b_{i}\right), \quad T^{i j}=1-S^{i j} \\
\frac{d \sigma_{\text {tot }}^{i j}(b)}{d^{2} b}=2 T^{i j}, \quad \frac{d \sigma_{\text {abs }}^{i j}(b)}{d^{2} b}=2 T^{i j}-\left(T^{i j}\right)^{2}
\end{gathered}
$$

\square Sub-T-matrix - including nucleon size fluctuations $P(r) \propto r^{k-1} \exp \left(-r / r_{0}\right)$

$$
T^{i j}=T\left(\boldsymbol{b}^{i j}, r_{p}, r_{t}\right) \propto \Theta\left(\sqrt{\frac{\left(r_{p}+r_{t}\right)^{2}}{2 T_{0}}}-b^{i j}\right) \quad \begin{aligned}
& \text { opacity : } \\
& T_{0}=\left(1-e^{-\pi\left(r_{p}+r_{t}\right)^{2} / \sigma_{t}}\right)^{\alpha}
\end{aligned}
$$

No energy-momentum arguments! Independent sub-processes
\square For each pair, probability for absorptive interaction $2 T^{i j}-\left(T^{i j}\right)^{2}$
Two states to distinguish between absorptively and diffractively wounded wounded nucleons.
\square MPI: sub-collisions treated as separate QCD $2 \rightarrow 2$ scatterings Parton densities rescaled according to an overlap function assuming some matter distribution in the colliding protons
\square Event with two sub-scatterings of type $g g \rightarrow g g$ Choice (a) gives wrong multiplicity dependence of mean pt

(c)

Better: additional subscatterings colour connected to partons in previous subscatterings (b) and (c)

EPOS4: choice (a)

+ saturation scale
\square AA scattering: two types of NN scatterings
- primary in case of not-yet-wounded nucleons (a)
- secondary in case of already-wounded nucleons (b,c)

(c)

Primary: normal
PYTHIA MPI scattering
Secondary: diffractive PYTHIA scattering
$=\mathbb{P}-\mathbf{N}$ scattering
Pomeron $\mathbb{P}=$ zigzag

EPOS4: same amplitude for wounded / unwounded compensated by "dynamical saturation scale"
\square Interactions ordered wrt increasing NN impact parameter
\square then treat NN scattering one after the other
Several iterations: first absorptive scatterings, primary; second iteration to treat secondary scatterings. If not enough energy, redo / skip
pt distributions charged ptls PbPb 2.76 TeV , different centralities

Very small v2 (no string interactions)

4 EPOS4 secondary interactions

So far we discussed primary interactions (the red point)

Milne coordiantes are used to describe evolution

Proper time (hyperbolas)

$$
\tau=\sqrt{t^{2}-z^{2}}
$$

Space-time rapidity (red lines)

$$
\eta_{s}=\frac{1}{2} \ln \frac{t+z}{t-z}
$$

(not pseudorapidity)

Primary interactions determine matter distribution in η_{s} η_{s} corresponds (roughly) to the average rapidity (of vol-
 ume cells): $\left\langle y>\approx \eta_{s}\right.$ so primary interactions determine "essentially" the rapidity distrbution

$$
\text { with } y=\frac{1}{2} \ln \frac{E+P_{z}}{E-P_{z}}
$$

Connecting primary and secondary interactions: the core-corona procedure

4.1 Role of core, corona, remnants

Colorwise equivalent:

Outgoing antiquarks drawn as incoming quarks (arrows towards vertices)

Color flow

Chains of partons from antiquark to quark 1-2-3-4-5, 6-7-8-9-10 etc

No color reconnections needed !!

needed


```
Spacelike cascade (SLC)
and
timelike cascade (TLC)
```


Color flow

Chains of partons from antiquark to quark
1-2-3-4, 5-6-7,
8-9-10-11-12, 13-14

From chains of partons to strings

The four color flow chains 1-2-3-4, 5-6-7, 8-9-10-11-12, and 13-14 mapped to kinky strings (red lines), black points indicate the kinks String breaks into "prehadrons" via area law hep-ph/0007198, Phys.Rept. 350 (2001) 93-289

Heavy flavor production

(2)

(4)

(5)

(3)

Heavy flavor strings

Again string breaking via area law hep-ph/0007198, Phys.Rept. 350 (2001) 93-289

close to FONLL

4.0.0 not yet optimized

more recent work, see https:/ /klaus.pages.in2p3.fr /epos4/physics/papers
-> The EPOS4HQ project
HQ QGP interaction important even in pp

Core-corona procedure

 (Big and small systems)Consider all prehadrons (no charm)

Each prehadron: estimate energy loss ΔE on its way out of this system
(keeping the positons of the others)
If $\Delta E>E$-> core prehadron If $\Delta E<E$-> corona prehadron

Corona hadrons -> hadrons
Core hadrons -> "the core" (matter)

Big system

> Small system

$$
\text { corona }=\text { blue } \quad \text { core }=\text { red }
$$

Core-corona procedure

 for minimum bias proton-protonPrehadron yield vs space-time rapidity $\eta_{s}=\frac{1}{2} \ln \frac{t+z}{t-z}$
Note: $\eta_{s} \approx y$ (rapidity)
High energy: big core contribution even for min bias!

From high to low energy:
\square core contribution smaller
\square remnants more important
\square contribute at mid-rapidity
4 GeV : No Pomerons, no core

EPOS 4.0.0 prehadrons

Core-corona procedure

 for nucleus-nucleus
Prehadron yield vs η_{s}

central PbPb: core almost 100\% even for remnants

From central to peripheral:
core drops at large η_{s}
\square remnants get more important

EPOS 4.0.0 prehadrons PbPb 2.76 TeV

Energy density ε

Calculation at hydro start time τ_{0}

$$
p p 7 \mathrm{TeV}
$$

Compute $T^{\mu v}$ from prehadrons, boost to comoving frame, extract ε and flow vector

Dashed line:
 FO en. density

Different
 Pomeron numbers

For each event, one determines the event plane angle ψ and rotate the system accordingly (to have after rotation event plane angles zero). The solid lines correspond to azimuthal angles $\phi=0$, the dotted lines to $\phi=\pi / 2$.

Energy density ε
Calculation at hydro start time τ_{0}
PbPb 2.76 TeV
Compute $T^{\mu \nu}$ from prehadrons, boost to comoving frame, extract ε and flow vector

Dashed line: FO en. density

Different centralities
Energy density ε
Calculation at hydro start time τ_{0}

保

Next steps

\square Hydrodynamic evolution
(code from Iu. Karpenko ${ }^{(1,2)}$)
\square Sudden freeze-out (microcanonical) at $\varepsilon_{\mathrm{FO}}=0.57 \frac{\mathrm{GeV}}{\mathrm{fm}^{3}}$
(many new features, important for small fluids, in pp and AA)
\square Hadronic cascade (UrQMD ${ }^{(3,4)}$)
${ }^{(1)}$ Werner, K. and Guiot, B. and Karpenko, Iu. and Pierog, T., Phys. Rev. C 89, 6 (2014), pp. 064903
${ }^{(2)}$ Iu. Karpenko and P. Huovinen and M. Bleicher, Computer Physics Communications 185, 11 (2014), pp. 3016--3027
${ }^{(3)}$ S. A. Bass and others, Prog. Part. Nucl. Phys. 41 (1998), pp. 225-370.
${ }^{(4)}$ M. Bleicher and others, J. Phys. G25 (1999), pp. 1859-1896.

4.2 Microcanonical hadronization of plasma droplets

(see arXiv:2306.10277)
\square Real hadronization (not transition fluid-particles) (sudden statistical decay)
\square Energy and flavor conservation (important for small systems)
\square Extremely fast
(major technical impovements in EPOS4)

Grand canonical decay, $\mathbf{T}=130 \mathrm{MeV}, \quad f_{k}=\frac{g_{k} V}{(2 \pi \hbar)^{3}} \exp \left(-\frac{E_{k}}{T}\right)$
$V=50 \mathrm{fm}^{3} ; V=1000 \mathrm{fm}^{3}$

Microcanonic decay

of given volume in its CMS into n hadrons

$$
\begin{aligned}
d P= & C_{\mathrm{vol}} C_{\mathrm{deg}} C_{\mathrm{ident}} \\
& \times \delta\left(E-\Sigma E_{i}\right) \delta\left(\Sigma \vec{p}_{i}\right) \prod_{A} \delta_{Q_{A}, \Sigma q_{A i}} \prod_{i=1}^{n} d^{3} p_{i} \\
C_{\mathrm{vol}}= & \frac{V^{n}}{(2 \pi \hbar)^{3 n}}, \quad C_{\mathrm{deg}}=\prod_{i=1}^{n} g_{i}, \quad C_{\mathrm{ident}}=\prod_{\alpha \in \mathcal{S}} \frac{1}{n_{\alpha}!}
\end{aligned}
$$

(n_{α} is the number of particles of species α, \mathcal{S} is the set of particle species)

Different from decay rate of a massive particle (using LIPS), where asymptotic states are defined over an infinitely large volume (see Becattini et al, EPJC35:243-258,2004). But $E_{i}=\sqrt{p_{i}^{2}+m_{i}^{2}}$

Microcanonical decay

$$
d P \propto d \Phi_{\mathrm{NRPS}}=\delta\left(M-\Sigma E_{i}\right) \delta\left(\Sigma \vec{p}_{i}\right) \prod_{i=1}^{n} d^{3} p_{i}
$$

\square Hagedorn 1958 methods to compute $\Phi_{\text {NRPS }}$
\square Lorentz invariant phase space (LIPS) (James 1968)
\square Hagedorn methods used for decaying QGP droplets (Werner, Aichelin, 1994, Becattini 2003)
$\square 2012$ (Bignamini,Becattini,Piccinini) compute $\Phi_{\text {NRPS }}$ via the Lorentz invariant phase space (LIPS)
\square NEW (EPOS4) 2022:

- Much improved Hagedorn integral method, made very efficient at large n
- use LIPS method only for small n, (gets time consuming at large n)

Grand canonical limit

For very large M we should recover the "grand canonical limit" for single particle spectra:

$$
f_{k}=\frac{g_{k} V}{(2 \pi \hbar)^{3}} \exp \left(-\frac{E_{k}}{T}\right)
$$

The average energy is

$$
\bar{E}=\sum_{k} \frac{4 \pi g_{k} V}{(2 \pi \hbar)^{3}} m_{k}^{2} T\left(3 T K_{2}\left(\frac{m_{k}}{T}\right)+m_{k} K_{1}\left(\frac{m_{k}}{T}\right)\right) .
$$

The microcanonical decay of an object of mass M and volume V should converge (for $M \rightarrow \infty$) to the GC single particle spectra
with T obtained from $M=\bar{E} . \quad T=167 \mathrm{MeV}$ in the following

Hadronization on hyper-surface

Hypersurface element:

$$
d \Sigma_{\mu}=\varepsilon_{\mu v \kappa \lambda} \frac{\partial x^{v}}{\partial \tau} \frac{\partial x^{\kappa}}{\partial \varphi} \frac{\partial x^{\lambda}}{\partial \eta} d \tau d \varphi d \eta
$$

Surface:
$x^{0}=\tau \cosh \eta, x^{1}=r \cos \varphi$,
$x^{2}=r \sin \varphi, x^{3}=\tau \sinh \eta$
with $r=r(\tau, \varphi, \eta)$,
representing the
FO condition $\varepsilon=\varepsilon_{\mathrm{FO}}$

GC particle production via Cooper-Frye

$$
E \frac{d n}{d^{3} p}=\int d \Sigma_{\mu} p^{\mu} f(u p)
$$

assuming a thermalized resonance gas
(adding δf for viscous hydro)

Our approach:
Flow of momentum vector $d P^{\mu}$ and conserved charges $d Q_{A}$ through the surface element:

$$
\begin{aligned}
d P^{\mu} & =T^{\mu v} d \Sigma_{v}, \\
d Q_{A} & =J_{A}^{v} d \Sigma_{v} .
\end{aligned}
$$

(with $A \in\{C, B, S\}$, corresponding electric charge, baryon number and strangeness)

Construct an effective mass by summing surface elements:

$$
M=\int_{\text {surface area }} d M
$$

with

$$
d M=\sqrt{d P^{\mu} d P_{\mu}}
$$

knowing for each element fourvelocity

$$
U^{\mu}=d P^{\mu} / d M,
$$

The four-velocity \boldsymbol{U}^{μ} is NOT equal to the fluid velocity \boldsymbol{u}^{μ} !

The effective mass decays microcanonically

Particles are distributed on the hyper-surface

$$
x^{\mu}(\tau, \varphi, \eta)
$$

according to the distribution

$$
d M(\tau, \varphi, \eta)
$$

and they are boosted according to the four-velocity

$$
U^{\mu}(\tau, \varphi, \eta)
$$

Decaying object extended in space-time

η

Does is decay as single effective mass M ?

η
... or as several independent objects of width $\Delta \eta$

We will try several choices of $\Delta \eta$

Omega to pion ratio (pure core)

different choices of $\Delta \eta$
$\Delta \eta=\infty$: drops
slightly
$\Delta \eta=1.8$: drops quickly around
$d n / d \eta=10$

4.3 Core/corona contributions to hadrons production

Distinguish:
(A) The "core+corona" contribution: primary + core-corona separation + hydrodynamic evolution + microcanonical hadronization, but without hadronic rescattering.
(B) The "core" contribution: as (A), but considering only core particles.
(C) The "corona" contribution: as (A), but considering only corona particles.
(D) The "full" EPOS4 scheme: as (A), but in addition hadronic rescattering.

Note: Rescattering concerns core and corona particles

Core, corona, full pp at 7 TeV

pions, kaons, protons, lambdas (top to bottom)

Green:

Blue: corona
core+corona
Red: $\frac{\text { full }}{\text { core }+ \text { corona }}$

Core reaches to higher pt for baryons

Core has maximum at intermediate pt (flow)

Rescattering not very important

Core, corona, full PbPb at 5.02 TeV
pions, kaons, protons, lambdas (top to bottom)

Green: $\frac{\text { core }}{\text { core }+ \text { corona }}$
Blue: $\frac{\text { corona }}{\text { core }+ \text { corona }}$
Red: $\frac{\text { full }}{\text { core }+ \text { corona }}$
Core reaches to higher pt for baryons

Core has maximum at intermediate pt (flow)

Rescattering important

4.4 Core + corona results - multiplicity dependencies

Core fraction

Almost continuous! see DCCI2, Y. Kanakubo et al Phys. Rev. C 105 (2022) 2, 024905

Core + corona (co+co) results (sketch)

Transition from corona core
Attention! Core and corona curve continuous ... or not (depends on variable)

On top: effects from hadronic cascade (UrQMD, S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998), M. Bleicher et al., J. Phys. G25, 1859 (1999))
continuous curve
jump

Multiplicity dependence of charm production

saturation and "hydro" effect
pp 7TeV
Self-normalized D meson multiplicity
for different transverse momentum ranges
versus self-normalized charged particle multiplity,
compared to ALICE data

More details and many hundreds of plots data-simulation

 (https://klaus.pages.in2p3.fr/epos4/physics/papers)arxiv:2301.12517 PRC 108, 064903 EPOS4 Overviewarxiv:2306.02396 PRC 108, 034904 pQCD in EPOS4 with B. Guiot\square arxiv:2310.09380 PRC 109, 034918
Parallel scattering formalism, S-matrix theory \& pQCD \& saturation 46 pages, systematic and complete presentation of the theoretical basis,
\square arxiv:2306.10277 PRC 109, 014910
Microcanonical hadronization, core-corona in EPOS4
\square arxiv:2401.11275 EPOS4 results on RHIC with J. Jahan, I. Karpenko, T. Pierog, M. Stefaniak, D. Vintache
\square arxiv:2310.08684 EPOS4HQ: Heavy flavor collectivity in pp
\square arxiv:2401.17096 EPOS4HQ: Heavy flavour in HI at RHIC and LHC EPOS4HQ: Jiaxing Zhao, Joerg Aichelin, Pol-Bernard Gossiaux, KW

Key point: The presented formalism allows, for $A+B$ collisions (including $p p$)
\square to treat in parallel, instantaneously (mandatory at high energy)

- ALL $A \times B$ possible NN interactions
- each one composed of many parton-parton scatterings
\square by perfectly conserving energy-momentum (also mandatory)
\square being compatible with factorization for inclusive xsections after implementing dynamical saturation scales (forced to do so, for consistent picture, recover AGK!)
\square Monte Carlo 100\% compatible with theoretical framework

5 Complements

5.1 Configurations via Markov chains

Let x be a multidimensional random number (better random configuration) distributed according to some law $f(x)$.

Example 1: Ising model

x is one of the $2{ }^{\left(N^{3}\right)}$ possible states of the lattice

The law is

$$
f(x)=\frac{1}{Z} e^{-\beta E(x)}
$$

with

$$
\begin{aligned}
& E=-\alpha \sum_{\text {neighbors } k, k^{\prime}} s_{k} s_{k} \\
& \text { (thermal equilibrium) }
\end{aligned}
$$

Example 2:
 Pomeron configuration

x is a multiple Pomeron configuration

$$
x=\left\{\left\{m_{k}\right\},\left\{x_{k \mu}^{ \pm}\right\}\right\}
$$

$\mathrm{k}=1, \ldots, \mathrm{AB}, \mu=1, \ldots, m_{k}$

$$
\begin{aligned}
& \text { The law is } \\
& f(x)= \\
& \prod_{k=1}^{A B}\left[\frac{1}{m_{k}!} \prod_{\mu=1}^{m_{k}} G_{k \mu}\right] \times W_{A B} \\
& \left(\mathrm{GR}^{+}\right)
\end{aligned}
$$

$$
\begin{gathered}
G_{k \mu}=G\left(x_{k \mu}^{+}, x_{k \mu}^{-}, s, b_{k}\right) \\
W_{A B}=W_{A B}(x)
\end{gathered}
$$

details:
arXiv:2310.09380, PRC 109, 034918

Example 3: Decaying plasma

x is a set of n particles (up to several hundreds) with given ids and 4-momenta

The law (microcanonical) is

$$
\begin{gathered}
f(x)=N \frac{V^{n}}{(2 \pi \hbar)^{3 n}} \prod_{i=1}^{n} g_{i} \prod_{\alpha \in \mathcal{S}} \frac{1}{n_{\alpha}!} \\
\times \delta\left(E-\sum_{i=1}^{n} E_{i}\right) \delta\left(\Sigma_{i=1}^{n} \vec{p}_{i}\right) \\
\times \prod_{A} \delta_{Q_{A},}, \Sigma q_{A i} \\
\begin{array}{l}
N \text { overall normalization, } g_{i} \text { degeneracy, } \\
\mathcal{S} \text { set of particle species, } n_{\alpha} \text { number of } \\
\text { ptls of species } \alpha, Q_{A} \text { conserved quanti- } \\
\text { ties (u,d,s) }
\end{array}
\end{gathered}
$$

details:
arXiv:2306.10277, PRC 109, 014910

How to generate x according to some law $f(x)$?

Idea: Let's copy nature which always finds eventually the "equilibrium distribution"

A. Markov

Finally the method works not only for "thermal" distributions but for any law $f(x)$.

For each generation of a "random configuration" x :
One considers a stochastic iterative process (Markov chain)

$$
f_{1} \rightarrow f_{2} \rightarrow \ldots
$$

with appropriate transitions $f_{t} \rightarrow f_{t+1}$ (Metropolis) such that f_{t} converges to $f_{\infty}=f$

One generates corresponding random configurations x_{i}

$$
x_{1} \rightarrow x_{2} \rightarrow \ldots
$$

and takes finally $x=x_{\infty}$

Consider a sequence of such multidimensional random configurations

$$
x_{1}, x_{2}, x_{3}, \ldots
$$

with f_{t} being the law for x_{t}.
A homogeneous Markov chain is defined as

$$
f_{t}(x)=\sum_{x^{\prime}} f_{t-1}\left(x^{\prime}\right) p\left(x^{\prime} \rightarrow x\right) .
$$

with $p\left(x^{\prime} \rightarrow x\right)$ being the transition probability (or matrix). Normalization : $\sum_{x} p\left(x^{\prime} \rightarrow x\right)=1$.

Consider the law f_{t} for x_{t}. The law for x_{t+1} is

$$
\sum_{a} f_{t}(a) p(a \rightarrow b)
$$

One defines an operator T (like Translation)

$$
T f_{t}(b)=\sum_{a} f_{t}(a) p(a \rightarrow b) .
$$

So $T f_{t}=f_{t+1}$ is the law for x_{t+1} when f_{t} is the law for x_{t}.

A law is called stationary if $T f=f$.
Theorem: If a stationary law $T f=f$ exists, then $T^{k} f_{1}$ converges towards f (which is unique) for any f_{1}.

So to generate random configurations according to some (given) law f,
\square one constructs a T such that $T f=f$
\square and then considers $f_{1} \rightarrow T f_{1} \rightarrow T^{2} f_{1} \ldots$
\square and constructs the corresponding random configurations

One needs, for a given law f, to find a transition matrix p such that $T f=f$

Sufficient condition (detailed balance):

$$
f(a) p(a \rightarrow b)=f(b) p(b \rightarrow a),
$$

$$
\text { Proof : } \quad \begin{aligned}
T f(b) & =\sum_{a} f(a) p(a \rightarrow b) \\
& =\sum_{a} f(b) p(b \rightarrow a) \\
& =f(b) \sum_{a} p(b \rightarrow a) \\
& =f(b)
\end{aligned}
$$

Metropolis algorithm

Definitions:

$$
\begin{aligned}
p_{a b} & =p(a \rightarrow b), \\
f_{a} & =f(a) .
\end{aligned}
$$

Take

$$
p_{a b}=w_{a b} u_{a b}
$$

with

$$
w_{a b}: \text { proposal matrix }\left(\sum_{b} w_{a b}=1\right)
$$

$u_{a b}$: acceptance matrix $\left(u_{a b} \leq 1\right)$
This is NOT the simple acceptance-rejection method!!

Detailed balance:

$$
f_{a} p_{a b}=f_{b} p_{b a}
$$

amounts to

$$
f_{a} w_{a b} u_{a b}=f_{b} w_{b a} u_{b a},
$$

which may be written as

$$
\frac{u_{a b}}{u_{b a}}=\frac{f_{b}}{f_{a}} \frac{w_{b a}}{w_{a b}}
$$

The equation (detailed balance)

$$
\frac{u_{a b}}{u_{b a}}=\frac{f_{b}}{f_{a}} \frac{w_{b a}}{w_{a b}}
$$

is solved by

$$
u_{a b}=F\left(\frac{f_{b}}{f_{a}} \frac{w_{b a}}{w_{a b}}\right)
$$

with a function F with

$$
\frac{F(z)}{F\left(\frac{1}{z}\right)}=z .
$$

Proof : With $z \equiv \frac{f_{b}}{f_{a}} \frac{w_{b a}}{w_{a b}}$ one finds : $\frac{u_{a b}}{u_{b a}}=\frac{F(z)}{F\left(\frac{1}{z}\right)}=z=\frac{f_{b}}{f_{a}} \frac{w_{b a}}{w_{a b}}$.

The F according to Metropolis is

$$
F(z)=\min (z, 1) .
$$

One finds indeed

$$
\frac{F(z)}{F\left(\frac{1}{z}\right)}=\frac{\min (z, 1)}{\min \left(\frac{1}{z}, 1\right)}=\left\{\begin{array}{l}
z / 1 \\
\text { pour } z \leq 1 \\
1 / \frac{1}{z} \text { pour } z>1
\end{array}\right\}=z .
$$

So one proposes for each iteration a new configuation b according to some $w_{a b}$, and accepts it with probability

$$
u_{a b}=\min \left(\frac{f_{b}}{f_{a}} \frac{w_{b a}}{w_{a b}}, 1\right)
$$

\square Convergence is guaranteed for whatever choice of $w!!$
\square Provided we choose w such that starting from a any goal b can be reached with a nonzero probability for a finite (reasonable) number of iterations.

Example 1: Ising model

a is one of the $2^{\left(N^{3}\right)}$ possible states of the lattice

The law is

$$
f_{a}=\frac{1}{Z} e^{-\beta E_{a}}
$$

Proposal $w_{a b}$:
Choose randomly an atom of configuration a and make a spin flip

$$
u_{a b}=\min \left(\frac{f_{b}}{f_{a}}, \mathbf{1}\right) .
$$

if $f_{b} \geq f_{a}$: accepted
if $f_{b}<f_{a}$: accepted with weight f_{b} / f_{a}

Example 2:
 Pomeron configuration

x is a multiple Pomeron configuration

$$
x=\left\{\left\{m_{k}\right\},\left\{x_{k \mu}^{ \pm}\right\}\right\}
$$

$\mathrm{k}=1, \ldots, \mathrm{AB}, \mu=1, \ldots, m_{k}$

The law is
$f(x)=$
$\prod_{k=1}^{A B}\left[\frac{1}{m_{k}!} \prod_{\mu=1}^{m_{k}} G_{k \mu}\right] \times W_{A B}$
(GR+)

$$
\begin{gathered}
G_{k \mu}=G\left(x_{k \mu}^{+}, x_{k \mu^{\prime}}^{-} s, b_{k}\right) \\
W_{A B}=W_{A B}(x)
\end{gathered}
$$

Define interaction matrix

with (for row k)
m_{k} sites hosting a Pomeron and $m_{\max }-m_{k}$ "holes" considering ordering of Pomerons, purely technical

The law is then

$$
\begin{aligned}
& f(x)= \\
& \prod_{k=1}^{A B}\left[\frac{1}{m_{k}!} \prod_{\mu=1}^{m_{k}} G_{k \mu}\right] \times W_{A B} \\
& \quad / \prod_{k=1}^{A B} \frac{m_{\max }!}{\left(m_{\max }-m_{k}\right)!m_{k}!} \\
& \quad / \prod_{k=1}^{A B} m_{k}!
\end{aligned}
$$

$$
G_{k \mu}=G\left(x_{k \mu}^{+}, x_{k \mu}^{-}, s, b_{k}\right)
$$

$$
W_{A B}=W_{A B}(x)
$$

Define $w_{a b}$ such that b changes w.r.t. a only on one lattice site (like Ising model Metropolis),

Propose

\square hole with probalility p_{0}
\square Pomeron with

$$
\left(1-p_{0}\right) G / \int G d x=d x^{-}
$$

Long iterations, but allows to generate very complex configurations according to a very complex law.

The microcanonical law is

$$
\begin{gathered}
f(a)=N \frac{V^{n}}{(2 \pi \hbar)^{3 n}} \prod_{i=1}^{n} g_{i} \prod_{\alpha \in \mathcal{S}} \frac{1}{n_{\alpha}!} \\
\times \delta\left(E-\Sigma_{i=1}^{n} E_{i}\right) \delta\left(\Sigma_{i=1}^{n} \vec{p}_{i}\right) \\
\times \prod_{A} \delta_{Q_{A}, \Sigma q_{A i}} \\
d f=f \times \prod_{i=1}^{n} d^{3} p_{i}
\end{gathered}
$$

N overall normalization, g_{i} degeneracy, \mathcal{S} set of particle species, n_{α} number of ptls of species α, Q_{A} conserved quantities (u,d,s)

Instead of variable n :
Fixed L (large enough), but allow holes, and do ordering

$$
\begin{aligned}
& \left\{2 p, 1 K^{+}\right\} \\
& \rightarrow\left\{p, \varnothing, K^{+}, p, \varnothing\right\}
\end{aligned}
$$

\rightarrow add combinatorial factor
$\mathrm{C}=\frac{1}{n!}\left\{\prod_{\alpha \in \mathcal{S}} n_{\alpha}!\right\} \frac{n!(L-n)!}{L!}$
Coordinate trafo
$\left\{\vec{p}_{i}\right\} \rightarrow\left\{q_{j}\right\}, q_{j} \in[0,1]$
to get rid of δ functions arXiv:2306.10277, PRC 109, 014910

Transformed law [known $\tilde{f}]$:

$$
d \tilde{f}=\tilde{f}\left(\left\{q_{i}\right\}\right) \prod_{j=1}^{3 n-4} d q_{j}
$$

Proposal $w_{a b}$?
First define hadron weights
$e(h)=\left\{\begin{array}{cc}f_{h} /\left\{2 \sum f_{h}\right\} & \text { hadron } \\ 1 / 2 & \text { hole }\end{array}\right.$
f_{h} being the grand canonical yields

Proposal $\mathcal{W}_{a b}(\operatorname{arXiv}: 2306.10277$, PRC 109, 014910)

1) to obtain b, chose randomly four hadrons h_{i} in a, replace them by four hadrons h_{i}^{\prime} generated with weights $e\left(h_{i}^{\prime}\right)$, by conserving flavor
2) in case of change 'hadron to hole' or vice versa, replace one of the q_{j} by a $[0,1]$ random number
3) compute

$$
\frac{w_{a b}}{w_{b a}}=\frac{e\left(h_{1}^{\prime}\right) e\left(h_{2}^{\prime}\right) e\left(h_{3}^{\prime}\right) e\left(h_{4}^{\prime}\right)}{e\left(h_{1}\right) e\left(h_{2}\right) e\left(h_{3}\right) e\left(h_{4}\right)}
$$

4) compute f_{b}, and (with f_{a} already known from the step before)

$$
u_{a b}=F\left(\frac{f_{b}}{f_{a}} \frac{w_{b a}}{w_{a b}}\right)
$$

5) accept b with this probability

Summary Markov chains

\square Markov chain methods allow to generate very complex random configurations x according to laws $f(x)$, for very different physics problems.
\square In case of GR^{+}for $A+B$ collisions, it allows to treat ALL $A \times B$ possible interactions in parallel, instantaneously,
each one may amount to up to $n_{\max }$ cut Pomerons, each one characterized by 2 kinematic variables,
which gives $A \times B \times n_{\max } \times 2$ independent variables, highly connected, i.e., for big nuclei: $200 \times 200 \times 20 \times 2$

