

Parton interactions in medium Experiment

Marta Verweij Utrecht University

> GDR QCD School June 13, 2024

Dijets in PbPb

First direct observation of jet quenching (Dec. 2010 LHC)

Dijets in PbPb

First direct observation of jet quenching (Dec. 2010 LHC)

Dijets in PbPb

First direct observation of jet quenching (Dec. 2010 LHC)

Jet R_{AA}

Hadron vs Jet R_{AA}

Similar suppression for single hadrons and jets. Devil is in the details.

Boson-jet correlation

Advantage of boson-jet correlations:

Z bosons and photons aren't affected by medium

You know the energy of the jet before energy loss

Boson-jet correlation

Advantage of boson-jet correlations:

Z bosons and photons aren't affected by medium You know the energy of the jet before energy loss

Jets loose ~15% energy due to medium interaction

Where did the energy go?

JHEP 05 (2018) 006

What is jet substructure?

Dynamics of particles inside the jet

Two scales: angular + momentum space

Fragmentation Functions

Classic Jet Shapes

Groomed Observables

Sketches by J. Thaler

Single hadron

All hadrons

Subset of hadrons

Why jet substructure?

Structure of quenched jet different from unquenched?

- How is the parton shower modified?
- What is the exact mechanism modifying the shower?
- Can we relate shower modifications to medium properties?

Jet modification in hot QCD medium

Medium-induced energy loss

Medium-induced radiation

Coherence effects

Medium recoil

Medium response

Medium excitation | wake | jet-correlated medium

== a bit of the medium becomes part of the jet

 \rightarrow Causing excess of soft particles at large angle

Quenched parton shower + medium excitation

Quenched parton shower

Vacuum parton shower

Medium response needed to explain large angle measurements

Hard splitting as probe of medium

Idea: let a high p_T parton that splits into two other partons (antenna) propagate through the medium

Then study the influence of the medium on the antenna

Splitting probability in vacuum:

$$\mathrm{d}\mathcal{P}_{\mathrm{vac}} = 2 \frac{\alpha_s C_R}{\pi} \mathrm{d} \log z\theta \mathrm{d} \log \frac{1}{\theta}$$

Jet Lund Plane

Primary Jet Lund Plane

The Lund diagram

Just a plane to depict parton splittings

Triangle uniformly filled for a vacuum parton shower at LO

B. Andersson, G. Gustafson, L. Lönnblad and U. Pettersson, Z. Phys. C 43 (1989) 625 F. Dreyer, G. Salam, G. Soyez arXiv:1807.04758

Access to splittings in experiment

Order constituents in the jet

Walk back in history to identify splittings of interest

Access to splittings in experiment

Order constituents in the jet

Walk back in history to identify splittings of interest

Define your observable

- can be one specific splitting;
- but also multiple in one jet;

Vacuum Lund Plane

Running of α_s sculpts the plane

Dead Cone

Dead Cone

Nature volume 605, pages440-446 (2022)

Dead Cone

Lund plane and grooming

angular

Grooming selects on momentum fraction and angle of branches in angular ordered tree $z > z_{\text{cut}} \theta_{\uparrow}^{\beta}$

Lund and grooming

Grooming selects on momentum fraction and angle of branches in angular ordered tree

Varying the grooming condition allows to select different regions of radiation phase space

 $z > z_{\text{cut}} \, \theta_{\uparrow}^{\scriptscriptstyle P}$

energy threshold angular

exponent

Transport Coefficent

$$\hat{q} \equiv \frac{\langle q_{\perp}^2 \rangle}{\lambda}$$

Mean transverse kick per unit path length Depends on density through mean free path λ :

$$\lambda \propto \frac{1}{\rho}$$

Energy loss depends on \hat{q} and medium length (L)

$$\Delta E_{med} \sim \alpha_s \hat{q} L^2$$

In or outside the medium

A splitting can either occur inside or outside the medium \rightarrow depends on the formation time of the splitting

Coherent or incoherent splitting

Phase space in medium

3 regions for a splitting happening in medium

- 1) vacuum-like splitting inside medium that will be quenched
- 2) medium-induced splitting \rightarrow not uniform in Lund plane
- 3) unresolved splitting

Shared momentum fraction

No flavor dependence Weak jet p_T dependence In vacuum: Altarelli-Parisi splitting function Observable: Momentum balance between the two subjets as defined by grooming procedure

$$z_{g} = \frac{\min(p_{T,1}, p_{T,2})}{p_{T,1} + p_{T,2}}$$

Momentum fraction carried by the subleading branch

Larkoski, Marzani, Thaler, Tripathee, Xue PRL 119 (2017), 132003 Phys.Rev. D96 (2017), 074003

Jet splitting function

Robust observable: Momentum fraction carried by the subleading branch of first hard splitting

With groomed jets: soft large angle radiation removed to define the hardest splitting measure splitting function !

- Weak dependence on $\alpha_s \frac{1}{N_{\rm jets}} \frac{dN_i}{dz_g} \propto$ Weak dependence
- Weak dependence on jet p_T
- In vacuum: Altarelli-Parisi Splitting Function

Splitting fraction

For first measurements, pp reference was smeared. Distributions were self-normalized

Data suggested:

Splittings in quenched jets are a bit less balanced

Models capture the trend but different physics mechanisms responsible

Small θ_{g} : less vacuum-like emitters from which energy can be radiated \rightarrow less suppression observed in data

Marta Verweij

Nikhef Theory Seminar

Splitting angle

Nikhef Theory Seminar

Small θ_{g} : less vacuum-like emitters from which energy can be radiated \rightarrow less suppression observed in data

Large θ_{a} : more suppressed

Marta Verweij

Splitting angle Caucal, Iancu, Soyez, 1907.04866 & 2012.01457

 $\theta_{g} \leq \theta_{c}$ are relatively enhanced.

Is ALICE seeing color coherence effect? Or is this due to the number of emitters? Or a selection bias?

Suppression vs splitting angle

Jet p_T selection + energy loss results in observed r_q dependence

How much room remains for decoherent energy loss within the cone picture?

Marta Verweij

Suppression vs splitting angle

Jet p_T selection + energy loss results in observed r_q dependence

How much room remains for decoherent energy loss within the cone picture?

Marta Verweij

Energy-energy correlators

Energy-energy correlators

In experiment we see the end of the parton shower. A convolution of many effects. Multi-scale problem

Decorrelation of radiated gluons

All partons in shower 'see' medium

Each jet observable has different sensitivity

Summary

Jets are never simple.

And even more complicated when traversing a quark-gluon plasma.

Making progress on understanding in-medium parton shower

→ This leads to more accurate extraction of QGP properties (transport coefficient \hat{q} , (de)coherence angle θ_c , ...)

But there are open questions

• Role of medium response? Resolution scale of QGP? Quasi-particles?

Exciting times ahead with new data runs at RHIC and LHC

Thank you

z_g – formation times

Vacuum formation time of gluons with certain energy

z_g – RHIC vs LHC

Vacuum formation time of gluons with certain energy

Different experiments probing very different formation times. No overlap

$z_g - RHIC vs LHC$

Vacuum and medium formation times

Hard medium-induced radiation happens late in the shower

Jet p_T dependence

Modification gets slightly weaker when increasing jet p_T

Due to normalization, cannot distinguish between increase at low z_{α} or suppression at high z_{α}

Machine Learning Biases

Machine learning used to improve p_T resolution But how sensitive is the training to the fragmentation model?

Effects of up to 40% are observed

Future: need method less dependent on model and/or constrain FF