Partonic structure and small x: TMD PDFs

Charlotte Van Hulse University of Alcalá

Comunidad de Madrid

GDR QCD "From Hadronic Structure to Heavy Ion Collisions" 10-14 June 2024 IJCLab, Orsay, France

Wigner distributions $W(x, \vec{k}_T, \vec{b}_\perp)$

F	3.0
L	2.5
F	2.0
F	1.5
-	1.0
	05

2

_	3.0
_	2.5
_	2.0
F	1.5
L	1.0
L	0.5

2

2

- 2.5 - 2.0 - 1.5 - 1.0 - 0.5

- 3.0

2

nucleon polarisation

survive integration of parton transverse momentum

quark polarisation

U	L	Т
1		
	g_{1L}	
		h_{1T}

nucleon polarisation

quark polarisation

U	L	Т
1		h_1^\perp
	g_{1L}	h_{1L}^{\perp}
\perp L T	g_{1T}^{\perp}	$h_{1T}h_{1T}^{\perp}$

nucleon polarisation

quark polarisation

U	L	Т
1		h_1^{\perp}
	g_{1L}	h_{1L}^{\perp}
\perp 1 T	g_{1T}^{\perp}	$h_{1T}h_{1T}^{\perp}$

nucleon polarisation

quark polarisation

U	L	Т
1		h_1^{\perp}
	g_{1L}	h_{1L}^{\perp}
\perp 1 T	g_{1T}^{\perp}	$h_{1T}h_{1T}^{\perp}$

Chiral odd Naive T-odd

Spin-spin correlations

Spin-momentum correlations

$$Q^2 = -q^2$$
$$x_B = \frac{Q^2}{2P \cdot q}$$

Highly virtual photon: $Q^2 \gg 1 \text{ GeV}^2$ provides hard scale of process

$$Q^2 = -q^2$$
$$x_B = \frac{Q^2}{2P \cdot q}$$

parton distribution function $PDF(x_B)$

Highly virtual photon: $Q^2 \gg 1 \text{ GeV}^2$ provides hard scale of process

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

parton distribution function $PDF(x_B)$

Highly virtual photon: $Q^2 \gg 1 \text{ GeV}^2$ provides hard scale of process

fragmentation function FF(z)

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

Highly virtual photon: $Q^2 \gg 1 {
m GeV}^2$ provides hard scale of process

Transverse-momentum-dependent (TMD)

fragmentation function $FF(z, p_{\perp})$

Transverse-momentum-dependent (TMD) parton distribution function $PDF(x_B, k_{\perp})$

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

Highly virtual photon: $Q^2 \gg 1 \text{ GeV}^2$ provides hard scale of process

Transverse-momentum-dependent (TMD)

fragmentation function $FF(z, p_{\perp}, Q^2)$

TMD evolution

Transverse-momentum-dependent (TMD) parton distribution function $PDF(x_B, k_{\perp}, Q^2)$

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

Highly virtual photon: $Q^2 \gg 1 \text{ GeV}^2$ provides hard scale of process

Transverse-momentum-dependent (TMD)

fragmentation function $FF(z, p_{\perp}, Q^2)$

TMD evolution

Transverse-momentum-dependent (TMD) parton distribution function $PDF(x_R, k_\perp, Q^2)$

$$Q^{2} = -q^{2}$$
$$x_{B} = \frac{Q^{2}}{2P \cdot q}$$
$$z \stackrel{\text{lab}}{=} \frac{E_{h}}{E_{\gamma *}}$$

Highly virtual photon: $Q^2 \gg 1 \text{ GeV}^2$ provides hard scale of process

Transverse-momentum-dependent (TMD)

fragmentation function $FF(z, p_{\perp}, Q^2)$

TMD evolution

Transverse-momentum-dependent (TMD) parton distribution function $PDF(x_B, k_{\perp}, Q^2)$

- $\sigma^h(\phi, \phi_S) = \sigma^h_{UU} \left\{ 1 + 2 \langle \cos(\phi) \rangle \right\}$
 - + $\lambda_l 2 \langle \sin(\phi) \rangle_{LU}^h \sin(\phi) \rangle_{LU}^h$
 - + $S_L \left[2 \langle \sin(\phi) \rangle_{UL}^h \right]$
 - + $\lambda_l \left(2 \langle \cos(0\phi) \rangle_{LL}^h \right)$
 - + $S_T \left[2 \left(\sin(\phi \phi_S) \right) \right]$
 - + $2\langle \sin(3\phi \phi_S) \rangle_{U_s}^h$
 - + $2\langle \sin(2\phi \phi_S) \rangle_{U_s}^h$
 - + $\lambda_l \left(2 \langle \cos(\phi \phi_S) \rangle \right)$
 - + $2\langle \cos(\phi_S) \rangle_{LT}^h \cos(\phi_S) \rangle_{LT}^h$

 \vec{S}

 ϕ_S

$$\begin{aligned} \langle \phi \rangle \rangle_{UU}^{h} \cos(\phi) + 2\langle \cos(2\phi) \rangle_{UU}^{h} \cos(2\phi) \\ & = (\phi) \\ \sin(\phi) + 2\langle \sin(2\phi) \rangle_{UL}^{h} \sin(2\phi) \\ & \cos(0\phi) + 2\langle \cos(\phi) \rangle_{LL}^{h} \cos(\phi) \rangle \Big] \\ & = (\phi - \phi_S) + 2\langle \sin(\phi + \phi_S) \rangle_{UT}^{h} \sin(\phi + \phi_S) \\ & = (\phi - \phi_S) + 2\langle \sin(\phi_S) \rangle_{UT}^{h} \sin(\phi_S) \\ & = (\phi - \phi_S) \\ & = (\phi - \phi_S$$

target polarisation

($ec{S}$)

 ϕ_S

 \vec{L}'

 $2\langle \sin(\phi + \phi_S) \rangle_{UT}^h = \epsilon F_{UT}^{\sin(\phi + \phi_S)}$

Azimuthal amplitudes related to structure functions F_{XY} :

 $2\langle \sin(\phi + \phi_S) \rangle_{UT}^h = \epsilon F_{UT}^{\sin(\phi + \phi_S)}$

Azimuthal amplitudes related to structure functions F_{XY} :

Azimuthal amplitudes related to structure functions F_{XY} :

Azimuthal amplitudes related to structure functions F_{XY} :

quark polarisation

auol		U	L	Т
	U	f_1		h_1^\perp
	L		g_{1L}	h_{1L}^{\perp}
000	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_{1T}h_{1T}^{\perp}$
		1		

Azimuthal amplitudes related to structure functions F_{XY} :

quark polarisation

_				
auoi		U	L	Т
	U	f_1		h_1^\perp
	L		g_{1L}	h_{1L}^{\perp}
כופט	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_{1T}h_{1T}^{\perp}$

polarisation hadron

Azimuthal amplitudes related to structure functions F_{XY} :

quark polarisation

_				
auoi		U	L	Т
	U	f_1		h_1^\perp
	L		g_{1L}	h_{1L}^{\perp}
000	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_{1T}h_{1T}^{\perp}$
		1		

Ē

polarisation hadron

Azimuthal amplitudes related to structure functions F_{XY} :

quark polarisation

מווטו		U	L	Т
	U	f_1		h_1^\perp
2	L		g_{1L}	h_{1L}^{\perp}
000	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_{1T}h_{1T}^{\perp}$
5				

polarisation hadron

Azimuthal amplitudes related to structure functions F_{XY} :

quark polarisation

allor		U	L	т
aus	U	f_1		h_1^\perp
	L		g_{1L}	h_{1L}^{\perp}
Cleo	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_{1T} h_{1T}^{\perp}$
B				

polarisation 5 had

TMD PDFs and fragmentation functions (FFs)

Azimuthal amplitudes related to structure functions F_{XY} :

Transverse momentum dependent fragmentation functions

Unpolarized

Spin-spin correlations

Spin-momentum correlations

Fragmentation functions (FFs) (q,v) е 'u(x) D

Fragmentation functions

Drell-Yan

Drell-Yan

Adapted from A. Bacchetta

Adapted from A. Bacchetta

Validity of TMD description

2 characteristic scales: small P_{hT} and large Q^2

AN

Consistent results for TMD and CT3 in overlap region

Presented amplitudes

$$\sigma^{h}(\phi, \phi_{S}) = \sigma^{h}_{UU} \left\{ 1 + 2\langle \cos(\phi) \rangle + \lambda_{l} 2\langle \sin(\phi) \rangle^{h}_{LU} \sin(\phi) + S_{L} 2\langle \sin(\phi) \rangle^{h}_{UL} \sin(\phi) + S_{L} 2\langle \sin(\phi) \rangle^{h}_{UL} \sin(\phi) + \lambda_{l} (2\langle \cos(0\phi) \rangle^{h}_{LL} + S_{T} 2\langle \sin(0\phi - \phi_{S}) \rangle^{h}_{UT} + 2\langle \sin(0\phi - \phi_{S}) \rangle^{h}_{UT} + 2\langle \sin(0\phi - \phi_{S}) \rangle^{h}_{UT} + \lambda_{l} (2\langle \cos(\phi - \phi_{S}) \rangle^{h}_{UT} + \lambda_{l} (2\langle \cos$$

+ $2\langle\cos(\phi_S)\rangle_{LT}^h\cos(\phi_S)\rangle_{LT}^h$

$$\frac{2\langle\cos(\phi)\rangle_{UU}^{h}\cos(\phi) + 2\langle\cos(2\phi)\rangle_{UU}^{h}\cos(2\phi)}{2\langle\cos(2\phi)\rangle_{UL}^{h}\sin(\phi) + 2\langle\sin(2\phi)\rangle_{UL}^{h}\sin(2\phi)} \cos(2\phi)$$

$$\frac{\lambda_{LU}^{h}}{2\langle\psi}\sin(\phi) + 2\langle\sin(2\phi)\rangle_{UL}^{h}\sin(2\phi)$$

$$\frac{\lambda_{LL}^{h}\cos(0\phi) + 2\langle\cos(\phi)\rangle_{LL}^{h}\cos(\phi)\rangle}{2\langle\psi}\sin(\phi - \phi_{S}) + 2\langle\sin(\phi + \phi_{S})\rangle_{UT}^{h}\sin(\phi + \phi_{S})$$

$$\frac{\lambda_{LU}^{h}}{2\langle\psi}\sin(3\phi - \phi_{S}) + 2\langle\sin(\phi_{S})\rangle_{UT}^{h}\sin(\phi_{S})$$

$$\frac{\lambda_{LU}^{h}}{2\langle\psi}\cos(\phi - \phi_{S})$$

$$\frac{\lambda_{LU}^{h}}{2\langle\psi}\cos(\phi_{S}) + 2\langle\cos(2\phi - \phi_{S})\rangle_{LT}^{h}\cos(2\phi - \phi_{S})\rangle]$$

$$\frac{\lambda_{LU}^{h}}{k}\cos(\phi_{S}) + 2\langle\cos(2\phi - \phi_{S})\rangle_{LT}^{h}\cos(2\phi - \phi_{S})\rangle]$$

 $\vec{e} + \vec{p}, \vec{n}, \vec{d}$

 $e^{+} + e^{-}$

 $\vec{e} + \vec{p}, \vec{n}, \vec{d}$

 $e^{+} + e^{-}$

 $\vec{e} + \vec{p}, \vec{n}, \vec{d}$

 $e^{+} + e^{-}$

on

on

ron

Kinematic coverage

Kinematic coverage

PDF

Q

evolution

Q2

Spin-independent TMD

lepton		lepton					
proton	semi-ine	clusive	DIS	hadron			
	Experiment	Reaction	ref.	Kinematics	$\begin{array}{c} N_{\rm pt} \\ {\rm after \ cuts} \end{array}$		
	HERMES	$p \rightarrow \pi^{+}$ $p \rightarrow \pi^{-}$ $p \rightarrow K^{+}$ $p \rightarrow K^{-}$ $D \rightarrow \pi^{+}$ $D \rightarrow \pi^{-}$ $D \rightarrow K^{+}$ $D \rightarrow K^{-}$	[67]	$\begin{array}{l} 0.023 < x < 0.6 \ (6 \ {\rm bins}) \\ 0.2 < z < 0.8 \ (6 \ {\rm bins}) \\ 1.0 < Q < \sqrt{20} \ {\rm GeV} \end{array}$ $W^2 > 10 {\rm GeV}^2 \\ 0.1 < y < 0.85 \end{array}$	$ \begin{array}{r} 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\ 24 \\$		
	COMPASS	$\frac{d \to h^+}{d \to h^-}$	[68]	0.003 < x < 0.4 (8 bins) 0.2 < z < 0.8 (4 bins) $1.0 < Q \simeq 9 \text{GeV}$ (5 bins)	195 195		
	Total				582		

) PD	-S:	glok	Dal	a	na	alys	sis	
proton		lepton	 	. Sc	imemi	, A. Vlac	dimirov JHE	EP 06 (2
			Experiment	ref.	$\sqrt{s} \; [\text{GeV}]$	$Q \; [\text{GeV}]$	y/x_F	fiducial
			E288 (200)	[73]	19.4	4-9 in 1 GeV bins [*]	$0.1 < x_F < 0.7$	
proton		lepton	E288 (300)	[73]	23.8	$\begin{array}{c} 4-12 \text{ in} \\ 1 \text{ GeV bins}^* \end{array}$	$-0.09 < x_F < 0.51$	
	Drell-Y	án	E288 (400)	[73]	27.4	5-14 in 1 GeV bins [*]	$-0.27 < x_F < 0.33$	_
			E605	[74]	38.8	7–18 in 5 bins*	$-0.1 < x_F < 0.2$	_
			E772	[75]	38.8	5–15 in 8 bins*	$0.1 < x_F < 0.3$	
			PHENIX	[76]	200	4.8-8.2	1.2 < y < 2.2	
			CDF (run1)	[77]	1800	66-116		
			CDF (run2)	[78]	1960	66-116		-
			D0 (run1)	[79]	1800	75–105		
			D0 (run2)	[80]	1960	70–110		
			D0 $(run2)_{\mu}$	[81]	1960	65–115	y < 1.7	$p_T > 15 \text{ GeV}$ $ \eta < 1.7$
			ATLAS (7 TeV)	[47]	7000	66–116	$\begin{split} y < 1 \\ 1 < y < 2 \\ 2 < y < 2.4 \end{split}$	$p_T > 20 \text{ GeV}$ $ \eta < 2.4$
			ATLAS (8 TeV)	[48]	8000	66 - 116	y < 2.4in 6 bins	$p_T > 20 \text{ GeV}$ $ \eta < 2.4$
			ATLAS (8 TeV)	[48]	8000	46-66	y < 2.4	$p_T > 20 \text{ GeV}$ $ \eta < 2.4$
			ATLAS (8 TeV)	[48]	8000	116-150	y < 2.4	$p_T > 20 \text{ GeV}$ $ \eta < 2.4$
			CMS (7 TeV)	[49]	7000	60–120	y < 2.1	$p_T > 20 \text{ GeV}$ $ \eta < 2.1$
			CMS (8 TeV)	[50]	8000	60-120	y < 2.1	$p_T > 20 \text{ GeV}$ $ \eta < 2.1$
			LHCb (7 TeV)	[82]	7000	60-120	2 < y < 4.5	$p_T > 20 \text{ GeV}$ $2 < \eta < 4.5$
			LHCb (8 TeV)	[83]	8000	60-120	2 < y < 4.5	$p_T > 20 \text{ GeV}$ $2 < \eta < 4.5$
			LHCb (13 TeV)	[84]	13000	60-120	2 < y < 4.5	$p_T > 20 \text{ GeV}$ $2 < n < 4.5$
10			Total					

	$N_{\rm pt}$
	after cuts
	43
	53
	76
	53
	35
	3
	33
	39
	16
	8
V	3
V	15
V	30
V	3
V	7
V	8
V	8
V 5	8
V 5	7
V	9
	457

Spin-independent TMD PDFs: global analysis I. Scimemi, A. Vladimirov JHEP 06 (2020)137 lepton proton fiducial lepton $\sqrt{s} \, [\text{GeV}]$ $Q \; [\text{GeV}]$ Experiment ref. y/x_F region 4-9 in E288 (200) [73]19.4 $0.1 < x_F < 0.7$ 1 GeV bins^* 4-12 inprotor 23.8E288 (300) [73] $-0.09 < x_F < 0.51$ lepton 1 GeV bins^* 5–14 in E999 (400) Description of the data hadron ATLAS 7TeV ATLAS 7TeV semi-inclusive DIS $|y| \in [0.0, 1.0]$ $|y| \in [1.0, 2.0]$ χ^2/N_{pt} =1.67 (0.77) χ^2/N_{pt} =6.00 (4.10) $dq_T[GeV]$ $7. < Q^2 < 16.$ $16. < Q^2 < 81.$ $d \rightarrow h^+$ <u>, 5000</u>0 $z^2 \times M(z, p_T)$ 0.15∙ ∙ 0.975 $\rightarrow p_T [\text{GeV}]$ $d\sigma/dq_T[pb/GeV]$ ATLAS 8TeV ATLAS 8TeV $3. < Q^2 < 7.$ $|y| \in [0.0, 0.4]$ $|y| \in [0.4, 0.8]$ $\chi^2/N_{pt} = 2.37 (3.40)$ $\chi^2/N_{pt} = 2.90 (3.25)$ <u>5000</u>0 --- NNLO $\langle d/\sigma \rangle = 2.0\% (1.2\%)$ $\langle d/\sigma \rangle = 2.0\% (1.2\%)$ 0.15 <u>TTTT</u> ----- N³LO ŢŢŢŢĬĬĬĬ ŢŢŢŢŎŎŎŎŎŎŎ 1.012 $1.7 < Q^2 < 3.$ $\sigma/dq_T[{ m pb/GeV}]$ ATLAS 8TeV $\times 1.25$ ATLAS 8TeV 0.15 $\bullet 0.2 < z < 0.3$ $|y| \in [1.2, 1.6]$ $|y| \in [1.6, 2.0]$ offset = +0.09 $\chi^2/N_{pt} = 1.23 (0.48)$ χ^2/N_{pt} =1.91 (1.39) $\bullet 0.3 < z < 0.4$ $\langle d/\sigma \rangle = 3.5\% (2.6\%)$ $\langle d/\sigma \rangle = 2.8\% (1.9\%)$ offset = +0.07 $\bullet 0.4 < z < 0.6$ $1. < Q^2 < 1.7$ offset = +0.050.2 $\bullet 0.6 < z < 0.8$ offset = +0. 1.025 -0.15-0.97514 21 14 142128212835 q_T NNLO/N³LO Total 0.25 0.250.50.250.250.5-0.75

 $A_{UT} = \frac{1}{\langle |S_T| \rangle} \frac{N^{\uparrow}(\phi, \phi_S) - N^{\downarrow}(\phi, \phi_S)}{N^{\uparrow}(\phi, \phi_S) + N^{\downarrow}(\phi, \phi_S)}$

 $A_{UT} = \frac{1}{\langle |S_T| \rangle} \frac{N^{\uparrow}(\phi, \phi_S) - N^{\downarrow}(\phi, \phi_S)}{N^{\uparrow}(\phi, \phi_S) + N^{\downarrow}(\phi, \phi_S)}$

 $\sim \sin(\phi + \phi_S) \sum e_q^2 C \left[h_{1T}^q(x, k_\perp) \times H_1^{\perp, q}(z, p_\perp) \right]$ \boldsymbol{Q}

 $A_{UT} = \frac{1}{\langle |S_T| \rangle} \frac{N^{\uparrow}(\phi, \phi_S) - N^{\downarrow}(\phi, \phi_S)}{N^{\uparrow}(\phi, \phi_S) + N^{\downarrow}(\phi, \phi_S)}$

 $\sim \sin(\phi + \phi_S) \sum_{q} e_q^2 C \left[h_{1T}^q(x, k_\perp) \times H_1^{\perp,q}(z, p_\perp) \right]$

 $A_{UT} = \frac{1}{\langle |S_T| \rangle} \frac{N^{\uparrow}(\phi, \phi_S) - N^{\downarrow}(\phi, \phi_S)}{N^{\uparrow}(\phi, \phi_S) + N^{\downarrow}(\phi, \phi_S)}$

 $\sim \sin(\phi + \phi_S) \sum_{q} e_q^2 C \left[\frac{h_{1T}^q(x, k_\perp) \times H_1^{\perp, q}(z, p_\perp)}{1} \right]$

 $A_{UT} = \frac{1}{\langle |S_T| \rangle} \frac{N^{\uparrow}(\phi, \phi_S) - N^{\downarrow}(\phi, \phi_S)}{N^{\uparrow}(\phi, \phi_S) + N^{\downarrow}(\phi, \phi_S)}$

 $\sim \sin(\phi + \phi_S) \sum_{q} e_q^2 C \left[h_{1T}^q(x, k_\perp) \times H_1^{\perp,q}(z, p_\perp) \right]$

 $h_{1T}^q(x, k_{\perp})$: transversity $H_1^{\perp,q}(z,p_{\perp})$: Collins fragmentation function

Collins amplitudes

Artru model

polarisation component in lepton scattering plane reversed by photoabsorption:

string break, quark-antiquark pair with vacuum numbers:

X. Artru et al., Z. Phys. C73 (1997) 527

Collins amplitudes

Collins amplitudes

$A_{M}^{\sin(\phi_h + \phi_s)} \propto h^q \otimes H_{1q}^{\perp h} SSA[twist-2]$ Colling amplitudes: QCD evolution

 $\mathscr{C} \mid h_{1T}^q \times H_1^{\perp,q}$

Sivers amplitudes

- Sivers function:
- requires non-zero orbital angular momentum
- final-state interactions azimuthal asymmetries

Sivers amplitudes

- Sivers function:
- requires non-zero orbital angular momentum
- final-state interactions azimuthal asymmetries

Sivers amplitudes

- Sivers function:
- requires non-zero orbital angular momentum
- final-state interactions azimuthal asymmetries

- π^+ :
 - positive -> non-zero orbital angular momentum
- *π*⁻:
- consistent with zero $\rightarrow u$ and d quark cancelation

Sivers function

nucleon polarised along \hat{y}

for SIDIS and Drell-Yan

J. C. Collins, Phys. Lett. B 536 (2002) 43

 $P, S \rangle$

$d\sigma(\pi^{-}p^{\uparrow} \to \mu^{+}\mu^{-}X) \sim 1 + \overline{h}_{1}^{\perp} \otimes h_{1}^{\perp} \cos(2\phi) + |S_{T}| \quad \overline{f}_{1} \otimes \overline{f}_{1T}^{\perp} \sin \phi_{S} + |S_{T}| \quad \overline{h}_{1}^{\perp} \otimes h_{1T}^{\perp} \sin(2\phi + \phi_{S}) + |S_{T}| \quad \overline{h}_{1}^{\perp} \otimes h_{1T}^{\perp} \sin(2\phi - \phi_{S})$

/

/

 $d\sigma(\pi^- p^\uparrow \to \mu^+ \mu^- X) \sim 1 + \overline{h}_1^\perp \otimes h_1^\perp \cos(2\phi)$ $+|S_T| \ \overline{f}_1 \otimes \overline{f}_{1T}^{\perp} \sin \phi_S$ $+|S_T| \ \overline{h}_1^{\perp} \otimes h_{1T}^{\perp} \sin(2\phi + \phi_S)$ $+|S_T| \overline{h_1^{\perp}} \otimes h_{1T} \sin(2\phi - \phi_S)$

/

/

$$\rightarrow \mu^{+}\mu^{-}X) \sim 1 + \overline{h}_{1}^{\perp} \otimes h_{1}^{\perp} \cos(2\phi)$$

$$+ |S_{T}| \quad \overline{f}_{1} \otimes f_{1T}^{\perp} \sin \phi_{S}$$

$$+ |S_{T}| \quad \overline{h}_{1}^{\perp} \otimes h_{1T}^{\perp} \sin(2\phi + \phi_{S})$$

$$+ |S_{T}| \quad \overline{h}_{1}^{\perp} \otimes h_{1T} \sin(2\phi - \phi_{S})$$

$$\pi^{-} \qquad p$$

/

/

Investigation of the Sivers sign change in $p^{\uparrow}\pi^{-}$ collisions

Investigation of the Sivers sign change in $p^{\uparrow}\pi^{-}$ collisions

Investigation of the Sivers sign change in $p^{\uparrow}p$ collisions

arXiv:2308.15496v1

 $\cos(2\phi_h) \sum e_q^2 C \left[\frac{h_{\perp,q}(x,k_{\perp}) \times H_{\perp,q}(z,p_{\perp})}{1} \right]$

Spin-dependence with unpolarised hadrons!

 $\cos(2\phi_h) \sum e_q^2 C \left[h_1^{\perp,q}(x,k_\perp) \times H_1^{\perp,q}(z,p_\perp) \right]$

Boer-Mulders PDF

$$\sum \left[h_1^{\perp,q}(x,k_{\perp}) \times H_1^{\perp,q}(z,p_{\perp}) \right]$$

Spin-dependence with unpolarised hadrons!

Measurement in ep:

 $\langle \cos(2\phi_h) \rangle_{Born}(j)$

 $\langle \cos(2\phi_h) \rangle_{meas}(i)$

Measurement in ep:

 $\langle \cos(2\phi_h) \rangle_{Born}(j)$

QED radiate effects

•

 $\langle \cos(2\phi_h) \rangle_{meas}(i)$

Measurement in ep:

 $\langle \cos(2\phi_h) \rangle_{Born}(j)$

•

•

limited geometric and kinematic acceptance of detector

Measurement in ep:

 $\langle \cos(2\phi_h) \rangle_{Born}(j)$

- QED radiate effects •
- •
- •

 $\langle \cos(2\phi_h) \rangle_{meas}(i)$

limited geometric and kinematic acceptance of detector

limited detector resolution

Measurement in ep:

 $\langle \cos(2\phi_h) \rangle_{Born}(j)$

- QED radiate effects •
- ٠
- •

 $\langle \cos(2\phi_h) \rangle_{meas}(i)$

limited geometric and kinematic acceptance of detector

limited detector resolution

Boer-Mulders male: 4 To Catation In 26460131 @ Libux77 | Dreamstime.com

	 Extrasmall 	480x360px	6.7" x 5"	@72dp	i 85.2KB				
	O Small	800x600px	11.1" x 8.3"	@72dp	i 180KB				
	O Medium	2000x1499px	6.7" x 5"	@300d	pi 0.7MB				
	O Large	2582x1936px	8.6" x 6.5"	@300d	pi 1MB				
	Extralarge	3266x2449px	10.9" x 8.2"	'@300d	pi 1.5MB				
Aeasurement in ep:	O Maximum	6667x5000px	22.2" x 16.7	" @300d	pi 3.8MB				
			Add to lightbo	х					
3d illustration featuring reflective 4d letters backlit on visit my personal collection of 3d text illustrations.	white background. Please								
Share		Fully differential analysis							
MORE SIMILAR STOCK IMAG	ES OF `4D TEXT`	-	J						
		$\int \int $							
4D cinema technology sy Sales prom	action 3D text 10 off 4D	4D 4D letters 4D logo, 3D rendering IS X 12 φ-binS							
		Variable			Bin lin	nits			#
		х	0.023	0.042	0.078	0.145	0.27	1	5
x 10 ²		У	0.3	0.45	0.6	0.7	0.85		4
- MC		Z	0.2	0.3	0.45	0.6	0.75	1	5
1500		P _{hT}	0.05	0.2	0.35	0.5	0.75		4
1000 500 0.0									
0 2	4 6								

 $\mathbf{\phi}_h$

tector

Boer-Mulders asymmetries

H–D comparison: $h_1^{\perp,u} \approx h_1^{\perp,d}$ Negative for π^+ ; positive for $\pi^- \to H_1^{\perp,fav} \approx -H_1^{\perp,disfav}$

Boer-Mulders asymmetries

H–D comparison: $h_1^{\perp,u} \approx h_1^{\perp,d}$ Negative for π^+ ; positive for $\pi^- \to H_1^{\perp,fav} \approx -H_1^{\perp,disfav}$

$\langle \sin(\phi) \rangle_{LU}^h \propto \mathcal{C} \left[h_1^\perp \times \tilde{E}, e \times H_1^\perp, g^\perp \times D_1, f_1 \times \tilde{G}^\perp \right]$

Boer-Mulders PDF

$$e(x) = e^{WW}(x) + \bar{e}(x)$$

$$e(x) = e^{WW}(x) + \bar{e}(x)$$

$$e_2 \equiv \int_0^1 dx \, x^2 \bar{e}(x)$$
force on struck quark at t=0
M. Burkardt, arXiv:0810.3589

Twist-3: $\langle \sin(\phi) \rangle_{LU}^{h}$

- Opposite behaviour for π^{-} z projection due to different x range probed
- CLAS probes higher x region: more sensitive to $e \times H_1^{\perp}$? $\langle \sin(\phi) \rangle_{LU}^h \propto \mathcal{C} \left[h_1^\perp \times \tilde{E}, x \, e \times H_1^\perp, x \, g^\perp \times D_1, f_1 \times \tilde{G}^\perp \right]$

Twist-3: $\langle \sin(\phi) \rangle_{LU}^{h}$

- Opposite behaviour for π^{-} z projection due to different x range probed
- CLAS probes higher x region: more sensitive to $e \times H_1^{\perp}$? $\langle \sin(\phi) \rangle_{LU}^h \propto \mathcal{C} \left[h_1^\perp \times \tilde{E}, x \, e \times H_1^\perp, x \, g^\perp \times D_1, f_1 \times \tilde{G}^\perp \right]$

CLAS12, Phys. Rev. Lett. **128** (2022) 062005

Gluon TMD PDFs

gluon polarisation

ation		U	circular	linear
olaris	U	f_{1}^{g}		$h_1^{\perp g}$
eon p	L		g_1^g	$h_{1L}^{\perp g}$
nucl	T	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g, h_{1T}^{\perp g}$

 ${}_{T}^{\mu\nu}(x,\boldsymbol{p}_{T}) = \frac{x}{2} \left\{ g_{T}^{\mu\nu} \frac{\epsilon_{T}^{\rho\sigma} p_{T\rho} S_{T\sigma}}{M_{p}} \left(f_{1T}^{\perp g}(x,\boldsymbol{p}_{T}^{2}) + \dots \right) \right\}$

 η_c, χ_{c0}

Gluon TMD PDFs

gluon polarisation

ation		U	circular	linear
olaris	U	f_1^g		$h_1^{\perp g}$
eon p	L		g_1^g	$h_{1L}^{\perp g}$
nucl	T	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g, h_{1T}^{\perp g}$

 ${}_{T}^{\mu\nu}(x,\boldsymbol{p}_{T}) = \frac{x}{2} \left\{ g_{T}^{\mu\nu} \frac{\epsilon_{T}^{\rho\sigma} p_{T\rho} S_{T\sigma}}{M_{p}} \left(f_{1T}^{\perp g}(x,\boldsymbol{p}_{T}^{2}) + \dots \right) \right\}$

• In contrast to quark TMDs, η_c, χ_{c0} gluon TMDs are almost unknown

Gluon TMD PDFs

gluon polarisation

ation		U	circular	linear
olaris	U	f_1^g		$h_1^{\perp g}$
eon p	L		g_1^g	$h_{1L}^{\perp g}$
nucl	T	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g, h_{1T}^{\perp g}$

 ${}_{T}^{\mu\nu}(x,\boldsymbol{p}_{T}) = \frac{x}{2} \left\{ g_{T}^{\mu\nu} \frac{\epsilon_{T}^{\rho\sigma} p_{T\rho} S_{T\sigma}}{M_{p}} \left(f_{1T}^{\perp g}(x,\boldsymbol{p}_{T}^{2}) + \dots \right) \right\}$

• In contrast to quark TMDs, η_c, χ_{c0} gluon TMDs are almost unknown

 Accessible through production of dijets, high-P_T hadron pairs, quarkonia

Gluon TMDs via $J/\psi J/\psi$ production

 $\cdot J/\psi J/\psi$ production largely dominated by gluon-induced processes

Gluon TMDs via $J/\psi J/\psi$ production

• $J/\psi J/\psi$ production largely dominated by gluon-induced processes $\sigma \propto F_1 \mathscr{C}[f_1^g f_1^g] + F_2 \mathscr{C}[w_2 h_1^{g\perp} h_1^{g\perp}] + \left(F_3 \mathscr{C}[w_3 f_1^g h_1^{g\perp}] + F_3 \mathscr{C}[w_3' f_1^g h_1^{g\perp}]\right) \cos\left(2\phi_{CS}\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g\perp} h_1^{g\perp}]\right) \cos\left(4\phi_{CS}\right)$
• $J/\psi J/\psi$ production largely dominated by gluon-induced processes

 $\sigma \propto F_1 \mathscr{C}[f_1^g f_1^g] + F_2 \mathscr{C}[w_2 h_1^{g\perp} h_1^{g\perp}] + \left(F_3 \mathscr{C}[w_3 f_1^g h_1^{g\perp}] + F_3' \mathscr{C}[w_3' f_1^g h_1^{g\perp}]\right) \cos\left(2\phi_{CS}\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g\perp} h_1^{g\perp}]\right) \cos\left(4\phi_{CS}\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g\perp} h_1^{g\perp}]\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g\perp} h_1^{g\perp}\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g\perp} h_1^{g\perp}\right) + \left(F_$

• $J/\psi J/\psi$ production largely dominated by gluon-induced processes

 $\sigma \propto F_1 \mathscr{C}[f_1^g f_1^g] + F_2 \mathscr{C}[w_2 h_1^{g\perp} h_1^{g\perp}] + \left(F_3 \mathscr{C}[w_3 f_1^g h_1^{g\perp}] + F_3 \mathscr{C}[w_3^{\prime} f_1^g h_1^{g\perp}]\right) \cos\left(2\phi_{CS}\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g\perp} h_1^{g\perp}]\right) \cos\left(4\phi_{CS}\right)$

• $J/\psi J/\psi$ production largely dominated by gluon-induced processes

 $\sigma \propto F_1 \mathscr{C}[f_1^g f_1^g] + F_2 \mathscr{C}[w_2 h_1^{g\perp} h_1^{g\perp}] + \left(F_3 \mathscr{C}[w_3 f_1^g h_1^{g\perp}] + F_3 \mathscr{C}[w_3' f_1^g h_1^{g\perp}]\right) \cos\left(2\phi_{CS}\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g\perp} h_1^{g\perp}]\right) \cos\left(4\phi_{CS}\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g\perp} h_1^{g\perp}]\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g\perp} h_1^{g\perp}\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g\perp} h_1^{g\perp}\right) + \left(F_4$

- $J/\psi J/\psi$ production largely dominated by gluon-induced processes
- Invariant mass of pair \rightarrow scale variation

 $\sigma \propto F_1 \mathscr{C}[f_1^g f_1^g] + F_2 \mathscr{C}[w_2 h_1^{g\perp} h_1^{g\perp}] + \left(F_3 \mathscr{C}[w_3 f_1^g h_1^{g\perp}] + F_3 \mathscr{C}[w_3' f_1^g h_1^{g\perp}]\right) \cos\left(2\phi_{CS}\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g\perp} h_1^{g\perp}]\right) \cos\left(4\phi_{CS}\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g\perp} h_1^{g\perp}]\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g\perp} h_1^{g\perp}\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g\perp} h_1^{g\perp}\right) + \left(F_4$

- $J/\psi J/\psi$ production largely dominated by gluon-induced processes
- Invariant mass of pair \rightarrow scale variation
- Need to subtract double-parton-scattering contribution from data

 $\sigma \propto F_1 \mathscr{C}[f_1^g f_1^g] + F_2 \mathscr{C}[w_2 h_1^{g\perp} h_1^{g\perp}] + \left(F_3 \mathscr{C}[w_3 f_1^g h_1^{g\perp}] + F_3' \mathscr{C}[w_3' f_1^g h_1^{g\perp}]\right) \cos\left(2\phi_{CS}\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g\perp} h_1^{g\perp}]\right) \cos\left(4\phi_{CS}\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g\perp} h_1^{g\perp}]\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g\perp} h_1$

- $J/\psi J/\psi$ production largely dominated by gluon-induced processes $\sigma \propto F_1 \mathscr{C}[f_1^g f_1^g] + F_2 \mathscr{C}[w_2 h_1^{g\perp} h_1^{g\perp}] + \left(F_3 \mathscr{C}[w_3 f_1^g h_1^{g\perp}] + F_2 \mathscr{C}[w_2 h_1^{g\perp} h_1^{g\perp}]\right) + F_2 \mathscr{C}[w_2 h_1^{g\perp} h_1^{g\perp}] + F_2 \mathscr{C}[w_3 h_1^{g\perp} h_1^{g\perp}] + F_3 \mathscr{C}[w_3 h_1^{g\perp} h_1^{g\perp} h_1^{g\perp}] + F_3 \mathscr{C}[w_3 h_1^{g\perp} h_1^{g\perp}] +$
- Invariant mass of pair \rightarrow scale variation
- Need to subtract double-parton-scattering contribution from data

$$F_3^{\prime} \mathscr{C}[w_3^{\prime} f_1^{g} h_1^{g \perp}] \right) \cos\left(2\phi_{CS}\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g \perp} h_1^{g \perp}]\right) \cos\left(4\phi_{CS}\right)$$

- $J/\psi J/\psi$ production largely dominated by gluon-induced processes $\sigma \propto F_1 \mathscr{C}[f_1^g f_1^g] + F_2 \mathscr{C}[w_2 h_1^{g\perp} h_1^{g\perp}] + \left(F_3 \mathscr{C}[w_3 f_1^g h_1^{g\perp}] + H_1^{g\perp}\right) + F_2 \mathscr{C}[w_2 h_1^{g\perp} h_1^{g\perp}] + F_2 \mathscr{C}[w_3 f_1^g h_1^g h_1^{g\perp}] + F_2 \mathscr{C}[w_3 f_1^g h_1^g h_1^$
- Invariant mass of pair \rightarrow scale variation
- Need to subtract double-parton-scattering contribution from data

$$F_3^{\prime} \mathscr{C}[w_3^{\prime} f_1^{g} h_1^{g \perp}] \right) \cos\left(2\phi_{CS}\right) + \left(F_4 \mathscr{C}[w_4 h_1^{g \perp} h_1^{g \perp}]\right) \cos\left(4\phi_{CS}\right)$$

Spin-independent gluon TMDs via $J/\psi J/\psi$ production

Upcoming

Experimental Research

Meson structure

Upcoming

Upcoming

Future

Spin-independent TMD PDFs at EIC

Fit: A. Bacchetta et al., JHEP 06 (2017) 081, JHEP 06 (2019) 051 (erratum)

EIC uncertainties dominated by assumed 3% point-to-point uncorrelated uncertainty 3% scale uncertainty

Theory uncertainties dominated by TMD evolution.

Spin-independent TMD PDFs at EIC

Fit: A. Bacchetta et al., JHEP 06 (2017) 081, JHEP 06 (2019) 051 (erratum)

EIC uncertainties dominated by assumed 3% point-to-point uncorrelated uncertainty 3% scale uncertainty

Theory uncertainties dominated by TMD evolution.

Spin-independent TMD PDF: impact of EIC

DIS variables via scattered lepton

$$Q^2 > 1 \text{ GeV}^2$$
 5 × 41
 $0.01 < y < 0.95$ 10 × 10
 $W^2 > 10 \text{ GeV}^2$ 18 × 27

$$\mathcal{L} = 10$$
 :

Sivers TMD PDF: TMD evolution \mathscr{C} Sivers asymmetry ECCE Parametrisation: M. Bury et al., JHEP, 05:151, 2021 0.05

Decrease of asymmetry with increasing $Q^2 \rightarrow$ need high precision (<1%) to measure asymmetry at high Q^2

Sivers asymmetry

Beam polarisations assumed to be 70%.

systematic uncertainty= generated - reconstructed

Additionally: 3% scale uncertainty

- Low x and Q²: small statistical uncertainty. High precision is needed since asymmetry at low x and Q² well below 1%.
- For not too large z and P_T , statistical uncertainty well below 1%.
- Systematic uncertainties increase with z and P_T : likely because of higher smearing effects.

46

Q² dependence of the Sivers asymmetry at EIC

Intermediate and high x: good coverage in Q², with complementarity in coverage at different COM energies.

Sivers TMD PDF: impact of EIC

Q=2 GeV

DIS variables via scattered lepton

$$Q^2 > 1 \text{ GeV}^2$$

 $0.01 < y < 0.95$
 $W^2 > 10 \text{ GeV}^2$

$$\begin{array}{l} 5 \times 41 \ \mathrm{GeV}^2 \\ 10 \times 100 \ \mathrm{GeV}^2 \\ 18 \times 100 \ \mathrm{GeV}^2 \\ 18 \times 275 \ \mathrm{GeV}^2 \end{array} \quad \mathcal{L} = 10 \ \mathrm{fb}^{-1} \ \mathrm{for \ each \ collision \ energy} \\ \end{array}$$

Parametrisation from M. Bury et al., JHEP, 05:151, 2021

Summary

 Transverse momentum dependent hadron structure and hadron formation: rich field of physics, with sensitivity to correlations between quark and hadron spin and transverse momentum.

Pioneering fixed-target experiments at HERMES, COMPASS, JLab 6 GeV: quark distributions

- Entering era of precision measurements:
 - JLab 12 GeV: unique precision in the valence region
 - EIC: extending down to x=10⁻⁴
 - LHC measurements can provide additional, invaluable high energy input
 - need to extend measurements with sensitivity to gluons