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data exist (0.01 . x . 0.3) should be taken with due care. At variance with previous studies, in the denominator of
the asymmetries in Eqs. (4) and (12) we are using unpolarized TMDs that were extracted from data in our previous
Pavia17 fit, with their own uncertainties. Therefore, our uncertainty bands in Fig. 1 represent a realistic estimate of
the statistical error of the Sivers function.
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Figure 2: The density distribution ⇢a
p"

of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the

reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at x = 0.1,
lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68% uncertainty band of the distribution at ky = 0 (where the e↵ect
of the distortion due to the Sivers function is maximal) while left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized
proton). Results in the contour plots and the solid lines in the projections correspond to replica 105 (see text).

In Fig. 2, we show the density distribution ⇢a
p" of an unpolarized quark a in a transversely polarized proton defined

in Eq. (1), at x = 0.1 (upper panels) and x = 0.01 (lower panels) and at the scale Q2 = 4 GeV2. The proton is moving
towards the reader and is polarized along the +y direction. Since the up Sivers function is negative, the induced
distortion is positive along the +x direction for the up quark (left panels), and opposite for the down quark (right
panels).

At x = 0.1 the distortion due to the Sivers e↵ect is evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is more pronounced for down quarks, because the Sivers function is larger
and at the same time the unpolarized TMD is smaller. The peak positions are approximately (kx)max ⇡ 0.1 GeV for
up quarks and �0.15 GeV for down quarks. At lower values of x, the distortion disappears. These plots suggest that
a virtual photon hitting a transversely polarized proton e↵ectively “sees” more up quarks to its right and more down
quarks to its left in momentum space.
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data exist (0.01 . x . 0.3) should be taken with due care. At variance with previous studies, in the denominator of
the asymmetries in Eqs. (4) and (12) we are using unpolarized TMDs that were extracted from data in our previous
Pavia17 fit, with their own uncertainties. Therefore, our uncertainty bands in Fig. 1 represent a realistic estimate of
the statistical error of the Sivers function.
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Figure 2: The density distribution ⇢a
p"

of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the

reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at x = 0.1,
lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68% uncertainty band of the distribution at ky = 0 (where the e↵ect
of the distortion due to the Sivers function is maximal) while left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized
proton). Results in the contour plots and the solid lines in the projections correspond to replica 105 (see text).

In Fig. 2, we show the density distribution ⇢a
p" of an unpolarized quark a in a transversely polarized proton defined

in Eq. (1), at x = 0.1 (upper panels) and x = 0.01 (lower panels) and at the scale Q2 = 4 GeV2. The proton is moving
towards the reader and is polarized along the +y direction. Since the up Sivers function is negative, the induced
distortion is positive along the +x direction for the up quark (left panels), and opposite for the down quark (right
panels).

At x = 0.1 the distortion due to the Sivers e↵ect is evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is more pronounced for down quarks, because the Sivers function is larger
and at the same time the unpolarized TMD is smaller. The peak positions are approximately (kx)max ⇡ 0.1 GeV for
up quarks and �0.15 GeV for down quarks. At lower values of x, the distortion disappears. These plots suggest that
a virtual photon hitting a transversely polarized proton e↵ectively “sees” more up quarks to its right and more down
quarks to its left in momentum space.

8

b?



2

Transverse Momentum Distributions – 3D!
3D Maps of partonic distributions

4

�⇤

xPz

Pz

Wigner distributions
<latexit sha1_base64="C6sSPDrPqQhUdS94ONNoj7KBamw=">AAACB3icbZDLSsNAFIYn9VbrLepSkMEiVJCSiKLLgiAuK/QGTQiT6Wk7dHJhZlIsITs3voobF4q49RXc+TZO2yy0+sPAx3/O4cz5/ZgzqSzryygsLa+srhXXSxubW9s75u5eS0aJoNCkEY9ExycSOAuhqZji0IkFkMDn0PZH19N6ewxCsihsqEkMbkAGIeszSpS2PPOwXbk/dcZA01HmNebkZ17qxCDi7MQzy1bVmgn/BTuHMspV98xPpxfRJIBQUU6k7NpWrNyUCMUoh6zkJBJiQkdkAF2NIQlAuunsjgwfa6eH+5HQL1R45v6cSEkg5STwdWdA1FAu1qbmf7VuovpXbsrCOFEQ0vmifsKxivA0FNxjAqjiEw2ECqb/iumQCEKVjq6kQ7AXT/4LrbOqfVG17s7LtZs8jiI6QEeogmx0iWroFtVRE1H0gJ7QC3o1Ho1n4814n7cWjHxmH/2S8fEN95KZZQ==</latexit>

W (x,~kT ,~b?)
<latexit sha1_base64="D8Ls1GXm/0FieG54TNDeKYoiZcw=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARXJWkKLosunFZwT6giWEyuWmHTh7MTAolduGvuHGhiFt/w51/47TNQlsPDBzOuZd75vgpZ1JZ1rdRWlldW98ob1a2tnd298z9g7ZMMkGhRROeiK5PJHAWQ0sxxaGbCiCRz6HjD2+mfmcEQrIkvlfjFNyI9GMWMkqUljzzyGGxwsFDHTsjoLk/8ZwUROqZVatmzYCXiV2QKirQ9MwvJ0hoFkGsKCdS9mwrVW5OhGKUw6TiZBJSQoekDz1NYxKBdPNZ/gk+1UqAw0Top9PM1N8bOYmkHEe+noyIGshFbyr+5/UyFV65OYvTTEFM54fCjGOV4GkZOGACqOJjTQgVTGfFdEAEoUpXVtEl2ItfXibtes2+qFl359XGdVFHGR2jE3SGbHSJGugWNVELUfSIntErejOejBfj3fiYj5aMYucQ/YHx+QOIb5XM</latexit>Z

d2~b?

transverse-momentum 

dependent (TMD)


parton distribution functions

(PDFs)

<latexit sha1_base64="YZe6zZfBbxgRj554VUwXxYEgz40=">AAAB/XicbVDLSsNAFL3xWesrPnZuBovgqiRF0WXRjcsKfUEbw2QyaYdOHsxMCjUEf8WNC0Xc+h/u/BunbRbaemDgcM693DPHSziTyrK+jZXVtfWNzdJWeXtnd2/fPDhsyzgVhLZIzGPR9bCknEW0pZjitJsIikOP0443up36nTEVksVRU00S6oR4ELGAEay05JrHfRYp5D/UUH9MSTbK3ayZu2bFqlozoGViF6QCBRqu+dX3Y5KGNFKEYyl7tpUoJ8NCMcJpXu6nkiaYjPCA9jSNcEilk83S5+hMKz4KYqGfzjJTf29kOJRyEnp6MsRqKBe9qfif10tVcO1kLEpSRSMyPxSkHKkYTatAPhOUKD7RBBPBdFZEhlhgonRhZV2CvfjlZdKuVe3LqnV/UanfFHWU4ARO4RxsuII63EEDWkDgEZ7hFd6MJ+PFeDc+5qMrRrFzBH9gfP4ADzOU+g==</latexit>Z
d2~kT

impact-parameter 
dependent PDFs

generalised parton  
distributions (GPDs)

Fourier 

transform

PRD 92 ('00) 071503 

Int. J. Mod Phys. A 18 ('03) 173

The various dimensions of the nucleon structure

data exist (0.01 . x . 0.3) should be taken with due care. At variance with previous studies, in the denominator of
the asymmetries in Eqs. (4) and (12) we are using unpolarized TMDs that were extracted from data in our previous
Pavia17 fit, with their own uncertainties. Therefore, our uncertainty bands in Fig. 1 represent a realistic estimate of
the statistical error of the Sivers function.
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Figure 2: The density distribution ⇢a
p"

of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the

reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at x = 0.1,
lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68% uncertainty band of the distribution at ky = 0 (where the e↵ect
of the distortion due to the Sivers function is maximal) while left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized
proton). Results in the contour plots and the solid lines in the projections correspond to replica 105 (see text).

In Fig. 2, we show the density distribution ⇢a
p" of an unpolarized quark a in a transversely polarized proton defined

in Eq. (1), at x = 0.1 (upper panels) and x = 0.01 (lower panels) and at the scale Q2 = 4 GeV2. The proton is moving
towards the reader and is polarized along the +y direction. Since the up Sivers function is negative, the induced
distortion is positive along the +x direction for the up quark (left panels), and opposite for the down quark (right
panels).

At x = 0.1 the distortion due to the Sivers e↵ect is evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is more pronounced for down quarks, because the Sivers function is larger
and at the same time the unpolarized TMD is smaller. The peak positions are approximately (kx)max ⇡ 0.1 GeV for
up quarks and �0.15 GeV for down quarks. At lower values of x, the distortion disappears. These plots suggest that
a virtual photon hitting a transversely polarized proton e↵ectively “sees” more up quarks to its right and more down
quarks to its left in momentum space.
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The various dimensions of the nucleon structure

Exclusive production

data exist (0.01 . x . 0.3) should be taken with due care. At variance with previous studies, in the denominator of
the asymmetries in Eqs. (4) and (12) we are using unpolarized TMDs that were extracted from data in our previous
Pavia17 fit, with their own uncertainties. Therefore, our uncertainty bands in Fig. 1 represent a realistic estimate of
the statistical error of the Sivers function.
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Figure 2: The density distribution ⇢a
p"

of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the

reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at x = 0.1,
lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68% uncertainty band of the distribution at ky = 0 (where the e↵ect
of the distortion due to the Sivers function is maximal) while left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized
proton). Results in the contour plots and the solid lines in the projections correspond to replica 105 (see text).

In Fig. 2, we show the density distribution ⇢a
p" of an unpolarized quark a in a transversely polarized proton defined

in Eq. (1), at x = 0.1 (upper panels) and x = 0.01 (lower panels) and at the scale Q2 = 4 GeV2. The proton is moving
towards the reader and is polarized along the +y direction. Since the up Sivers function is negative, the induced
distortion is positive along the +x direction for the up quark (left panels), and opposite for the down quark (right
panels).

At x = 0.1 the distortion due to the Sivers e↵ect is evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is more pronounced for down quarks, because the Sivers function is larger
and at the same time the unpolarized TMD is smaller. The peak positions are approximately (kx)max ⇡ 0.1 GeV for
up quarks and �0.15 GeV for down quarks. At lower values of x, the distortion disappears. These plots suggest that
a virtual photon hitting a transversely polarized proton e↵ectively “sees” more up quarks to its right and more down
quarks to its left in momentum space.
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The various dimensions of the nucleon structure

data exist (0.01 . x . 0.3) should be taken with due care. At variance with previous studies, in the denominator of
the asymmetries in Eqs. (4) and (12) we are using unpolarized TMDs that were extracted from data in our previous
Pavia17 fit, with their own uncertainties. Therefore, our uncertainty bands in Fig. 1 represent a realistic estimate of
the statistical error of the Sivers function.

x = 0.1

u
�u

p�

�1.0 �0.5 0.0 0.5 1.0

kx (GeV)

2

4ky = 0
2 4

�1.0

�0.5

0.0

0.5

1.0

k y
(G

eV
)

kx = 0

1

2

3

4

x = 0.1

d
�d

p�

�1.0 �0.5 0.0 0.5 1.0

kx (GeV)

1
2
3ky = 0

1 2 3
�1.0

�0.5

0.0

0.5

1.0

k y
(G

eV
)

kx = 0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2: The density distribution ⇢a
p"

of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the

reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at x = 0.1,
lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68% uncertainty band of the distribution at ky = 0 (where the e↵ect
of the distortion due to the Sivers function is maximal) while left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized
proton). Results in the contour plots and the solid lines in the projections correspond to replica 105 (see text).

In Fig. 2, we show the density distribution ⇢a
p" of an unpolarized quark a in a transversely polarized proton defined

in Eq. (1), at x = 0.1 (upper panels) and x = 0.01 (lower panels) and at the scale Q2 = 4 GeV2. The proton is moving
towards the reader and is polarized along the +y direction. Since the up Sivers function is negative, the induced
distortion is positive along the +x direction for the up quark (left panels), and opposite for the down quark (right
panels).

At x = 0.1 the distortion due to the Sivers e↵ect is evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is more pronounced for down quarks, because the Sivers function is larger
and at the same time the unpolarized TMD is smaller. The peak positions are approximately (kx)max ⇡ 0.1 GeV for
up quarks and �0.15 GeV for down quarks. At lower values of x, the distortion disappears. These plots suggest that
a virtual photon hitting a transversely polarized proton e↵ectively “sees” more up quarks to its right and more down
quarks to its left in momentum space.
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data exist (0.01 . x . 0.3) should be taken with due care. At variance with previous studies, in the denominator of
the asymmetries in Eqs. (4) and (12) we are using unpolarized TMDs that were extracted from data in our previous
Pavia17 fit, with their own uncertainties. Therefore, our uncertainty bands in Fig. 1 represent a realistic estimate of
the statistical error of the Sivers function.

x = 0.1

u
�u

p�

�1.0 �0.5 0.0 0.5 1.0

kx (GeV)

2

4ky = 0
2 4

�1.0

�0.5

0.0

0.5

1.0

k y
(G

eV
)

kx = 0

1

2

3

4

x = 0.1

d
�d

p�

�1.0 �0.5 0.0 0.5 1.0

kx (GeV)

1
2
3ky = 0

1 2 3
�1.0

�0.5

0.0

0.5

1.0

k y
(G

eV
)

kx = 0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2: The density distribution ⇢a
p"

of an unpolarized quark with flavor a in a proton polarized along the +y direction and moving towards the

reader, as a function of (kx, ky) at Q2 = 4 GeV2. Left panels for the up quark, right panels for the down quark. Upper panels for results at x = 0.1,
lower panels at x = 0.01. For each panel, lower ancillary plots represent the 68% uncertainty band of the distribution at ky = 0 (where the e↵ect
of the distortion due to the Sivers function is maximal) while left ancillary plots at kx = 0 (where the distribution is the same as for an unpolarized
proton). Results in the contour plots and the solid lines in the projections correspond to replica 105 (see text).

In Fig. 2, we show the density distribution ⇢a
p" of an unpolarized quark a in a transversely polarized proton defined

in Eq. (1), at x = 0.1 (upper panels) and x = 0.01 (lower panels) and at the scale Q2 = 4 GeV2. The proton is moving
towards the reader and is polarized along the +y direction. Since the up Sivers function is negative, the induced
distortion is positive along the +x direction for the up quark (left panels), and opposite for the down quark (right
panels).

At x = 0.1 the distortion due to the Sivers e↵ect is evident, since we are close to the maximum value of the
function shown in Fig. 1. The distortion is more pronounced for down quarks, because the Sivers function is larger
and at the same time the unpolarized TMD is smaller. The peak positions are approximately (kx)max ⇡ 0.1 GeV for
up quarks and �0.15 GeV for down quarks. At lower values of x, the distortion disappears. These plots suggest that
a virtual photon hitting a transversely polarized proton e↵ectively “sees” more up quarks to its right and more down
quarks to its left in momentum space.
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xB =
Q2

2P ⋅ q

Highly virtual photon: 
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scale of process
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TMD evolution

QCD toolbox

� scale (=DGLAP) evolution

more and more parton-parton splittings 
resolved as the “resolution” scale P increases 

Mertig, van Neerven;
Vogelsang

key prediction of pQCD

‘‘resolution scale’’ P

“splitting kernels” known to next-to-leading order (NLO)

NNLO results already on the horizon
(crucial for future precision studies)

Moch, Vermaseren, Vogt
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leading twist

FFs in the transverse SSAs, and to study the feasibility of
experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.

II. CALCULATION OF TWIST-3
TMD DISTRIBUTIONS IN

SPECTATOR-DIQUARK MODEL

In this section, we present the calculation on the four
twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
supposed to be constituted by a quark and a diquark,
and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
The gauge-invariant quark-quark correlator can be

expressed as

Φðx; kTÞ ¼
Z

dξ−d2ξT
ð2πÞ3

eik·ξhPSjψ̄ jð0ÞL½0−;∞−%

× L½0T; ξT %L½∞−; ξ−%ψ iðξÞjPSi: ð1Þ

For convenience here we adopt the light-cone coordinates
½a−; aþ; aT % for an arbitrary four-vector a, with a' ¼
ða0 ' a3Þ=

ffiffiffi
2

p
¼ a · n∓, where the two lightlike vectors

are defined as nþ ¼ ½0; 1; 0T % and n− ¼ ½1; 0; 0T %. The
vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
polarized nucleon can be decomposed into [31]

Φðx; kT; STÞjtwist-3

¼ M
2Pþ

"
−ϵρσT γρSTσf0T þ

ðkT · STÞϵ
ρσ
T γρkTσ

M2
f⊥T

−
kT · ST
M

½nþ; n−%γ5
2

hT þ ½ST; kT %γ5
2M

h⊥T þ ( ( (
#
; ð3Þ

FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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z̃

z

x
y

q

P

k

k0

Ph

Figure 1. Kinematics of the process. q is the virtual photon, k and k0 are the initial and struck quarks, k? is the

quark transverse component. Ph is the final hadron with a p? component, transverse with respect to the fragmenting

quark k0 direction.

the beam energy becomes, the more serious the inaccuracies of the parton model have to be

taken. On the other hand, the “fully di↵erential” cross section Eq. (3.2) of the generalized

parton model allows us to include in our Monte Carlo both transverse momentum and

the physical energy and momentum phase space constraints. We used the widely accepted

parton model approximation of setting the initial parton on-shell (assumption that virtual

photon interacts with an on-mass shell quark)3. But it is important to emphasize that

the approximations we have made, which are consistent with a generalized parton model

framework, enable us to implement a Monte Carlo that incorporates the correct phase

space momentum constraints and satisfies the requirements we outlined in this section.

Thus, our Monte Carlo simulation allows us to take the factorized form of the gener-

alized parton model cross section Eq. (3.2) as a basis and then to impose four-momentum

conservation for the partons according to Fig. 1, assuming the initial quark is on-shell with

non-zero mass. We also take a non-zero target mass into account. This procedure does

not necessarily lead to a more accurate description of the underlying physics, because it

still rests on the simplified picture of the generalized parton model and involves the ap-

proximation of an on-shell quark. Nonetheless, implementing these modifications can give

us an indication for the magnitude of the uncertainties resulting from the aforementioned

kinematic approximations in the parton model.

Note that our goal is to study the applicability of Bessel weighting to experimental

data, for which we explicitly need k? and p? dependences in the Monte Carlo generator.

Alongside with this goal it is interesting to investigate how well the approximations of the

simple parton model are justified in the current relatively low energy experimental set-up.

One would expect that if approximations that lead to the parton model expressions for

structure functions are justified, then the generalized parton model expression would not

spoil this approximation numerically. On the other hand if the generalized parton model

gives notably di↵erent results with respect to a naive parton model, one would expect

that kinematics of the experiment does not allow a certain type of approximations and the

3The confined quark has a non-zero virtuality. Such e↵ects in Monte Carlo generators have been studied

in Ref. [62].
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still rests on the simplified picture of the generalized parton model and involves the ap-

proximation of an on-shell quark. Nonetheless, implementing these modifications can give

us an indication for the magnitude of the uncertainties resulting from the aforementioned
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simple parton model are justified in the current relatively low energy experimental set-up.

One would expect that if approximations that lead to the parton model expressions for

structure functions are justified, then the generalized parton model expression would not

spoil this approximation numerically. On the other hand if the generalized parton model

gives notably di↵erent results with respect to a naive parton model, one would expect

that kinematics of the experiment does not allow a certain type of approximations and the
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the physical energy and momentum phase space constraints. We used the widely accepted

parton model approximation of setting the initial parton on-shell (assumption that virtual
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not necessarily lead to a more accurate description of the underlying physics, because it

still rests on the simplified picture of the generalized parton model and involves the ap-

proximation of an on-shell quark. Nonetheless, implementing these modifications can give

us an indication for the magnitude of the uncertainties resulting from the aforementioned

kinematic approximations in the parton model.

Note that our goal is to study the applicability of Bessel weighting to experimental

data, for which we explicitly need k? and p? dependences in the Monte Carlo generator.

Alongside with this goal it is interesting to investigate how well the approximations of the

simple parton model are justified in the current relatively low energy experimental set-up.

One would expect that if approximations that lead to the parton model expressions for

structure functions are justified, then the generalized parton model expression would not

spoil this approximation numerically. On the other hand if the generalized parton model

gives notably di↵erent results with respect to a naive parton model, one would expect

that kinematics of the experiment does not allow a certain type of approximations and the

3The confined quark has a non-zero virtuality. Such e↵ects in Monte Carlo generators have been studied
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z̃

z

x
y

q

P

k

k0

Ph

Figure 1. Kinematics of the process. q is the virtual photon, k and k0 are the initial and struck quarks, k? is the

quark transverse component. Ph is the final hadron with a p? component, transverse with respect to the fragmenting

quark k0 direction.

the beam energy becomes, the more serious the inaccuracies of the parton model have to be

taken. On the other hand, the “fully di↵erential” cross section Eq. (3.2) of the generalized

parton model allows us to include in our Monte Carlo both transverse momentum and

the physical energy and momentum phase space constraints. We used the widely accepted

parton model approximation of setting the initial parton on-shell (assumption that virtual

photon interacts with an on-mass shell quark)3. But it is important to emphasize that

the approximations we have made, which are consistent with a generalized parton model

framework, enable us to implement a Monte Carlo that incorporates the correct phase

space momentum constraints and satisfies the requirements we outlined in this section.

Thus, our Monte Carlo simulation allows us to take the factorized form of the gener-

alized parton model cross section Eq. (3.2) as a basis and then to impose four-momentum

conservation for the partons according to Fig. 1, assuming the initial quark is on-shell with

non-zero mass. We also take a non-zero target mass into account. This procedure does

not necessarily lead to a more accurate description of the underlying physics, because it

still rests on the simplified picture of the generalized parton model and involves the ap-

proximation of an on-shell quark. Nonetheless, implementing these modifications can give

us an indication for the magnitude of the uncertainties resulting from the aforementioned

kinematic approximations in the parton model.

Note that our goal is to study the applicability of Bessel weighting to experimental

data, for which we explicitly need k? and p? dependences in the Monte Carlo generator.

Alongside with this goal it is interesting to investigate how well the approximations of the

simple parton model are justified in the current relatively low energy experimental set-up.

One would expect that if approximations that lead to the parton model expressions for

structure functions are justified, then the generalized parton model expression would not

spoil this approximation numerically. On the other hand if the generalized parton model

gives notably di↵erent results with respect to a naive parton model, one would expect

that kinematics of the experiment does not allow a certain type of approximations and the
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parton model approximation of setting the initial parton on-shell (assumption that virtual
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the approximations we have made, which are consistent with a generalized parton model

framework, enable us to implement a Monte Carlo that incorporates the correct phase
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conservation for the partons according to Fig. 1, assuming the initial quark is on-shell with

non-zero mass. We also take a non-zero target mass into account. This procedure does

not necessarily lead to a more accurate description of the underlying physics, because it

still rests on the simplified picture of the generalized parton model and involves the ap-

proximation of an on-shell quark. Nonetheless, implementing these modifications can give

us an indication for the magnitude of the uncertainties resulting from the aforementioned

kinematic approximations in the parton model.

Note that our goal is to study the applicability of Bessel weighting to experimental

data, for which we explicitly need k? and p? dependences in the Monte Carlo generator.

Alongside with this goal it is interesting to investigate how well the approximations of the

simple parton model are justified in the current relatively low energy experimental set-up.

One would expect that if approximations that lead to the parton model expressions for

structure functions are justified, then the generalized parton model expression would not

spoil this approximation numerically. On the other hand if the generalized parton model

gives notably di↵erent results with respect to a naive parton model, one would expect

that kinematics of the experiment does not allow a certain type of approximations and the

3The confined quark has a non-zero virtuality. Such e↵ects in Monte Carlo generators have been studied
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Transverse momentum dependent fragmentation functions
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Twist-2 3D Fragmentation Functions 
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Color neutralization – it’s a correlated 3D problem 
Final transverse momentum of the detected 
pion  Pt arises from convolution of the struck 
quark transverse momentum kt with the 
transverse momentum generated during the 
fragmentation pt. Du

π+(z,pt
2,Q2) 

Mass of hadrons = E/c2 

19	INPC2016,  Adelaide, September 11-16, 2016 

Can we learn more on how 
hadrons emerge from color charge 
by correlating one hadron with the 
residual system, and track where 
it’s momentum and spin originate? 

Fragmentation functions (FFs)
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Fragmentation functions
Towards a QM Description of the Final State 

20	

Balancing the transverse momentum – candles of space-time 

From 1D to 3D fragmentation: 
•  Many more variables, 

Many more angles 
•  Multi-dimensional data 
•  Fine binnings 

Da
h(z, pt

2; Q2) 

First step is always unpolarized 
cross sections à JLab/12 GeV 
(but limited in kinematics) 
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Validity of TMD description
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Figure 5. Density of data in the plane (Q, x) (a darker color corresponds to a higher density).

has been followed, and this is the purpose of this section. Finally, we also provide a suitable

definition of the χ2 that allows for a correct exploitation of experimental uncertainties.

4.1 Treatment of nuclear targets and charged hadrons

The data from E288, E605 (Cu), E772, COMPASS, part of HERMES (isoscalar targets)

come from nuclear target processes. In these cases, we perform the iso-spin rotation of the

corresponding TMDPDF that simulates the nuclear-target effects. For example, we replace

u-, and d-quark distributions by

f1,u←A(x, b) =
Z

A
f1,u←p(x, b) +

A− Z

A
f1,d←p(x, b), (4.1)

f1,d←A(x, b) =
Z

A
f1,d←p(x, b) +

A− Z

A
f1,u←p(x, b), (4.2)

where A(Z) is atomic number(charge) of a nuclear target. In principle, for E288, E605 data

extracted from very heavy targets one should also incorporate the nuclear modification

factor that depends on x. In the given kinematics the nuclear modification factor produces

effects of order 5-10% in the normalization of the cross-section. The shape of cross-section

is changed in much smaller amount, about 1% in a point, as it is shown in f.i. [21, 85].

Simultaneously, the systematic (correlated) errors of these experiments are large 25% and

20%, correspondingly, as well as the uncorrelated error (typically 2-5%). Therefore, we are

not sensitive to nuclear modification effect.

The measurements of SIDIS are made in a number of different channels. The HER-

MES data include π± and K±, and COMPASS data are for charged hadrons, h±. Pions

and kaons are described by an individual TMDFFs. However, charged hadrons are a com-

– 29 –

Kinematic coverage
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Figure 8. Collins SFA for charged mesons (left: pions; right: kaons) presented either in bins of x,
z, or Ph⊥. Data at large values of z, marked by open points in the z projection, are not included
in the other projections. Systematic uncertainties are given as bands, not including the additional
scale uncertainty of 7.3% due to the precision of the target-polarization determination.

The results for the transversity distributions from global fits are of the same sign18 as
results for the helicity distribution, but somewhat smaller in magnitude, by as much as a
factor of two for the d-quark distribution. Flavor decompositions of the collinear transver-
sity distribution, based on analysis of dihadron production in semi-inclusive deep-inelastic
scattering [127–129], e+e− annihilation [130], and more recently in p↑p collision [131], con-
firm this general behavior [132–135]. In general, the d-quark transversity distribution is
much less constrained, given the u-quark dominance in many of the processes employed
in the extractions. It is interesting to remark that all phenomenological extractions of
the transversity distribution present some discrepancies with respect to lattice predictions,
especially for what concerns the u-quark contribution to the nucleon tensor charge (see,
e.g., refs. [136–138]).

The Collins asymmetries extracted here for mesons in one-dimensional projections
resemble to a high degree those published previously [29]. This is expected as based on
the same data set, though involving a number of analysis improvements (cf. section 3.4).
The most significant advancement in the measurement of the SFA shown in figure 8 is the
inclusion of the ϵ-dependent kinematic prefactors in the probability density function (3.3)
of the maximum-likelihood fit. This leads on average to an amplification of the asymmetry
magnitude as, in the case of the Collins asymmetry, this prefactor is smaller than unity
and thus diminishes the transversity/Collins-induced modulation.

The Collins asymmetries for charged pions are opposite in sign and increasing with x,
which can be attributed to transversity predominantly being a valence-quark effect. The
dependence on z in the semi-inclusive range is a clear increase with z for π+, while first
clearly increasing but then leveling out for π −. As expected, the asymmetries increase
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sity distribution, based on analysis of dihadron production in semi-inclusive deep-inelastic
scattering [127–129], e+e− annihilation [130], and more recently in p↑p collision [131], con-
firm this general behavior [132–135]. In general, the d-quark transversity distribution is
much less constrained, given the u-quark dominance in many of the processes employed
in the extractions. It is interesting to remark that all phenomenological extractions of
the transversity distribution present some discrepancies with respect to lattice predictions,
especially for what concerns the u-quark contribution to the nucleon tensor charge (see,
e.g., refs. [136–138]).

The Collins asymmetries extracted here for mesons in one-dimensional projections
resemble to a high degree those published previously [29]. This is expected as based on
the same data set, though involving a number of analysis improvements (cf. section 3.4).
The most significant advancement in the measurement of the SFA shown in figure 8 is the
inclusion of the ϵ-dependent kinematic prefactors in the probability density function (3.3)
of the maximum-likelihood fit. This leads on average to an amplification of the asymmetry
magnitude as, in the case of the Collins asymmetry, this prefactor is smaller than unity
and thus diminishes the transversity/Collins-induced modulation.

The Collins asymmetries for charged pions are opposite in sign and increasing with x,
which can be attributed to transversity predominantly being a valence-quark effect. The
dependence on z in the semi-inclusive range is a clear increase with z for π+, while first
clearly increasing but then leveling out for π −. As expected, the asymmetries increase
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Collins fragmentation function: Artru model

string break, quark-antiquark pair with vacuum numbers:

polarisation component in lepton scattering plane reversed by photoabsorption:

courtesy from U. Elschenbroich

orbital angular momentum creates transverse momentum:

X. Artru et al. , Z. Phys. C73 (1997) 527

Courtesy U. Elschenbroich23

Artru model



Collins amplitudes

24

HERMES, JHEP 12(2020)010

H
?,u!⇡+

1 ⇡ �H
?,u!⇡�

1

• Oppositely signed amplitudes for π+ and π-:

• Amplitudes for K+ larger than for π+:

H
?,u!K+

1 > H
?,u!⇡+

1 J
H
E
P
1
2
(
2
0
2
0
)
0
1
0

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

π+

2
 〈

s
in

(φ
+

φ
S
) 

/ 
ε〉

U
⊥

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

-0

0.02

0.04

0.1 0.2

π-

x
0.5 1

z
0 0.5 1

Ph⊥ [GeV]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

K
+

2
 〈

s
in

(φ
+

φ
S
) 

/ 
ε〉

U
⊥

-0.2

-0.15

-0.1

-0.05

-0

0.05

0.1

0.15

0.2

0.1 0.2

K
-

x
0.5 1

z
0 0.5 1

Ph⊥ [GeV]

Figure 8. Collins SFA for charged mesons (left: pions; right: kaons) presented either in bins of x,
z, or Ph⊥. Data at large values of z, marked by open points in the z projection, are not included
in the other projections. Systematic uncertainties are given as bands, not including the additional
scale uncertainty of 7.3% due to the precision of the target-polarization determination.

The results for the transversity distributions from global fits are of the same sign18 as
results for the helicity distribution, but somewhat smaller in magnitude, by as much as a
factor of two for the d-quark distribution. Flavor decompositions of the collinear transver-
sity distribution, based on analysis of dihadron production in semi-inclusive deep-inelastic
scattering [127–129], e+e− annihilation [130], and more recently in p↑p collision [131], con-
firm this general behavior [132–135]. In general, the d-quark transversity distribution is
much less constrained, given the u-quark dominance in many of the processes employed
in the extractions. It is interesting to remark that all phenomenological extractions of
the transversity distribution present some discrepancies with respect to lattice predictions,
especially for what concerns the u-quark contribution to the nucleon tensor charge (see,
e.g., refs. [136–138]).

The Collins asymmetries extracted here for mesons in one-dimensional projections
resemble to a high degree those published previously [29]. This is expected as based on
the same data set, though involving a number of analysis improvements (cf. section 3.4).
The most significant advancement in the measurement of the SFA shown in figure 8 is the
inclusion of the ϵ-dependent kinematic prefactors in the probability density function (3.3)
of the maximum-likelihood fit. This leads on average to an amplification of the asymmetry
magnitude as, in the case of the Collins asymmetry, this prefactor is smaller than unity
and thus diminishes the transversity/Collins-induced modulation.

The Collins asymmetries for charged pions are opposite in sign and increasing with x,
which can be attributed to transversity predominantly being a valence-quark effect. The
dependence on z in the semi-inclusive range is a clear increase with z for π+, while first
clearly increasing but then leveling out for π −. As expected, the asymmetries increase

18Note that the absolute sign can not be determined unambiguously due to the chiral-odd nature of both
transversity and the Collins fragmentation function.
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The results for the transversity distributions from global fits are of the same sign18 as
results for the helicity distribution, but somewhat smaller in magnitude, by as much as a
factor of two for the d-quark distribution. Flavor decompositions of the collinear transver-
sity distribution, based on analysis of dihadron production in semi-inclusive deep-inelastic
scattering [127–129], e+e− annihilation [130], and more recently in p↑p collision [131], con-
firm this general behavior [132–135]. In general, the d-quark transversity distribution is
much less constrained, given the u-quark dominance in many of the processes employed
in the extractions. It is interesting to remark that all phenomenological extractions of
the transversity distribution present some discrepancies with respect to lattice predictions,
especially for what concerns the u-quark contribution to the nucleon tensor charge (see,
e.g., refs. [136–138]).

The Collins asymmetries extracted here for mesons in one-dimensional projections
resemble to a high degree those published previously [29]. This is expected as based on
the same data set, though involving a number of analysis improvements (cf. section 3.4).
The most significant advancement in the measurement of the SFA shown in figure 8 is the
inclusion of the ϵ-dependent kinematic prefactors in the probability density function (3.3)
of the maximum-likelihood fit. This leads on average to an amplification of the asymmetry
magnitude as, in the case of the Collins asymmetry, this prefactor is smaller than unity
and thus diminishes the transversity/Collins-induced modulation.

The Collins asymmetries for charged pions are opposite in sign and increasing with x,
which can be attributed to transversity predominantly being a valence-quark effect. The
dependence on z in the semi-inclusive range is a clear increase with z for π+, while first
clearly increasing but then leveling out for π −. As expected, the asymmetries increase

18Note that the absolute sign can not be determined unambiguously due to the chiral-odd nature of both
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scale uncertainty of 7.3% due to the precision of the target-polarization determination.

The results for the transversity distributions from global fits are of the same sign18 as
results for the helicity distribution, but somewhat smaller in magnitude, by as much as a
factor of two for the d-quark distribution. Flavor decompositions of the collinear transver-
sity distribution, based on analysis of dihadron production in semi-inclusive deep-inelastic
scattering [127–129], e+e− annihilation [130], and more recently in p↑p collision [131], con-
firm this general behavior [132–135]. In general, the d-quark transversity distribution is
much less constrained, given the u-quark dominance in many of the processes employed
in the extractions. It is interesting to remark that all phenomenological extractions of
the transversity distribution present some discrepancies with respect to lattice predictions,
especially for what concerns the u-quark contribution to the nucleon tensor charge (see,
e.g., refs. [136–138]).

The Collins asymmetries extracted here for mesons in one-dimensional projections
resemble to a high degree those published previously [29]. This is expected as based on
the same data set, though involving a number of analysis improvements (cf. section 3.4).
The most significant advancement in the measurement of the SFA shown in figure 8 is the
inclusion of the ϵ-dependent kinematic prefactors in the probability density function (3.3)
of the maximum-likelihood fit. This leads on average to an amplification of the asymmetry
magnitude as, in the case of the Collins asymmetry, this prefactor is smaller than unity
and thus diminishes the transversity/Collins-induced modulation.

The Collins asymmetries for charged pions are opposite in sign and increasing with x,
which can be attributed to transversity predominantly being a valence-quark effect. The
dependence on z in the semi-inclusive range is a clear increase with z for π+, while first
clearly increasing but then leveling out for π −. As expected, the asymmetries increase

18Note that the absolute sign can not be determined unambiguously due to the chiral-odd nature of both
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z, or Ph⊥. Data at large values of z, marked by open points in the z projection, are not included
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The results for the transversity distributions from global fits are of the same sign18 as
results for the helicity distribution, but somewhat smaller in magnitude, by as much as a
factor of two for the d-quark distribution. Flavor decompositions of the collinear transver-
sity distribution, based on analysis of dihadron production in semi-inclusive deep-inelastic
scattering [127–129], e+e− annihilation [130], and more recently in p↑p collision [131], con-
firm this general behavior [132–135]. In general, the d-quark transversity distribution is
much less constrained, given the u-quark dominance in many of the processes employed
in the extractions. It is interesting to remark that all phenomenological extractions of
the transversity distribution present some discrepancies with respect to lattice predictions,
especially for what concerns the u-quark contribution to the nucleon tensor charge (see,
e.g., refs. [136–138]).

The Collins asymmetries extracted here for mesons in one-dimensional projections
resemble to a high degree those published previously [29]. This is expected as based on
the same data set, though involving a number of analysis improvements (cf. section 3.4).
The most significant advancement in the measurement of the SFA shown in figure 8 is the
inclusion of the ϵ-dependent kinematic prefactors in the probability density function (3.3)
of the maximum-likelihood fit. This leads on average to an amplification of the asymmetry
magnitude as, in the case of the Collins asymmetry, this prefactor is smaller than unity
and thus diminishes the transversity/Collins-induced modulation.

The Collins asymmetries for charged pions are opposite in sign and increasing with x,
which can be attributed to transversity predominantly being a valence-quark effect. The
dependence on z in the semi-inclusive range is a clear increase with z for π+, while first
clearly increasing but then leveling out for π −. As expected, the asymmetries increase

18Note that the absolute sign can not be determined unambiguously due to the chiral-odd nature of both
transversity and the Collins fragmentation function.
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other. One can see that the experimental data indeed show
some tension with the Soffer bound for the d quark in the
high-x region as predicted in Ref. [94]. This saturation
happens in the region not explored by the current exper-
imental data, so future data from Jefferson Lab 12 will be
very important to test the Soffer bound and to constrain the
transversity and tensor charge.
The functions themselves are slightly different as can be

seen by comparing solid and dashes lines in Fig. 27(a). In
fact Ref. [17] uses the tree-level TMD expression (no TMD
evolution) for extraction, and we use the NLL TMD
formalism. Results should be different even though in
asymmetries, as we saw, at low energies results with NLL
TMD are comparable with the tree level. At higher energies
and Q2, the situation changes, and extracted functions
must be different. At the same time, one should remember
TMD evolution does not act as a universal Q2 suppression
factor. A complicated Fourier transform should be per-
formed that mixes Q2 and b dependence, and thus the
resulting functions are different in shape but comparable in
magnitude. It is also very encouraging that tree-level TMD
extractions yielded results very similar to our NLL extrac-
tion. This makes the previous phenomenological results
valid even though the appropriate TMD evolution was not
taken into account. It also means that we need to have
experimental data on unpolarized cross sections differential
in Ph⊥. As we have seen, the effects of evolution should be
evident in the data, and those measurements will help to
establish the validity of the modern formulation of TMD
evolution.
We compare extracted Collins fragmentation functions

−zHð3ÞðzÞ in Fig. 28 at Q2 ¼ 2.4 GeV2 with the extraction
of Torino-Cagliari-JLab 2013 [17]. The resulting Collins
FFs have the same signs, but shapes and sizes are slightly
different. Indeed one could expect it as far as Q2 of eþe− is
different, and the evolution effect must be more evident. At
the same time, those functions for both tree-level and NLL

TMD give the same (or similar) theoretical asymmetries
that are well compared to the experimental data of SIDIS
and eþe−. The favored Collins fragmentation function is
much better determined by the existing data, as one can
see from Fig. 28 that the functions at Q2 ¼ 2.4 GeV2 are
compatible within error bands. The unfavored fragmenta-
tion functions are different; however, those functions are
not determined very well by existing experimental data.
We also compare the tensor change from our and other

extractions in Fig. 29. The contribution to the tensor charge
of Ref. [18] is found by extraction using the so-called
dihadron fragmentation function that couples to the col-
linear transversity distribution. The corresponding func-
tions have DGLAP-type evolution known at LO and were
used in Ref. [18]. The results plotted in Fig. 29 correspond
to our estimates of the contribution to the u quark and d
quark in the region of x½0.065; 0.35& at Q2 ¼ 10 GeV2 at
68% C.L. (label 1) and the contribution to the u quark and
d quark in the same region of x and the same Q2 using the
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FIG. 27. (a) Comparison of extracted transversity (solid lines and vertical-line hashed region) Q2 ¼ 2.4 GeV2 with the Torino-
Cagliari-JLab 2013 extraction [17] (dashed lines and shaded region). (b) Comparison of extracted transversity (solid lines and shaded
region) at Q2 ¼ 2.4 GeV2 with Pavia 2015 extraction [18] (shaded region).
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• Measured on P/D in SIDIS and in 
dihadron SIDIS 
COMPASS and HERMES obtained 
compatible results on Collins TSA  
(Q2  is different by a factor of ~2-3) 

• No Q2-evolution? Intriguing result!nt 
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FIG. 3. Extracted transversity distribution (a) and Collins regimentation function (b) at three different scales Q2 = 2.4 (dotted
lines), Q2 = 10 (solid lines) and Q2 = 1000 (dashed lines) GeV2. The shaded region corresponds to our estimate of 90% C.L.
error band at Q2 = 10 GeV2.

2 χ

[0.0065,0.35] uδ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

140

160

2 χ
[0.0065,0.35] dδ

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2

140

160

FIG. 4. χ2 profiles for up and down quark contributions to the tensor charge. The errors of points correspond to 90% C.L.
interval at Q2 = 10 GeV2.

E. Transversity, Collins fragmentation functions and tensor charge

We plot transversity and the Collins fragmentation function in Fig. 3 at two different scales Q2 = 10 and 1000
GeV2. In order to evaluate functions we solve appropriate DGLAP equations for transversity Eq. (69) and twist-3
collins functions Eq. (71). Due to the fact that neither of the functions mixes with gluons, these distributions do not
change drastically in low-x region due to DGLAP evolution.
Transversity enters directly in SIDIS asymmetry and we find that the main constraints come from SIDIS data only,

its correlations with errors of Collins FF turn out to be numerically negligible. We thus vary only χ2
SIDIS and use

∆χ2
SIDIS = 22.2 for 90% C.L. and ∆χ2

SIDIS = 6.4 for 68% C.L. calculated using Eq. (123). Since the experimental
data has only probed the limited region 0.0065 < xB < 0.35, we define the following partial contribution to the tensor
charge

δq[xmin,xmax]
(
Q2
)
≡
∫ xmax

xmin

dxhq
1(x,Q

2) . (127)

In Fig. 4, we plot the χ2 Monte Carlo scanning of SIDIS data for the contribution to the tensor charge from such a

Kang et al., PRD 93 (2016) 014009
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Sivers amplitudes

• :

• positive -> non-zero orbital angular momentum
π+
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• consistent with zero   and  quark cancelation 
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Predicted Sivers sign change for SIDIS and Drell-Yan
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γ∗−
γ∗
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+

−

Figure 1: (a),(b) Simple QED example for process-dependence of the Sivers functions in DIS and

the Drell-Yan process. (c),(d) Same for QCD.

case is “initial-state” and is between the remnant of the transversely polarized “hadron” and the

initial parton from the other, unpolarized, “hadron”. These necessarily have identical charges,

and the interaction is repulsive. As a result, the spin-effect in this case needs to be of opposite

sign as that in DIS.

These simple models are readily generalized to true hadronic scattering in QCD. In DIS, the

final-state interaction is through a gluon exchanged between the 3 and 3̄ states of the struck quark
and the nucleon remnant, which is attractive, as indicated in Fig. 1(c). In the Drell-Yan process,

the interaction is between the 3 and 3 states (or 3̄ and 3̄) and therefore repulsive, as shown in
Fig. 1(d). This is the essence of the – by now widely quoted – result that the Sivers functions

contributing to DIS and to the Drell-Yan process have opposite sign [3, 4, 5, 6]:

fSivers(x, k⊥)
∣∣∣
DY

= −fSivers(x, k⊥)
∣∣∣
DIS

. (1)

In the full gauge theory, the phases generated by the additional (final-state or initial-state) inter-

actions can be summed to all orders into a “gauge-link”, which is a path-ordered exponential of

the gluon field and makes the Sivers functions gauge-invariant. The non-universality of the Sivers

functions is then reflected in a process-dependence of the space-time direction of the gauge-link.

The crucial role played by the gauge link has given rise to intuitive model interpretations of

single-spin asymmetries in terms of spatial deformations of parton distributions in a transversely

polarized nucleon [19]. The process-dependence of the Sivers functions will also manifest itself

in more complicated QCD hard-scattering, albeit in a more intricate way [20]. An example is

the single-spin asymmetry in di-jet angular correlations [21, 22, 23], which is now under inves-

tigation at RHIC [24]. We note that a related initial-state interaction may give rise to azimuthal

angular dependences in the unpolarized Drell-Yan process [25, 26].

The verification of the predicted non-universality of the Sivers functions is an outstanding

challenge in strong-interaction physics. It is most cleanly possible in the Drell-Yan process,

3

DIS: 
“attractive”

D-Y: 
“repulsive”

[fq�
1T ]SIDIS = �[fq�

1T ]DY

process-dependence of Sivers functions 

Collins, PL B536 (2002) 43

234 A.V. Efremov et al. / Physics Letters B 612 (2005) 233–244

SIDIS and DY have opposite sign,

(1)f ⊥
1T

(
x,p2T

)
SIDIS = −f ⊥

1T
(
x,p2T

)
DY.

The experimental check of Eq. (1) would provide a thorough test of our understanding of the Sivers effect within
QCD and, hence, our understanding of SSA. It would crucially test the factorization approach to the description of
processes sensitive to transverse parton momenta [19–21].
In this Letter we shall discuss how the relation (1) could be checked experimentally in the Polarized Antiproton

eXperiment (PAX) planned at GSI [22,23]. A primary goal of this experiment will be to provide a polarized
antiproton beam and to measure the transversity distribution ha

1(x), cf. [24]. However, PAX will also be well
suited to access the Sivers function via SSA in p̄p↑ → µ+µ−X or p̄↑p → µ+µ−X [22,23]. In the COMPASS
experiment at CERN [25], making use of a π− beam, one would also be able to study the Sivers function via SSA
in π−p↑ → µ+µ−X.
In order to estimate the magnitude of the Sivers effect in those experiments we will roughly parameterize

f ⊥
1T (x,p2T )SIDIS from the (preliminary) HERMES data [7] using as a guideline relations derived from the QCD
limit of a large number of colours Nc [26]. Such large-Nc relations are observed to hold in nature within their
expected accuracy [27] and, as a byproduct of our study, we shall observe that this is also the case here. On
the basis of the obtained parameterization we estimate SSA for the PAX and COMPASS experiments. We also
comment briefly on parameterizations of f ⊥

1T reported previously in the literature and on model calculations.

2. The Sivers function

A definition of the unintegrated unpolarized distribution function f1(x,p2T ) and the Sivers function f ⊥
1T (x,p2T )

can be given in terms of the light-cone correlator

Φq(x,pT ) ≡
∫ dξ− d2ξT

2(2π)3
eip·ξ ⟨P,ST |ψ̄q(0)γµn

µ
−W[0, ξ ;process]ψq(ξ)|P,ST ⟩

∣∣∣∣
ξ+=0

(2)= f
q
1
(
x,p2T

)
+ f

⊥q
1T

(
x,p2T

)εµνρσ n
µ
−nν

+p
ρ
T Sσ

T

MN
,

where the dimensionless light-like vectors n± are defined such that n+ · n− = 1. (See Ref. [28] for a precise
definition and the meaning of unintegrated distribution functions in QCD.)
The Wilson link W[0, ξ ;process] is defined in Fig. 1, cf. Refs. [17,18]. For observables integrated over pT

the process dependence of the gauge link usually cancels out. However, the situation is different for f ⊥
1T . If one

neglected the gauge link, under time-reversal the Sivers function would transform into its negative, i.e., it would
vanish [14]. However, initial or final state interactions [16,29], needed to obtain non-zero SSA [30], generate a
Wilson link for the Sivers function in any gauge [17,18]. Under time reversal the gauge link of SIDIS is transformed

Fig. 1. The path of the process-dependent gauge linkW[0, ξ ;process] which enters the definition of the Sivers function in SIDIS and DY.

J. C. Collins, Phys. Lett. B 536 (2002) 43
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Sivers TSA SIDIS→DY 

P. Sun and F. Yuan,  
“Transverse momentum dependent evolution: Matching 
SIDIS processes to Drell-Yan and W/Z boson production”. 
PRD 88 11, 114012 (2013)  

STAR collaboration: PRL 116, 132301 (2016) 

• Global fits of available 1-D SIDIS data 
• Different TMD-evolution schemes 
• Different predictions for Drell-Yan 
• First experimental investigation of  

Sivers-nonuniversality by STAR 
• Different hard scale compared to FT 
• Evolution effects may play a 

substantial role 

PRL 116 (2016) 132301
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Extraction of the cosine moments

fully differential analysis needed
unfolding procedure with 400 x 12 bins 

extraction is challenging!
azimuthal modulations also possible due to 
● detector geometrical acceptance
● higher-order QED effects
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#Bin limitsVariable

BINNING

400 kinematic bins x 12 φ-bins

Fully differential analysis

Unfolding in 400 x 12 bins
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FFs in the transverse SSAs, and to study the feasibility of
experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.

II. CALCULATION OF TWIST-3
TMD DISTRIBUTIONS IN

SPECTATOR-DIQUARK MODEL

In this section, we present the calculation on the four
twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
supposed to be constituted by a quark and a diquark,
and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
The gauge-invariant quark-quark correlator can be

expressed as

Φðx; kTÞ ¼
Z

dξ−d2ξT
ð2πÞ3

eik·ξhPSjψ̄ jð0ÞL½0−;∞−%

× L½0T; ξT %L½∞−; ξ−%ψ iðξÞjPSi: ð1Þ

For convenience here we adopt the light-cone coordinates
½a−; aþ; aT % for an arbitrary four-vector a, with a' ¼
ða0 ' a3Þ=

ffiffiffi
2

p
¼ a · n∓, where the two lightlike vectors

are defined as nþ ¼ ½0; 1; 0T % and n− ¼ ½1; 0; 0T %. The
vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
polarized nucleon can be decomposed into [31]

Φðx; kT; STÞjtwist-3
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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FFs in the transverse SSAs, and to study the feasibility of
experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.

II. CALCULATION OF TWIST-3
TMD DISTRIBUTIONS IN

SPECTATOR-DIQUARK MODEL

In this section, we present the calculation on the four
twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
supposed to be constituted by a quark and a diquark,
and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
The gauge-invariant quark-quark correlator can be

expressed as

Φðx; kTÞ ¼
Z

dξ−d2ξT
ð2πÞ3

eik·ξhPSjψ̄ jð0ÞL½0−;∞−%

× L½0T; ξT %L½∞−; ξ−%ψ iðξÞjPSi: ð1Þ

For convenience here we adopt the light-cone coordinates
½a−; aþ; aT % for an arbitrary four-vector a, with a' ¼
ða0 ' a3Þ=

ffiffiffi
2

p
¼ a · n∓, where the two lightlike vectors

are defined as nþ ¼ ½0; 1; 0T % and n− ¼ ½1; 0; 0T %. The
vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
polarized nucleon can be decomposed into [31]
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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1 ⇥ Ẽ, e⇥H

?
1 , g

? ⇥D1, f1 ⇥ G̃
?
i

Boer-Mulders PDF Chiral-odd T-even  
twist-3 FF

Boer-Mulders PDF

FSI

36

FFs in the transverse SSAs, and to study the feasibility of
experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.

II. CALCULATION OF TWIST-3
TMD DISTRIBUTIONS IN

SPECTATOR-DIQUARK MODEL

In this section, we present the calculation on the four
twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
supposed to be constituted by a quark and a diquark,
and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
The gauge-invariant quark-quark correlator can be

expressed as

Φðx; kTÞ ¼
Z

dξ−d2ξT
ð2πÞ3

eik·ξhPSjψ̄ jð0ÞL½0−;∞−%

× L½0T; ξT %L½∞−; ξ−%ψ iðξÞjPSi: ð1Þ

For convenience here we adopt the light-cone coordinates
½a−; aþ; aT % for an arbitrary four-vector a, with a' ¼
ða0 ' a3Þ=

ffiffiffi
2

p
¼ a · n∓, where the two lightlike vectors

are defined as nþ ¼ ½0; 1; 0T % and n− ¼ ½1; 0; 0T %. The
vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
polarized nucleon can be decomposed into [31]

Φðx; kT; STÞjtwist-3

¼ M
2Pþ
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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FFs in the transverse SSAs, and to study the feasibility of
experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.

II. CALCULATION OF TWIST-3
TMD DISTRIBUTIONS IN

SPECTATOR-DIQUARK MODEL

In this section, we present the calculation on the four
twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
supposed to be constituted by a quark and a diquark,
and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
The gauge-invariant quark-quark correlator can be

expressed as

Φðx; kTÞ ¼
Z

dξ−d2ξT
ð2πÞ3

eik·ξhPSjψ̄ jð0ÞL½0−;∞−%

× L½0T; ξT %L½∞−; ξ−%ψ iðξÞjPSi: ð1Þ

For convenience here we adopt the light-cone coordinates
½a−; aþ; aT % for an arbitrary four-vector a, with a' ¼
ða0 ' a3Þ=

ffiffiffi
2

p
¼ a · n∓, where the two lightlike vectors

are defined as nþ ¼ ½0; 1; 0T % and n− ¼ ½1; 0; 0T %. The
vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
polarized nucleon can be decomposed into [31]

Φðx; kT; STÞjtwist-3

¼ M
2Pþ

"
−ϵρσT γρSTσf0T þ
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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FFs in the transverse SSAs, and to study the feasibility of
experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.

II. CALCULATION OF TWIST-3
TMD DISTRIBUTIONS IN

SPECTATOR-DIQUARK MODEL

In this section, we present the calculation on the four
twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
supposed to be constituted by a quark and a diquark,
and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
The gauge-invariant quark-quark correlator can be

expressed as

Φðx; kTÞ ¼
Z

dξ−d2ξT
ð2πÞ3

eik·ξhPSjψ̄ jð0ÞL½0−;∞−%

× L½0T; ξT %L½∞−; ξ−%ψ iðξÞjPSi: ð1Þ

For convenience here we adopt the light-cone coordinates
½a−; aþ; aT % for an arbitrary four-vector a, with a' ¼
ða0 ' a3Þ=

ffiffiffi
2

p
¼ a · n∓, where the two lightlike vectors

are defined as nþ ¼ ½0; 1; 0T % and n− ¼ ½1; 0; 0T %. The
vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
polarized nucleon can be decomposed into [31]

Φðx; kT; STÞjtwist-3

¼ M
2Pþ

"
−ϵρσT γρSTσf0T þ

ðkT · STÞϵ
ρσ
T γρkTσ

M2
f⊥T

−
kT · ST
M

½nþ; n−%γ5
2

hT þ ½ST; kT %γ5
2M

h⊥T þ ( ( (
#
; ð3Þ

FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.

WENJUAN MAO, ZHUN LU, AND BO-QIANG MA PHYSICAL REVIEW D 90, 014048 (2014)

014048-2

FFs in the transverse SSAs, and to study the feasibility of
experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.
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In this section, we present the calculation on the four
twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
supposed to be constituted by a quark and a diquark,
and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
The gauge-invariant quark-quark correlator can be

expressed as

Φðx; kTÞ ¼
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× L½0T; ξT %L½∞−; ξ−%ψ iðξÞjPSi: ð1Þ

For convenience here we adopt the light-cone coordinates
½a−; aþ; aT % for an arbitrary four-vector a, with a' ¼
ða0 ' a3Þ=

ffiffiffi
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¼ a · n∓, where the two lightlike vectors

are defined as nþ ¼ ½0; 1; 0T % and n− ¼ ½1; 0; 0T %. The
vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
polarized nucleon can be decomposed into [31]
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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FFs in the transverse SSAs, and to study the feasibility of
experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.
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In this section, we present the calculation on the four
twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
supposed to be constituted by a quark and a diquark,
and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
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vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
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model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
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sible at HERMES, JLab, and COMPASS. Although the
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experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.
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In this section, we present the calculation on the four
twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
supposed to be constituted by a quark and a diquark,
and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
The gauge-invariant quark-quark correlator can be

expressed as
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For convenience here we adopt the light-cone coordinates
½a−; aþ; aT % for an arbitrary four-vector a, with a' ¼
ða0 ' a3Þ=

ffiffiffi
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¼ a · n∓, where the two lightlike vectors

are defined as nþ ¼ ½0; 1; 0T % and n− ¼ ½1; 0; 0T %. The
vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
polarized nucleon can be decomposed into [31]
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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the transverse SSAs. In this paper, we will focus particu-
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note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
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tions to the SSAs in SIDIS. The possible role of the TMD
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The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.
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vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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FFs in the transverse SSAs, and to study the feasibility of
experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.
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twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
supposed to be constituted by a quark and a diquark,
and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
The gauge-invariant quark-quark correlator can be

expressed as
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vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
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diquarks.
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one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
The gauge-invariant quark-quark correlator can be

expressed as

Φðx; kTÞ ¼
Z

dξ−d2ξT
ð2πÞ3

eik·ξhPSjψ̄ jð0ÞL½0−;∞−%

× L½0T; ξT %L½∞−; ξ−%ψ iðξÞjPSi: ð1Þ

For convenience here we adopt the light-cone coordinates
½a−; aþ; aT % for an arbitrary four-vector a, with a' ¼
ða0 ' a3Þ=

ffiffiffi
2

p
¼ a · n∓, where the two lightlike vectors

are defined as nþ ¼ ½0; 1; 0T % and n− ¼ ½1; 0; 0T %. The
vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
polarized nucleon can be decomposed into [31]

Φðx; kT; STÞjtwist-3

¼ M
2Pþ
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−ϵρσT γρSTσf0T þ

ðkT · STÞϵ
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T γρkTσ

M2
f⊥T

−
kT · ST
M

½nþ; n−%γ5
2

hT þ ½ST; kT %γ5
2M

h⊥T þ ( ( (
#
; ð3Þ

FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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FFs in the transverse SSAs, and to study the feasibility of
experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.
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are defined as nþ ¼ ½0; 1; 0T % and n− ¼ ½1; 0; 0T %. The
vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
polarized nucleon can be decomposed into [31]
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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FFs in the transverse SSAs, and to study the feasibility of
experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
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tion could still be sizeable. These studies might also imply
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the last two distributions contribute to both asymmetries
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The remained content of the paper is organized as
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perform the estimate. Finally, we give our conclusion
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vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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• Opposite behaviour for π- z projection due to different x range probed

• CLAS probes higher x region: more sensitive to             ?   
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Fig. 4. Virtual-photon asymmetry amplitudes A Q ,sin(φ)
LU for positively and negatively charged pions, as measured by HERMES (blue circles) and CLAS (grey squares) on a 

hydrogen target, as a function of xB , z, and Ph⊥ . The data corresponding to the intervals in z indicated by the open symbols are not included in the projections as a function 
of xB and Ph⊥ . For both experiments error bars represent the statistical uncertainties only. There is an additional scale uncertainty of 3% for the HERMES results originating 
from the measurement of the beam polarization.

Fig. 5. Virtual-photon asymmetry amplitudes for negatively charged pions as a function of z for slices in Ph⊥ (columns) and xB (rows), for data collected on a hydrogen 
(closed symbols) and deuterium (open symbols) target. The error bars represent the statistical uncertainties, while the error bands represent systematic uncertainties. In 
addition, there is a systematic uncertainty originating from the measurement of the beam polarization, corresponding to a scale factor of 3%.
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Gluon TMD PDFs

generating the spin asymmetries. CT3 predictions go further with a deeper connection to the QCD proper-
ties but are based on collinear considerations where the transverse-momentum e↵ect are integrated over in
higher-twist correlators. HE factorisation, only applied to unpolarised collisions so far, is first designed to
treat new e↵ects at large

p
s. As such, care should be taken when using its predictions when

p
s is not very

large, in particular for systems or conditions where TMD factorisation is a priori not applicable. Indeed, the
latter, while being probably the most inclusive in terms of phenomena generated by the kT of the partons, is
also the most restrictive in terms of applicability owing to its ambition to be the most rigorous.

The purpose of this section is to outline the recent progress regarding quarkonium production in pro-
cesses where the transverse-momentum-dependent gluon e↵ects enter, and how the HL-LHC can contribute
to this emerging research domain.

The TMD factorisation framework is briefly introduced in Section 4.1, followed by a discussion in
Section 4.2 on several specificities and open issues related to the treatment of quarkonium production, while
HE factorisation is treated in Sections 4.3 and 4.4. Section 4.5 focuses on various-quarkonium production
processes in unpolarised pp collisions within the TMD factorisation framework, with a special focus on the
unpolarised and the linearly-polarised gluon TMDs, f g

1 and h?g
1 . In Section 4.6, we address the complex

issue of factorisation-breaking e↵ects or, more generally, e↵ects beyond TMD and HE factorisations, and
discuss some easily measurable processes where they can be studied. Finally, in Section 4.7, collisions with
polarised nucleons are considered; these become measurable at the HL-LHC with a polarised target in the
FT mode, allowing one to measure STSAs in quarkonium production to probe e.g. the gluon Sivers e↵ect
accounted for by the TMD and CT3 factorisations and the GPM.

4.1. TMD factorisation in the gluon sector

In the last few years, the field of TMDs has taken a large leap forward. Both the theoretical framework [444–
450] and the phenomenological analyses (see e.g. [451–459]) have developed, including new, higher-order
perturbative calculations (see e.g. [460–466]). This progress, however, has been made mainly in the quark
sector, with the gluon sector lagging behind due to the di�culty in cleanly probing gluons in high-energy
processes.

Gluon TMDs at the leading twist, first analysed and classified in [467], are shown in Table 1, in terms of
both the polarisation of the gluon itself and of its parent hadron. The distribution of unpolarised gluons in-
side an unpolarised hadron, f g

1 , and of circularly polarised gluons inside a longitudinally polarised hadron,
gg

1, correspond (i.e. are matched at large kT through an operator product expansion) to the well-known
collinear unpolarised and helicity gluon PDFs respectively. The distribution of linearly-polarised gluons in
an unpolarised parton, h?g

1 , is particularly interesting, since it gives rise to spin e↵ects even in collisions
of unpolarised hadrons, like at the LHC. The Sivers function, f?g

1T , which encodes the distribution of unpo-
larised gluons in a transversely-polarised nucleon, has a very important role in the description of STSAs.
There is a classification analogous to Table 1 for quark TMDs, and also for both quark and gluon TMD
FFs, which are as relevant as TMD distributions for processes which are sensitive to the role of transverse
dynamics of partons in the fragmentation process.
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U f g
1 h?g

1

L gg
1 h?g

1L

T f?g
1T gg

1T hg
1, h?g

1T

Table 1: Gluon TMD PDFs at twist 2. U, L, T describe unpolarised, longitudinally polarised and transversely-polarised nucleons.
U, ‘circular’, ‘linear’ stand for unpolarised, circularly polarised and linearly-polarised gluons. Functions in blue (h?g

1 , gg
1T ) are

T -even. Functions in black ( f g
1 , gg

1) are T -even and survive integration over the parton kT . Functions in red (h?g
1L , f ?g

1T ,hg
1, h?g

1T ) are
T -odd.

As is the case for quark TMDs, gluon TMDs contain information on the initial- and/or final-state QCD
interactions of the incoming hadron. Di↵erent types of gluon TMDs exist, distinguished by the precise struc-
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FIG. 7: Maximized values for AN for the process pp" ! J/ +X at
p
s = 115 GeV and PT = 3 GeV as a function of xF (left

panel) and at y = �2 as a function of PT (right panel), obtained adopting the CGI-GPM and GPM approaches, within the CS

model and NRQCD (BK11 set). Notice that here negative rapidities correspond to the forward region for the polarized proton.

IV. CONCLUSIONS

In this paper we have extended, and somehow completed, a detailed analysis of SSAs for J/ production in pp

collisions within a phenomenological TMD scheme. This study started in a previous paper, where, employing the
Color-Singlet Model for quarkonium formation, we compared the Generalized Parton Model and the Color-Gauge-
Invariant GPM. It has been then continued quite recently in a second work, adopting the NRQCD framework within
the GPM. Here we have eventually considered its extension within the CGI-GPM. The main interest of this analysis
is to see whether and to what extent one can extract information on the poorly known gluon Sivers function, focusing
only on this specific process.

We have considered all relevant subprocesses in NRQCD, both for the 2 ! 1 and the 2 ! 2 channels, including
e↵ects of initial and final state interactions, in the one-gluon-exchange approximation. This leads to the introduction
of new color factors, diagram by diagram, and the computation of modified hard scattering amplitudes. In such a way
one can move the process dependence, coming from ISIs and FSIs, into the hard parts, factorizing the corresponding
TMDs. One, well-known, outcome of this approach is the appearance of two independent gluon Sivers functions,
referred to as the d-type and the f -type distributions.

We have then calculated the maximized contributions to AN , separately for the gluon and the quark Sivers e↵ects,
adopting the kinematics of the PHENIX experiment, for which data are available. The main findings are that the
quark as well as the d-type gluon Sivers functions, even if maximized, give almost negligible contributions to the SSA,
leaving at work, as in the CSM, only the f -type GSF. On the other hand, within NRQCD this contribution is also
generally quite small and could be relatively sizeable only at forward rapidities and PT around 2-3 GeV, at least for
the two LDME sets considered.

Therefore, while within the GPM, the GSF could be easily constrained by PHENIX SSA data for J/ production
alone, the situation in the CGI-GPM is quite di↵erent. Indeed, if one adopts the CSM, the f -type GSF (the only one
active) gives still a potentially sizeable contribution; on the contrary, in full NRQCD it could be hardly constrained,
and definitely not in the backward region.

We have also presented some maximized estimates of AN , for the kinematics reachable at LHC in a fixed target
mode, showing similar features as those discussed for PHENIX setup.

More data, with higher statistics, could certainly help in shedding light on the role of the gluon Sivers function, as
well as on its process dependence.
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preserved. While, in principle, the polarization uncertain-
ties do not affect AN symmetrically due to the fact that
AN / 1

P , the difference in the value of the uncertainties

scaling to larger and smaller magnitudes of AN is less than
the precision shown.

As the functional form of the asymmetry in xF and pT is
completely unknown, no correction has been made for
potential smearing effects. A simulation study was per-
formed assuming a linear dependence of AN on xF, and it
was found that smearing effects were less than 10% of the
value of the input asymmetry.

The measured asymmetry at forward xF is negative,
!0:086" 0:026" 0:003, with a statistical significance
from zero of 3:3!, suggesting a nonzero trigluon correla-
tion function in transversely polarized protons and, if well
defined as a universal function in the reaction pþ p !
J=c þ X, a nonzero gluon Sivers function. Two indepen-
dent trigluon correlation functions exist [33,47]. In princi-
ple, based on a single nonzero measured SSA, a lower
bound could be placed on a combination of the two tri-
gluon correlation functions. However, it should be noted
that the two functions could have opposite signs, leading to
partial cancellations in the asymmetry, so correlations of
larger magnitude would not be excluded. In order to extract
the two independent correlation functions, a second mea-
surement in which the functions enter in a different combi-
nation would be necessary. Such a measurement could be

the transverse SSA for open charm (Dþ or D0) or open
anticharm (D! or !D) in SIDIS [33,34] or pþ p [31], or
direct photons in pþ p [47].
A nonzero transverse SSA in J=c production in pþ p

generated by gluon dynamics may seem surprising given
the SSAs consistent with zero in midrapidity neutral pion
production at PHENIX [35] and semi-inclusive charged
hadron production at COMPASS [11]. However, the details
of color interactions have been shown to play a major role
in SSAs [28], so further theoretical development will be
necessary before we fully understand the relationships
among these measured asymmetries. As discussed in
Ref. [23], a nonzero transverse SSA in J=c production
in polarized pþ p collisions generated by a gluon Sivers
TMD would be evidence against large contributions from
color-octet diagrams for J=c production. If a gluon Sivers
TMD is in fact well defined and nonzero, a new experi-
mental avenue has been opened up to probe the J=c
production mechanism, a long-standing question in QCD.
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details.
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generating the spin asymmetries. CT3 predictions go further with a deeper connection to the QCD proper-
ties but are based on collinear considerations where the transverse-momentum e↵ect are integrated over in
higher-twist correlators. HE factorisation, only applied to unpolarised collisions so far, is first designed to
treat new e↵ects at large

p
s. As such, care should be taken when using its predictions when

p
s is not very

large, in particular for systems or conditions where TMD factorisation is a priori not applicable. Indeed, the
latter, while being probably the most inclusive in terms of phenomena generated by the kT of the partons, is
also the most restrictive in terms of applicability owing to its ambition to be the most rigorous.

The purpose of this section is to outline the recent progress regarding quarkonium production in pro-
cesses where the transverse-momentum-dependent gluon e↵ects enter, and how the HL-LHC can contribute
to this emerging research domain.

The TMD factorisation framework is briefly introduced in Section 4.1, followed by a discussion in
Section 4.2 on several specificities and open issues related to the treatment of quarkonium production, while
HE factorisation is treated in Sections 4.3 and 4.4. Section 4.5 focuses on various-quarkonium production
processes in unpolarised pp collisions within the TMD factorisation framework, with a special focus on the
unpolarised and the linearly-polarised gluon TMDs, f g

1 and h?g
1 . In Section 4.6, we address the complex

issue of factorisation-breaking e↵ects or, more generally, e↵ects beyond TMD and HE factorisations, and
discuss some easily measurable processes where they can be studied. Finally, in Section 4.7, collisions with
polarised nucleons are considered; these become measurable at the HL-LHC with a polarised target in the
FT mode, allowing one to measure STSAs in quarkonium production to probe e.g. the gluon Sivers e↵ect
accounted for by the TMD and CT3 factorisations and the GPM.

4.1. TMD factorisation in the gluon sector

In the last few years, the field of TMDs has taken a large leap forward. Both the theoretical framework [444–
450] and the phenomenological analyses (see e.g. [451–459]) have developed, including new, higher-order
perturbative calculations (see e.g. [460–466]). This progress, however, has been made mainly in the quark
sector, with the gluon sector lagging behind due to the di�culty in cleanly probing gluons in high-energy
processes.

Gluon TMDs at the leading twist, first analysed and classified in [467], are shown in Table 1, in terms of
both the polarisation of the gluon itself and of its parent hadron. The distribution of unpolarised gluons in-
side an unpolarised hadron, f g

1 , and of circularly polarised gluons inside a longitudinally polarised hadron,
gg

1, correspond (i.e. are matched at large kT through an operator product expansion) to the well-known
collinear unpolarised and helicity gluon PDFs respectively. The distribution of linearly-polarised gluons in
an unpolarised parton, h?g

1 , is particularly interesting, since it gives rise to spin e↵ects even in collisions
of unpolarised hadrons, like at the LHC. The Sivers function, f?g

1T , which encodes the distribution of unpo-
larised gluons in a transversely-polarised nucleon, has a very important role in the description of STSAs.
There is a classification analogous to Table 1 for quark TMDs, and also for both quark and gluon TMD
FFs, which are as relevant as TMD distributions for processes which are sensitive to the role of transverse
dynamics of partons in the fragmentation process.
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1L
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1T hg
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Table 1: Gluon TMD PDFs at twist 2. U, L, T describe unpolarised, longitudinally polarised and transversely-polarised nucleons.
U, ‘circular’, ‘linear’ stand for unpolarised, circularly polarised and linearly-polarised gluons. Functions in blue (h?g

1 , gg
1T ) are

T -even. Functions in black ( f g
1 , gg

1) are T -even and survive integration over the parton kT . Functions in red (h?g
1L , f ?g

1T ,hg
1, h?g

1T ) are
T -odd.

As is the case for quark TMDs, gluon TMDs contain information on the initial- and/or final-state QCD
interactions of the incoming hadron. Di↵erent types of gluon TMDs exist, distinguished by the precise struc-
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FIG. 7: Maximized values for AN for the process pp" ! J/ +X at
p
s = 115 GeV and PT = 3 GeV as a function of xF (left

panel) and at y = �2 as a function of PT (right panel), obtained adopting the CGI-GPM and GPM approaches, within the CS

model and NRQCD (BK11 set). Notice that here negative rapidities correspond to the forward region for the polarized proton.

IV. CONCLUSIONS

In this paper we have extended, and somehow completed, a detailed analysis of SSAs for J/ production in pp

collisions within a phenomenological TMD scheme. This study started in a previous paper, where, employing the
Color-Singlet Model for quarkonium formation, we compared the Generalized Parton Model and the Color-Gauge-
Invariant GPM. It has been then continued quite recently in a second work, adopting the NRQCD framework within
the GPM. Here we have eventually considered its extension within the CGI-GPM. The main interest of this analysis
is to see whether and to what extent one can extract information on the poorly known gluon Sivers function, focusing
only on this specific process.

We have considered all relevant subprocesses in NRQCD, both for the 2 ! 1 and the 2 ! 2 channels, including
e↵ects of initial and final state interactions, in the one-gluon-exchange approximation. This leads to the introduction
of new color factors, diagram by diagram, and the computation of modified hard scattering amplitudes. In such a way
one can move the process dependence, coming from ISIs and FSIs, into the hard parts, factorizing the corresponding
TMDs. One, well-known, outcome of this approach is the appearance of two independent gluon Sivers functions,
referred to as the d-type and the f -type distributions.

We have then calculated the maximized contributions to AN , separately for the gluon and the quark Sivers e↵ects,
adopting the kinematics of the PHENIX experiment, for which data are available. The main findings are that the
quark as well as the d-type gluon Sivers functions, even if maximized, give almost negligible contributions to the SSA,
leaving at work, as in the CSM, only the f -type GSF. On the other hand, within NRQCD this contribution is also
generally quite small and could be relatively sizeable only at forward rapidities and PT around 2-3 GeV, at least for
the two LDME sets considered.

Therefore, while within the GPM, the GSF could be easily constrained by PHENIX SSA data for J/ production
alone, the situation in the CGI-GPM is quite di↵erent. Indeed, if one adopts the CSM, the f -type GSF (the only one
active) gives still a potentially sizeable contribution; on the contrary, in full NRQCD it could be hardly constrained,
and definitely not in the backward region.

We have also presented some maximized estimates of AN , for the kinematics reachable at LHC in a fixed target
mode, showing similar features as those discussed for PHENIX setup.

More data, with higher statistics, could certainly help in shedding light on the role of the gluon Sivers function, as
well as on its process dependence.
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preserved. While, in principle, the polarization uncertain-
ties do not affect AN symmetrically due to the fact that
AN / 1

P , the difference in the value of the uncertainties

scaling to larger and smaller magnitudes of AN is less than
the precision shown.

As the functional form of the asymmetry in xF and pT is
completely unknown, no correction has been made for
potential smearing effects. A simulation study was per-
formed assuming a linear dependence of AN on xF, and it
was found that smearing effects were less than 10% of the
value of the input asymmetry.

The measured asymmetry at forward xF is negative,
!0:086" 0:026" 0:003, with a statistical significance
from zero of 3:3!, suggesting a nonzero trigluon correla-
tion function in transversely polarized protons and, if well
defined as a universal function in the reaction pþ p !
J=c þ X, a nonzero gluon Sivers function. Two indepen-
dent trigluon correlation functions exist [33,47]. In princi-
ple, based on a single nonzero measured SSA, a lower
bound could be placed on a combination of the two tri-
gluon correlation functions. However, it should be noted
that the two functions could have opposite signs, leading to
partial cancellations in the asymmetry, so correlations of
larger magnitude would not be excluded. In order to extract
the two independent correlation functions, a second mea-
surement in which the functions enter in a different combi-
nation would be necessary. Such a measurement could be

the transverse SSA for open charm (Dþ or D0) or open
anticharm (D! or !D) in SIDIS [33,34] or pþ p [31], or
direct photons in pþ p [47].
A nonzero transverse SSA in J=c production in pþ p

generated by gluon dynamics may seem surprising given
the SSAs consistent with zero in midrapidity neutral pion
production at PHENIX [35] and semi-inclusive charged
hadron production at COMPASS [11]. However, the details
of color interactions have been shown to play a major role
in SSAs [28], so further theoretical development will be
necessary before we fully understand the relationships
among these measured asymmetries. As discussed in
Ref. [23], a nonzero transverse SSA in J=c production
in polarized pþ p collisions generated by a gluon Sivers
TMD would be evidence against large contributions from
color-octet diagrams for J=c production. If a gluon Sivers
TMD is in fact well defined and nonzero, a new experi-
mental avenue has been opened up to probe the J=c
production mechanism, a long-standing question in QCD.
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ization uncertainties of 3.4%, 3.0%, and 2.4% for the 2006, 2008,
and combined 2006þ 2008 data sets, respectively. See text for
details.
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generating the spin asymmetries. CT3 predictions go further with a deeper connection to the QCD proper-
ties but are based on collinear considerations where the transverse-momentum e↵ect are integrated over in
higher-twist correlators. HE factorisation, only applied to unpolarised collisions so far, is first designed to
treat new e↵ects at large

p
s. As such, care should be taken when using its predictions when

p
s is not very

large, in particular for systems or conditions where TMD factorisation is a priori not applicable. Indeed, the
latter, while being probably the most inclusive in terms of phenomena generated by the kT of the partons, is
also the most restrictive in terms of applicability owing to its ambition to be the most rigorous.

The purpose of this section is to outline the recent progress regarding quarkonium production in pro-
cesses where the transverse-momentum-dependent gluon e↵ects enter, and how the HL-LHC can contribute
to this emerging research domain.

The TMD factorisation framework is briefly introduced in Section 4.1, followed by a discussion in
Section 4.2 on several specificities and open issues related to the treatment of quarkonium production, while
HE factorisation is treated in Sections 4.3 and 4.4. Section 4.5 focuses on various-quarkonium production
processes in unpolarised pp collisions within the TMD factorisation framework, with a special focus on the
unpolarised and the linearly-polarised gluon TMDs, f g

1 and h?g
1 . In Section 4.6, we address the complex

issue of factorisation-breaking e↵ects or, more generally, e↵ects beyond TMD and HE factorisations, and
discuss some easily measurable processes where they can be studied. Finally, in Section 4.7, collisions with
polarised nucleons are considered; these become measurable at the HL-LHC with a polarised target in the
FT mode, allowing one to measure STSAs in quarkonium production to probe e.g. the gluon Sivers e↵ect
accounted for by the TMD and CT3 factorisations and the GPM.

4.1. TMD factorisation in the gluon sector

In the last few years, the field of TMDs has taken a large leap forward. Both the theoretical framework [444–
450] and the phenomenological analyses (see e.g. [451–459]) have developed, including new, higher-order
perturbative calculations (see e.g. [460–466]). This progress, however, has been made mainly in the quark
sector, with the gluon sector lagging behind due to the di�culty in cleanly probing gluons in high-energy
processes.

Gluon TMDs at the leading twist, first analysed and classified in [467], are shown in Table 1, in terms of
both the polarisation of the gluon itself and of its parent hadron. The distribution of unpolarised gluons in-
side an unpolarised hadron, f g

1 , and of circularly polarised gluons inside a longitudinally polarised hadron,
gg

1, correspond (i.e. are matched at large kT through an operator product expansion) to the well-known
collinear unpolarised and helicity gluon PDFs respectively. The distribution of linearly-polarised gluons in
an unpolarised parton, h?g

1 , is particularly interesting, since it gives rise to spin e↵ects even in collisions
of unpolarised hadrons, like at the LHC. The Sivers function, f?g

1T , which encodes the distribution of unpo-
larised gluons in a transversely-polarised nucleon, has a very important role in the description of STSAs.
There is a classification analogous to Table 1 for quark TMDs, and also for both quark and gluon TMD
FFs, which are as relevant as TMD distributions for processes which are sensitive to the role of transverse
dynamics of partons in the fragmentation process.

gluon polarisation

nu
cl
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n
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n

U circular linear

U f g
1 h?g

1

L gg
1 h?g

1L

T f?g
1T gg

1T hg
1, h?g

1T

Table 1: Gluon TMD PDFs at twist 2. U, L, T describe unpolarised, longitudinally polarised and transversely-polarised nucleons.
U, ‘circular’, ‘linear’ stand for unpolarised, circularly polarised and linearly-polarised gluons. Functions in blue (h?g

1 , gg
1T ) are

T -even. Functions in black ( f g
1 , gg

1) are T -even and survive integration over the parton kT . Functions in red (h?g
1L , f ?g

1T ,hg
1, h?g

1T ) are
T -odd.

As is the case for quark TMDs, gluon TMDs contain information on the initial- and/or final-state QCD
interactions of the incoming hadron. Di↵erent types of gluon TMDs exist, distinguished by the precise struc-
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• Accessible through production of dijets, 

    high-PT hadron pairs, quarkonia
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Transverse Single Spin Asymmetry (TSSA)
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P
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P
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Inclusive C-even quarkonia production 
e.g.  ideal process to study gluon TMDs


Associate quarkonia production 
allows broader kinematic range for TMD factorisation 
but statistically limited in fixed-target collisions

ηc, χc0

Probing the gluon Sivers funct.

L. L. Pappalardo                                       Photonuclear Reactions Gordon Research Conference   - Holderness, NH, USA -  August 7-12 2022 3

• Sheds light on spin-orbit correlations of unpol. gluons inside a transv. pol. proton
• sensitive to gluon OAM
• can be accessed through the measurement of the TSSAs in inclusive heavy meson production
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9

FIG. 7: Maximized values for AN for the process pp" ! J/ +X at
p
s = 115 GeV and PT = 3 GeV as a function of xF (left

panel) and at y = �2 as a function of PT (right panel), obtained adopting the CGI-GPM and GPM approaches, within the CS

model and NRQCD (BK11 set). Notice that here negative rapidities correspond to the forward region for the polarized proton.

IV. CONCLUSIONS

In this paper we have extended, and somehow completed, a detailed analysis of SSAs for J/ production in pp

collisions within a phenomenological TMD scheme. This study started in a previous paper, where, employing the
Color-Singlet Model for quarkonium formation, we compared the Generalized Parton Model and the Color-Gauge-
Invariant GPM. It has been then continued quite recently in a second work, adopting the NRQCD framework within
the GPM. Here we have eventually considered its extension within the CGI-GPM. The main interest of this analysis
is to see whether and to what extent one can extract information on the poorly known gluon Sivers function, focusing
only on this specific process.

We have considered all relevant subprocesses in NRQCD, both for the 2 ! 1 and the 2 ! 2 channels, including
e↵ects of initial and final state interactions, in the one-gluon-exchange approximation. This leads to the introduction
of new color factors, diagram by diagram, and the computation of modified hard scattering amplitudes. In such a way
one can move the process dependence, coming from ISIs and FSIs, into the hard parts, factorizing the corresponding
TMDs. One, well-known, outcome of this approach is the appearance of two independent gluon Sivers functions,
referred to as the d-type and the f -type distributions.

We have then calculated the maximized contributions to AN , separately for the gluon and the quark Sivers e↵ects,
adopting the kinematics of the PHENIX experiment, for which data are available. The main findings are that the
quark as well as the d-type gluon Sivers functions, even if maximized, give almost negligible contributions to the SSA,
leaving at work, as in the CSM, only the f -type GSF. On the other hand, within NRQCD this contribution is also
generally quite small and could be relatively sizeable only at forward rapidities and PT around 2-3 GeV, at least for
the two LDME sets considered.

Therefore, while within the GPM, the GSF could be easily constrained by PHENIX SSA data for J/ production
alone, the situation in the CGI-GPM is quite di↵erent. Indeed, if one adopts the CSM, the f -type GSF (the only one
active) gives still a potentially sizeable contribution; on the contrary, in full NRQCD it could be hardly constrained,
and definitely not in the backward region.

We have also presented some maximized estimates of AN , for the kinematics reachable at LHC in a fixed target
mode, showing similar features as those discussed for PHENIX setup.

More data, with higher statistics, could certainly help in shedding light on the role of the gluon Sivers function, as
well as on its process dependence.
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preserved. While, in principle, the polarization uncertain-
ties do not affect AN symmetrically due to the fact that
AN / 1

P , the difference in the value of the uncertainties

scaling to larger and smaller magnitudes of AN is less than
the precision shown.

As the functional form of the asymmetry in xF and pT is
completely unknown, no correction has been made for
potential smearing effects. A simulation study was per-
formed assuming a linear dependence of AN on xF, and it
was found that smearing effects were less than 10% of the
value of the input asymmetry.

The measured asymmetry at forward xF is negative,
!0:086" 0:026" 0:003, with a statistical significance
from zero of 3:3!, suggesting a nonzero trigluon correla-
tion function in transversely polarized protons and, if well
defined as a universal function in the reaction pþ p !
J=c þ X, a nonzero gluon Sivers function. Two indepen-
dent trigluon correlation functions exist [33,47]. In princi-
ple, based on a single nonzero measured SSA, a lower
bound could be placed on a combination of the two tri-
gluon correlation functions. However, it should be noted
that the two functions could have opposite signs, leading to
partial cancellations in the asymmetry, so correlations of
larger magnitude would not be excluded. In order to extract
the two independent correlation functions, a second mea-
surement in which the functions enter in a different combi-
nation would be necessary. Such a measurement could be

the transverse SSA for open charm (Dþ or D0) or open
anticharm (D! or !D) in SIDIS [33,34] or pþ p [31], or
direct photons in pþ p [47].
A nonzero transverse SSA in J=c production in pþ p

generated by gluon dynamics may seem surprising given
the SSAs consistent with zero in midrapidity neutral pion
production at PHENIX [35] and semi-inclusive charged
hadron production at COMPASS [11]. However, the details
of color interactions have been shown to play a major role
in SSAs [28], so further theoretical development will be
necessary before we fully understand the relationships
among these measured asymmetries. As discussed in
Ref. [23], a nonzero transverse SSA in J=c production
in polarized pþ p collisions generated by a gluon Sivers
TMD would be evidence against large contributions from
color-octet diagrams for J=c production. If a gluon Sivers
TMD is in fact well defined and nonzero, a new experi-
mental avenue has been opened up to probe the J=c
production mechanism, a long-standing question in QCD.
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where Fi(0) are hard-scattering coe�cients, wi(0) are the TMD weights common to all
gluon-fusion processes originating from unpolarised proton collisions, and C denotes
the TMD convolutions [17, 18]. The calculation is valid in the TMD region with

pdi-J/ 
T

< hmdi-J/ i/2 [17, 18]. In this analysis, the �CS distribution is measured in the

TMD region pdi-J/ 
T

< 4.1GeV/c, since the average value of mdi-J/ in the whole fiducial
range is hmdi-J/ i = 8.2GeV/c2. The measured �CS distributions with the SPS and DPS
contributions separated are shown in Fig. 7(a). The expectation values hcos 2�CSi and
hcos 4�CSi correspond to half of the ratio of the cosn�CS-modulations present in the TMD
cross-section regarding its �CS-independent component [18], i.e. hcos 2�CSi = b/2a and
hcos 4�CSi = c/2a. They are calculated as

hcos 2�CSi =
P

i
d�
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i
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where the index i denotes each interval, ��CSi is the interval width and �CSi is the interval
centre. The results of hcos 2�CSi and hcos 4�CSi extracted from the �CS distribution for
SPS are

hcos 2�CSi = �0.029± 0.050 (stat)± 0.009 (syst),

hcos 4�CSi = �0.087± 0.052 (stat)± 0.013 (syst),

dominated by statistical uncertainties. The corresponding �CS function given by a+ b⇥
cos(2�CS) + c⇥ cos(4�CS) is overlaid on the SPS result in Fig. 7(b). Its coe�cients are

13

pJ/ψJ/ψ
T <

⟨MJ/ψJ/ψ⟩
2

,

⟨MJ/ψJ/ψ⟩ = 8.2 GeV/c2
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Figure 8: Normalised pT spectrum of di-J/ production in di↵erent ydi-J/ intervals, compared

with TMD predictions [18] in the TMD region pdi-J/ 
T

< hmdi-J/ i/2. The average values of the

pdi-J/ 
T

distributions in three ydi-J/ intervals are presented at the top of the figure.

fixed to the values calculated by Eqs. 13 and 14, and the normalisation is fixed to that
of the SPS measurement. The results are consistent with zero, but the presence of an
azimuthal asymmetry at a few percent level is allowed. The prediction of hcos 2�CSi varies
from 0.009 to 0.016 due to nonperturbative uncertainties [18], also consistent with the
measured result given the large uncertainty so far.

The pT spectrum of the di-J/ signals from SPS can also be used to probe the gluon
TMDs, especially f g

1
(x, k2

T
, µ) [17,18]. It was pointed out in Ref. [18] that the variation of

the momentum fractions of the two interacting gluons, x1,2 = mdi-J/ e
±ydi-J/ /

p
s, do not

have significant impact on the shape of the pdi-J/ 
T

spectrum. The pdi-J/ 
T

spectrum is thus
measured in three di↵erent intervals of ydi-J/ for the SPS process, and the cross-section
results are listed in Tables 18 and 19 in Appendix A for SPS+DPS and SPS separately.
The distributions are normalised for comparison in Fig. 8. They are consistent with
each other within the uncertainties. The average values of the pdi-J/ 

T
distributions in

three ydi-J/ intervals are also presented at the top of Fig. 8, and show no significant
variations. The TMD predictions [18], which are only applicable in the TMD region

pdi-J/ 
T

< hmdi-J/ i/2, are also shown in Fig. 8, and peak at higher pdi-J/ 
T

than the measured
distributions.

In addition, the study of the dependence of TMDs on the renormalisation and
rapidity scales, requires a measurement of the pT spectrum at di↵erent mdi-J/ [18].

The di↵erential cross-sections d�/dpdi-J/ 
T

in the three intervals 6 < mdi-J/ < 7GeV/c2,
7 < mdi-J/ < 9GeV/c2 and 9 < mdi-J/ < 24GeV/c2, are listed in Tables 20 and 21 in
Appendix A for SPS+DPS and SPS separately. The normalised pT spectra of the di-J/ 
production for SPS in di↵erent mdi-J/ intervals with the expected values of hmdi-J/ i = 6.6,
7.9 and 11.0GeV/c2, respectively, are compared in Figure 9, with the TMD predictions [18]

14
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Figure 9: Normalised pT spectrum of di-J/ production in three mdi-J/ intervals with
hmdi-J/ i =6.6, 7.9 and 11.0GeV/c2, compared with TMD predictions [18] in the TMD re-

gion pdi-J/ 
T

< hmdi-J/ i/2. The average values of the pdi-J/ 
T

distributions in three mdi-J/ 

intervals are presented at the top of the figure.

overlaid in the TMD region. According to the prediction, the pT spectrum would broaden
as mdi-J/ increases [18], but no obvious broadening of the pT spectrum can be seen in the

TMD region due to the large uncertainties. The average values of the pdi-J/ 
T

distributions
in three mdi-J/ intervals are also presented at the top of Fig. 9, and slightly increase with
mass.

9 Conclusion

The J/ -pair production cross-section in pp collisions at
p
s = 13TeV is measured to be

16.36± 0.28 (stat)± 0.88 (syst) nb using a data sample corresponding to an integrated
luminosity of 4.2 fb�1 collected by the LHCb experiment, with both J/ mesons in
the range of pT < 14GeV/c and 2.0 < y < 4.5. The contributions from DPS and
SPS are separated based on distinctive �y dependences of their corresponding cross-
sections. The e↵ective cross-section characterising the DPS process is determined to
be �e↵ = 13.1 ± 1.8 (stat) ± 2.3 (syst)mb, and is consistent with most of the existing
measurements. The di↵erential cross-sections in SPS are consistent with the NLO* CS
predictions which are plagued by large theoretical uncertainties. The cross-sections
predicted by PRA+NRQCD overshoot the SPS data at small mdi-J/ and agree with them
at large mdi-J/ .

The gluon TMDs are probed via the �CS distribution and the pdi-J/ 
T

spectrum from
the SPS process. The extracted values of hcos 2�CSi and hcos 4�CSi are consistent with
zero, but the presence of an azimuthal asymmetry at a few percent level is allowed. The
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Figure 8: Pion cross sections as a function of PT in bins of x and for selected bins of Q2 for three di↵erent collision energies. For visibility all z bins were combined.
The uncertainty boxes are based on the di↵erences between true and reconstructed yields and give an indication of the maximal size of uncertainties due to kinematic
resolutions.

Figure 9: Expected EIC uncertainties on the unpolarized TMD PDFs (top) and FFs (bottom) as a function of the intrinsic transverse momentum for certain x and z
slices in comparison to the existing uncertainties.
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Sivers TMD PDF: TMD evolution

Figure 1: Example of the expected evolution e↵ects from [13] for the Sivers asymmetry at an intermediate x, z and PT value, as a function of Q for three collision
energy combinations. The error bands represent the current level of uncertainties and the data points represent the projected ECCE uncertainties (statistical and
systematic uncertainties combined) to be discussed further below put to the central values of the current parameterization.

Sivers asymmetries of about 2 % would decrease to the sub-44

percent level at higher scales. As such, it is important for any45

EIC experiment to be able to reconstruct such asymmetries with46

both statistical and systematic precision below the 1 % level47

over a large kinematic range in a fine enough binning. The de-48

tails of the expected precision of the ECCE measurements will49

be discussed below, but one can already see the complementar-50

ity between di↵erent collision energies in covering a large lever51

arm with su�cient precision.52

The Collins e↵ect [2] relates the chiral-odd quark transver-53

sity distribution [17], that is the basis for the tensor charge,54

with a polarized fragmentation function, the Collins fragmenta-55

tion function. It correlates the transverse spin of a fragmenting56

parton with the azimuthal yield of final-state hadrons around57

the axis of this parton. Unlike the Sivers function, that can be58

accessed with an unpolarized fragmentation function, the fact59

that the fragmentation function is also polarized and chiral-odd60

makes the transversity extraction more di�cult. Nevertheless,61

access to only the Collins FFs has been obtained from e+e�62

annihilation measurements, initially by Belle [9, 10] and later63

by BABAR [11] and BESIII[12]. Using this information to-64

gether with the SIDIS data from HERMES, COMPASS and65

JLAB, various transversity extractions have been performed,66

although they predominantly rely on only valence flavors so67

far. Recently, also single-hadron single spin asymmetries from68

hadronic collisions were included in a global QCD analyssi69

of all avialable data on transverse spin asymmetries, includ-70

ing apart from SIDIS, Drell-Yan and e+e� data also AN data71

from proton-proton scattering [18]. The interest of the tensor72

charges stems from the fact that various interactions beyond the73

standard model may be also a tensor type of interaction [19].74

As at the same time Lattice QCD calculations argue to be al-75

ready fairly reliable on the calculation of the tensor charge, any76

discrepancies between measurement and Lattice results may in-77

dicate BSM e↵ects. Although the tensor charges are expected78

to be more of a valence quark e↵ect (due the the charges being79

defined as the di↵erence of quark and antiquark transversities),80

fixed target measurements will not be able to perform the inte-81

gral over large enough of an x range to satisfactorily extract the82

charges, but the EIC can [20]. Also here the scale dependence83

is of interest as well as accessing the sea quark transversity dis-84

tributions.85

2. Data selection86

The simulated data were obtained using the pythiaeRHIC im-87

plementation of pythia6 [21] with the same settings and events88

that were also used in the SIDIS studies of the EIC Yellow re-89

port [22]. It should be noted that for these studies no dedicated90

radiative e↵ects were generated other than what is already in-91

cluded in pythia. These e↵ects are likely very relevant, espe-92

cially at large y but are common to all EIC detector proposals93

and were therefore not studied here. The generated data, in94

its eic-smear format, was then run through a geant4 simulation95

of ECCE that contains all the relevant tracking detectors and96

calorimeters, as well as some of the support material, magnet97

yoke, the PID detectors, etc., c.f. [23]. The PID information98

in these simulations came from a parametrization based on the99

rapidity and momentum dependent PID resolutions that can be100

expected for the various PID subsystems.101

The data was obtained at the energy combinations that are102

summarized in Table 1 where the simulations were separated103

into low Q2 data and higher Q2 data in order to still obtain rea-104

sonable statistics at the lower cross sections at higher Q2. Un-105

like in the Yellow Report, no dedicated e+3He simulations were106

run and instead for the impact studies the Yellow Report un-107

certainties were rescaled based on the ECCE e+p simulations.108

As can be seen from these luminosities, especially at low Q2
109

the accumulated data is still far below the level of statistics to110

be expected from the EIC. Nevertheless the statistics are large111

enough to evaluate the statistical uncertainties that can be ex-112

pected. At the higher Q2 > 100 GeV2 range, the luminosities113

are generally larger which in turn compensates for the lower114

cross sections and event rates expected there.115

3. General (SI)DIS kinematics, requirements116

As with all deeply inelastic scattering events the typical re-117

quirements on DIS kinematics are considered. The most im-118

portant one is on the scale of the process by having a lower119

limit on the squared momentum transfer from the lepton to the120

nucleon, Q2 > 1 GeV2. Additionally, also the invariant mass121

of the hadronic final state is supposed to be above the main nu-122

cleon resonances which is ensured with W2 > 10 GeV2. Further123

requirements are made on the inelasticity to be 0.01 < y < 0.95124

4

Decrease of asymmetry with increasing Q2 → need high precision (<1%) to measure asymmetry at high Q2                                        

45

ECCE

Parametrisation: M. Bury et al., JHEP, 05:151, 2021
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Figure 10: Projected ⇡+ Sivers asymmetry statistical and systematic uncertainties as a function of either z (top panel) in bins of PT or as a function of PT in bins of
z (bottom panel) for three select x and Q2 bins. The asymmetries are shown at arbitrary values for better visibility. The statistical uncertainties are extrapolated to
an accumulated luminosity of 10 fb�1 for the 18 GeV x 275 GeV energy option. For better visibility either 4 bins in PT and 2 bins in z were combined or vice versa.
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Uncertainties Sivers asymmetry at EIC

46

Sivers asymmetry

• Low x and Q2: small statistical uncertainty. High precision is needed since asymmetry at low x and Q2 well below 1%.

• For not too large z and PT, statistical uncertainty well below 1%.

• Systematic uncertainties increase with z and PT: likely because of higher smearing effects.

systematic uncertainty= 

|generated - reconstructed|


Additionally: 3% scale uncertainty

Beam polarisations assumed 

to be 70%.
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Figure 16: Projected ⇡+ Sivers asymmetry statistical uncertainties as a function of z and PT in bins of x and Q2. The statistical uncertainties are extrapolated to an
accumulated luminosity of 10 fb�1 for the 5 GeV x 41 GeV energy option.

Figure 17: Example figure of the Q2 dependence of Sivers asymmetries for ⇡+ for three x bins after integrating over transverse and fractional momenta.

Figure 18: Example figure of the Q2 dependence of Collins asymmetries for ⇡+ for three x bins after integrating over transverse and fractional momenta.

18

Q2 dependence of the Sivers asymmetry at EIC

47

Intermediate and high x: good coverage in Q2,

with complementarity in coverage at different COM energies.

ECCE



Figure 20: Expected impact on up (left) and down (right) quark Sivers distributions as a function of the transverse momentum kT for di↵erent values of x, obtained
from SIDIS pion and kaon EIC pseudo-data, at the scale of 2 GeV. The orange-shaded areas represent the current uncertainty, while the blue-shaded areas are the
uncertainties when including the ECCE pseudo-data.
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Sivers TMD PDF: impact of EIC

Q=2 GeV

Parametrisation from

M. Bury et al., JHEP, 05:151, 2021 

ECCE

<latexit sha1_base64="nRV66JIriwkdHKruvG1RZ+R5cjQ="></latexit>

Q2 > 1 GeV2

0.01 < y < 0.95

W 2 > 10 GeV2

DIS variables via scattered lepton

<latexit sha1_base64="PrCu6qBYIFYH9vCOvraOIIJqy6E=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBjSURRTdC0Y0LFxXsA5pYJtNJO3TyYOZGLCHgxl9x40IRt/6EO//GaZuFth64cDjnXu69x4sFV2BZ30Zhbn5hcam4XFpZXVvfMDe3GipKJGV1GolItjyimOAhqwMHwVqxZCTwBGt6g8uR37xnUvEovIVhzNyA9ELuc0pASx1zJ3UoEfg6O7ctB9gDpNj3srv00M46ZtmqWGPgWWLnpIxy1Drml9ONaBKwEKggSrVtKwY3JRI4FSwrOYliMaED0mNtTUMSMOWm4x8yvK+VLvYjqSsEPFZ/T6QkUGoYeLozINBX095I/M9rJ+CfuSkP4wRYSCeL/ERgiPAoENzlklEQQ00IlVzfimmfSEJBx1bSIdjTL8+SxlHFPqlYN8fl6kUeRxHtoj10gGx0iqroCtVQHVH0iJ7RK3oznowX4934mLQWjHxmG/2B8fkDxSaW9g==</latexit>

L = 10 fb�1

<latexit sha1_base64="iaDITdBCcyFjzHBFKrLlQWtMbec=">AAACH3icbVBNSwMxFMz67fpV9eglWBTxUHaLVY+iBz1WsFXo1pJNX9vQbHZJ3opl6T/x4l/x4kER8dZ/Y1orqHUgMMzMI+9NmEhh0PMGztT0zOzc/MKiu7S8srqWW9+omjjVHCo8lrG+CZkBKRRUUKCEm0QDi0IJ12H3bOhf34E2IlZX2EugHrG2Ei3BGVqpkTsMQmgLlTEp2mq/7+6WAhQRGHrgBwj3mNFzqPZvi0HgBqCa37lGLu8VvBHoJPHHJE/GKDdyH0Ez5mkECrlkxtR8L8F6xjQKLqHvBqmBhPEua0PNUsXsDvVsdF+f7lilSVuxtk8hHak/JzIWGdOLQpuMGHbMX28o/ufVUmwd1zOhkhRB8a+PWqmkGNNhWbQpNHCUPUsY18LuSnmHacbRVuraEvy/J0+SarHglwreZTF/cjquY4FskW2yR3xyRE7IBSmTCuHkgTyRF/LqPDrPzpvz/hWdcsYzm+QXnMEnjhiiDA==</latexit>

5⇥ 41 GeV2
<latexit sha1_base64="1OTsdlwcr5HhPMENSbxKMgbE1dM=">AAACIXicbVBNS8NAFNzU7/gV9ehlsSjioSQF0aPoQY8KthaaWjbb17p0swm7L2IJ/Ste/CtePCjiTfwzbmsEtQ4sDDPz2PcmSqUw6PvvTmlqemZ2bn7BXVxaXln11tbrJsk0hxpPZKIbETMghYIaCpTQSDWwOJJwFfVPRv7VLWgjEnWJgxRaMesp0RWcoZXa3mEYQU+onEnRU3tDdyfwQxQxGBr4lsEd5vQU6sPrahi6IajOd7Ltlf2KPwadJEFByqTAedt7CzsJz2JQyCUzphn4KbZyplFwCUM3zAykjPdZD5qWKmaXaOXjC4d02yod2k20fQrpWP05kbPYmEEc2WTM8Mb89Ubif14zw+5hKxcqzRAU//qom0mKCR3VRTtCA0c5sIRxLeyulN8wzTjaUl1bQvD35ElSr1aC/Yp/US0fHRd1zJNNskV2SUAOyBE5I+ekRji5J4/kmbw4D86T8+q8fUVLTjGzQX7B+fgEeJmieA==</latexit>

10⇥ 100 GeV2
<latexit sha1_base64="V9PpN+jdQrHOma+HdhzlPiuv8rM=">AAACIXicbVDLSgMxFM34rOOr6tJNsCjioswUxC6LLnRZwdZCp5ZMeluDmcyQ3BHL0F9x46+4caFId+LPmD4EtR4IHM45l9x7wkQKg5734czNLywuLedW3NW19Y3N/NZ23cSp5lDjsYx1I2QGpFBQQ4ESGokGFoUSrsO7s5F/fQ/aiFhdYT+BVsR6SnQFZ2ildr4chNATKmNS9NTRwD3wywGKCAz1PS9AeMCMnkN9cFMKAjcA1flOtvMFr+iNQWeJPyUFMkW1nR8GnZinESjkkhnT9L0EWxnTKLiEgRukBhLG71gPmpYqZpdoZeMLB3TfKh3ajbV9CulY/TmRsciYfhTaZMTw1vz1RuJ/XjPFbrmVCZWkCIpPPuqmkmJMR3XRjtDAUfYtYVwLuyvlt0wzjrZU15bg/z15ltRLRf+46F2WCpXTaR05skv2yCHxyQmpkAtSJTXCySN5Jq/kzXlyXpx3ZziJzjnTmR3yC87nF4XpooA=</latexit>

18⇥ 100 GeV2
<latexit sha1_base64="m8zIGOyKj/d8ZqbgTJbhIl9UFGY=">AAACH3icbVDLSgMxFM34rOOr6tJNsCjioswUarssutClgm2FTi2Z9LYGM5khuSOWoX/ixl9x40IRceffmD4EXwcCh3POJfeeMJHCoOd9ODOzc/MLi7kld3lldW09v7HZMHGqOdR5LGN9GTIDUiioo0AJl4kGFoUSmuHN8chv3oI2IlYXOEigHbG+Ej3BGVqpkz8MQugLlTEp+upg6O751QBFBIaWKuUA4Q4zegKN4VXJDUB1v3KdfMEremPQv8SfkgKZ4qyTfw+6MU8jUMglM6blewm2M6ZRcAlDN0gNJIzfsD60LFXMrtDOxvcN6a5VurQXa/sU0rH6fSJjkTGDKLTJiOG1+e2NxP+8Voq9ajsTKkkRFJ981EslxZiOyqJdoYGjHFjCuBZ2V8qvmWYcbaWuLcH/ffJf0igV/XLROy8VakfTOnJkm+yQfeKTCqmRU3JG6oSTe/JInsmL8+A8Oa/O2yQ640xntsgPOB+fEzehwQ==</latexit>

18⇥ 275 GeV2
for each collision energy
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Summary

49

• Transverse momentum dependent hadron structure and hadron formation: rich field of physics,

     with sensitivity to correlations between quark and hadron spin and transverse momentum.

• Pioneering fixed-target experiments at HERMES, COMPASS, JLab 6 GeV: quark distributions

• Entering era of precision measurements: 

• JLab 12 GeV: unique precision in the valence region

• EIC: extending down to x=10-4


• LHC measurements can provide additional, invaluable high energy input

• need to extend measurements with sensitivity to gluons


