

Partonic structure & small x: theory

From Hadronic Structure to Heavy Ion Collisions June 9-15th, 2024 IJCLab, Orsay (PÅRIS Region), France

Néstor Armesto Departamento de Física de Partículas and IGFAE Universidade de Santiago de Compostela nestor.armesto@usc.es

FONDO EUROPEO DE DESENVOLVEMENTO REXIONAL "Unha maneira de facer Europa'

Contents:

I. Part I: partonic structure

- → Basics of DIS and collinear factorisation.
- \rightarrow PDFs and their determination.
- → Beyond collinear factorisation: TMDs, GPDs.
- → Diffraction.

2. Part 2: small x

- → High-energy QCD.
- → Non-linear phenomena.
- → The Color Glass Condensate approach: evolution equations.
- → The dipole model.
- \rightarrow How to compute observables.
- → Phenomenology in DIS: inclusive and exclusive observables.
- → Phenomenology in hadronic collisions: single inclusive particle production, correlations.

Some bibliography:

- R. Devenish and A. Cooper-Sarker, Deep Inelastic Scattering, Oxford University Press 2004.
- G. P. Salam, *Elements of QCD for hadron colliders*, CERN Yellow Rep. School Proc. 5 (2020) 1-56, https://inspirehep.net/literature/1820528.
- Yu.V. Kovchegov and E. Levin, *Quantum Chromodynamics at High Energy*, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 33 (2012) 1-350.

→ Consider the process of lepton (e, μ , v) scattering on a proton (or neutron or nucleus): equivalent to the Rutherford experiment.

→ Consider the process of lepton (e, μ , v) scattering on a proton (or neutron or nucleus): equivalent to the Rutherford experiment.

Standard DIS variables:

electron-proton cms energy squared: $s = (k + p)^2$

photon-proton cms energy squared:

$$W^2 = (q+p)^2$$

 $\underset{\text{by the electron:}}{\text{energy transferred}}\nu=p\cdot q$

 \rightarrow For charged lepton scattering and neglecting Z exchange,

$$\frac{d^2\sigma}{dQ^2 dx} = \frac{4\pi\alpha^2}{Q^4 x} \left[(1-y)F_2(x,Q^2) + xy^2 F_1(x,Q^2) \right]$$

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

inelasticity

Bjorken x

 $y = \frac{p \cdot q}{p \cdot k}$

 $x = \frac{-q^2}{2p \cdot q}$

 $Q^2 = -q^2$

(minus) photon virtuality

4

→ Consider the process of lepton (e, μ , ν) scattering on a proton (or neutron or nucleus): equivalent to the Rutherford experiment.

Standard DIS variables:

electron-proton cms energy squared: $s = (k + p)^2$

photon-proton cms energy squared:

$$W^2 = (q+p)^2$$

 $\underset{\text{by the electron:}}{\text{energy transferred}}\nu=p\cdot q$

→ For charged lepton scattering and neglecting Z exchange,

$$\frac{d^2\sigma}{dQ^2\,dx} = \frac{4\pi\alpha^2}{Q^4x} \left[(1-y)F_2(x,Q^2) + xy^2F_1(x,Q^2) \right]$$

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

(minus) photon virtuality

inelasticity

Bjorken x

 $y = \frac{p \cdot q}{p \cdot k}$

 $Q^2 = -q^2$

→ Consider the process of lepton (e, μ , v) scattering on a proton (or neutron or nucleus): equivalent to the Rutherford experiment.

Standard DIS variables:

electron-proton cms energy squared: $s = (k + p)^2$

photon-proton cms energy squared:

$$W^2 = (q+p)^2$$

 $\underset{\text{by the electron:}}{\text{energy transferred}}\nu=p\cdot q$

 \rightarrow For charged lepton scattering and neglecting Z exchange,

$$\frac{d^2\sigma}{dQ^2 dx} = \frac{4\pi\alpha^2}{Q^4 x} \left[(1-y)F_2(x,Q^2) + xy^2 F_1(x,Q^2) \right]$$

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

inelasticity

Bjorken x

 $y = \frac{p \cdot q}{p \cdot k}$

 $x = \frac{-q^2}{2p \cdot q}$

 $Q^2 = -q^2$

(minus) photon virtuality

4

Experiment:

Candidate from NC sample

$$\frac{\text{Lepton method}}{Q_e^2} = 4E_e E'_e \cos^2(\frac{\theta_e}{2})$$

$$y_e = 1 - \frac{E'_e}{E_e} \sin^2(\frac{\theta_e}{2})$$

$$\frac{\text{Hadron method}}{1}$$

$$Q_h^2 = \frac{1}{1 - y_h} \cdot E_h^2 \sin^2(\theta_h)$$
$$y_h = \frac{E_h}{E_e} \sin^2(\frac{\theta_h}{2})$$

Note: angles measured with respect to the p direction (HERA convention).

HERA: $e^{\pm}(27.5) + p(920)$, $\sqrt{s}=318$ GeV (HEl N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

Kinematics:

LHeC - electron kinematics

Kinematics:

LHeC - electron kinematics

Kinematics:

LHeC - electron kinematics

DIS: proton substructure

 \rightarrow Let us compare elastic scattering (x=1) on a pointlike s=1/2

particle with that on a proton and the inelastic one (for $x \sim O(1)$):

→ For fixed x, F_{1,2} roughly independent of Q (note I/Q⁴ behaviour of proton form factors): Bjorken scaling, pointlike scatterers.
 → 2xF₁=F₂: Callan-Gross relation, spin-I/2 scatterers.

DIS: proton substructure

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

DIS: parton model

DIS: parton model

DIS: parton model

DIS: QCD corrections

→ The parton model receives corrections from the fact that partons radiate: PDFs evolve with scale Q, DGLAP evolution equations.

→ PDFs are unknown, non-perturbative quantities but we know its perturbative evolution (at leading logarithmic accuracy). They have to be extracted from data or lattice.

DIS: QCD corrections

→ PDFs are unknown, non-perturbative quantities but we know its perturbative evolution (at leading logarithmic accuracy). They have to be extracted from data or lattice.

DIS: virtual plus real

When we consider
 radiation from initial state
 (before a hard scattering
 σ_h), both real and virtual
 corrections appear:

→ They combine into a IR finite but collinearly divergent cross section: $\alpha_{0}C_{E} \int_{0}^{Q^{2}} dk^{2} \int_{0}^{1} dz$

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_{\rm s} C_F}{\pi} \underbrace{\int_0^\infty \frac{d\kappa_t^2}{k_t^2}}_{\text{infinite}} \underbrace{\int_0^1 \frac{dz}{1-z} [\sigma_h(zp) - \sigma_h(p)]}_{\text{finite}}$$

→ The collinear divergence is absorbed in a redefinition of the PDFs putting a cut-off: the independence of its choice leads to DGLAP.

$$\sigma_{0} = \int dx \ \sigma_{h}(xp) \ q(x, \mu_{\rm F}^{2}),$$

$$\sigma_{1} \simeq \frac{\alpha_{\rm s}C_{F}}{\pi} \underbrace{\int_{\mu_{\rm F}^{2}}^{Q^{2}} \frac{dk_{t}^{2}}{k_{t}^{2}}}_{\text{finite (large?)}} \underbrace{\int \frac{dx \ dz}{1-z} \left[\sigma_{h}(zxp) - \sigma_{h}(xp)\right] q(x, \mu_{\rm F}^{2})}_{\text{finite}}$$

DIS: virtual plus real

Collinear factorisation:

Factorisation
is the
statement of
how a cross
section can be
computed:

$$d\sigma_{h_{1}+h_{2}\rightarrow H+X} = \sum_{i,j,k} \int f_{i/h_{1}}(x_{1},\mu_{F}) \otimes f_{j/h_{2}}(x_{2},\mu_{F}) \otimes d\hat{\sigma}_{i+j\rightarrow k+X}(sx_{1}x_{2},\mu_{F},p_{k}) \otimes D_{k\rightarrow H}\left(\frac{p_{H}}{p_{k}},\mu_{F}\right) + \mathcal{O}\left(\frac{\mu_{F}}{\Lambda_{QCD}}\right)$$

Parton density, universal:
independent of h_{2}, j, k, H ,
non perturbative (DGLAP)
$$Hard scattering element,independent of h_{1}, h_{2}, H ,
computable $\hat{\sigma} = \sum_{n}^{n} \alpha^{n}C_{n}$
$$\int Fragmentation or jetfunction, if any, universal:independent of $h_{1}, h_{2}, i, j,$
non perturbative (DGLAP)$$$$

• Standard collinear factorisation only proven in e^+e^- , DIS, DY (CSS 1980's): unitarity, gauge invariance, inclusivity essential; known cases where it has to be extended (TMD) or fails.

DIS on nuclei:

R^A_F

$$R_{F_2}^A(x, Q^2) = \frac{F_2^A(x, Q^2)}{AF_2^{\text{nucleon}}(x, Q^2)}$$

- R=I indicates the absence of nuclear effects.
- R≠I discovered in the early 70's, significant beyond isospin effects.
 Each region demands a different

explanation.

Multiple scattering, saturation,...; high-energy QCD How much does the structure of a hadron change when it is immersed in a nuclear medium?

Flavour dependence?; relation with shadowing and coherence

Fermi motion

Collinear approach for nuclei:

Bound nucleon

 free nucleon: search for process independent
 nPDFs that realise this condition, assuming collinear factorisation.

$$\sigma_{\mathrm{DIS}}^{\ell+A\to\ell+X} = \sum_{i=q,\overline{q},g} f_i^A(\mu^2) \otimes \hat{\sigma}_{\mathrm{DIS}}^{\ell+i\to\ell+X}(\mu^2)$$
Nuclear PDFs, obeying Usual perturbative the standard DGLAP Usual perturbative coefficient functions
$$f_i^{p,A}(x,Q^2) = R_i^A(x,Q^2) f_i^p(x,Q^2) \qquad R = \frac{f_{i/A}}{Af_{i/p}} \approx \frac{\mathrm{measured}}{\mathrm{expected if no nuclear effects}}$$

PDFs, or nuclear effects on them, parametrised at initial scale $Q_0 \gg \Lambda_{QCD}$ employing sum rules (parametrisation biases)

 One of the most standard procedures in HEP: development of fast (public) tools for evolution and computation of observables (xFitter, APFEL, ApplGrid,...).

 Problems known by the proton community (e.g., can they hide new physics?, 1905.05215; how to include theoretical uncertainties?, 1905.04311).

• Its aim is extracting PDFs from data, assuming that collinear factorisation works.

Extraction of PDFs: DIS

 $\begin{array}{l} F_2(x,Q^2)\propto \sum xq(x,Q^2): \mbox{determines directly valence (large x) and sea (low x)}\\ \frac{\partial F_2(x,Q^2)}{\partial \log Q^2}\propto xg(x,Q^2): \mbox{determines glue via DGLAP}, \mathcal{O}(\alpha_s): \mbox{requires lever arm in Q}^2.\\ F_L(x,Q^2)\propto xg(x,Q^2)-F_2(x,Q^2): \mbox{determines the glue via DGLAP}, \mathcal{O}(\alpha_s): \mbox{requires lever arm in s (different y at fixed x,Q^2, use $\sigma_{\rm red}$)}.\\ F_2^{c,b,t}(x,Q^2): \mbox{determines heavy flavour PDFs: requires HQ ID}.\\ \sigma_r^{CC}: \mbox{determines strange PDFs: requires HQ ID and measurement of missing energy}. \end{array}$

Extraction of PDFs: hh

• Kinematics at LO (2 \rightarrow 1, 2 \rightarrow 2,...) gives estimators:

$$x_{min,2\to1} = x_T e^{\pm\eta}, \ x_{min,2\to2} = \frac{x_T e^{-\eta}}{2 - x_T e^{\eta}}, \ x_T = \frac{2p_T}{\sqrt{s}}$$

- DY at large mass, W/Z sensitive to sea;
- DY at low mass, W/Z, γ , jets, heavy flavours sensitive to glue (either directly or through evolution).

Uncertainty estimation:

• Hessian method: first order expansion around minimum χ^{2}_{0} .

$$\chi^{2} \approx \chi_{0}^{2} + \sum_{ij} \delta a_{i} H_{ij} \delta a_{j} \quad H_{ij} \equiv \frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial a_{i} \partial a_{j}} \Big|_{a=a^{0}} \quad \chi^{2} \approx \chi_{0}^{2} + \sum_{i} z_{i}^{2} \Delta \chi^{2} = \sum_{i} \frac{\Delta \chi^{2}(z_{i}^{+}) + \Delta \chi^{2}(z_{i}^{-})}{2N} \approx \sum_{i} \frac{(z_{i}^{+})^{2} + (z_{i}^{-})^{2}}{2N} \qquad S_{0} = (0, 0, 0, \dots, 0)$$
$$S_{1}^{\pm} = \pm \delta z_{1}^{\pm} (1, 0, 0, \dots, 0)$$
$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$

$$(\Delta X)_{\text{extremum}}^{2} \approx \Delta \chi^{2} \sum_{j} \left(\frac{\partial X}{\partial z_{j}} \right)^{2} \qquad (\Delta X^{+})^{2} \approx \sum_{k} \left[\max \left\{ X(S_{k}^{+}) - X(S^{0}), X(S_{k}^{-}) - X(S^{0}), 0 \right\} \right]^{2} \\ (\Delta X^{-})^{2} \approx \sum_{k} \left[\max \left\{ X(S^{0}) - X(S_{k}^{+}), X(S^{0}) - X(S_{k}^{-}), 0 \right\} \right]^{2}$$

- MC method: repeated fits (NN) to many replicas of data.
- Any error analysis is linked to a functional form for the i.c. (NNPDF uses more flexibility, 4 times more paramaters, ~50 to ~200).
 N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

17

Uncertainty estimation:

• Hessian method: first order expansion around minimum χ^{2}_{0} .

$$\chi^{2} \approx \chi_{0}^{2} + \sum_{ij} \delta a_{i} H_{ij} \delta a_{j} \quad H_{ij} \equiv \frac{1}{2} \frac{\partial^{2} \chi^{2}}{\partial a_{i} \partial a_{j}} \Big|_{a=a^{0}} \quad \chi^{2} \approx \chi_{0}^{2} + \sum_{i} z_{i}^{2}$$

$$\Delta \chi^{2} \equiv \sum_{i} \frac{\Delta \chi^{2}(z_{i}^{+}) + \Delta \chi^{2}(z_{i}^{-})}{2N} \approx \sum_{i} \frac{(z_{i}^{+})^{2} + (z_{i}^{-})^{2}}{2N} \qquad S_{0} = (0, 0, 0, \dots, 0)$$

$$S_{1}^{\pm} = \pm \delta z_{1}^{\pm} (1, 0, 0, \dots, 0)$$

$$S_{2}^{\pm} = \pm \delta z_{2}^{\pm} (0, 1, 0, \dots, 0)$$
reconcile data sets
$$\Delta X)_{\text{extremun}}^{2} \approx \Delta \chi^{2} \sum_{j} \left(\frac{\partial X}{\partial z_{j}} \right)^{2} \qquad (\Delta X^{+})^{2} \approx \sum_{k} \left[\max \left\{ X(S_{k}^{+}) - X(S^{0}), X(S_{k}^{-}) - X(S^{0}), 0 \right\} \right]^{2}$$

$$(\Delta X^{-})^{2} \approx \sum_{k} \left[\max \left\{ X(S^{0}) - X(S_{k}^{+}), X(S^{0}) - X(S_{k}^{-}), 0 \right\} \right]^{2}$$

- MC method: repeated fits (NN) to many replicas of data.
- Any error analysis is linked to a functional form for the i.c. (NNPDF uses more flexibility, 4 times more paramaters, ~50 to ~200).
 N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

DIS: DGLAP global analysis

→ Fit as many data as possible: DIS charged lepton and neutrino data, DY, jets, W/Z/γ,... ~4600, ~3100 from DIS (~1400 from A).
 → Present accuracy: NNLO (aN³LO) for evolution, NLO for all cross sections (NNLO jets start to be employed). Several groups: CT, MMHT, NNPDF, ABJM, HERAPDF,...

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

DIS: DGLAP global analysis

→ Fit as many data as possible: DIS charged lepton and neutrino data, DY, jets, W/Z/γ,... ~4600, ~3100 from DIS (~1400 from A).
 → Present accuracy: NNLO (aN³LO) for evolution, NLO for all cross sections (NNLO jets start to be employed). Several groups: CT, MMHT, NNPDF, ABJM, HERAPDF,...

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

DIS: DGLAP global analysis

→ Fit as many data as possible: DIS charged lepton and neutrino data, DY, jets, W/Z/γ,... ~4600, ~3100 from DIS (~1400 from A).
 → Present accuracy: NNLO (aN³LO) for evolution, NLO for all cross sections (NNLO jets start to be employed). Several groups: CT, MMHT, NNPDF, ABJM, HERAPDF,...

$$R_s(x,Q^2) = \frac{s(x,Q^2) + \bar{s}(x,Q^2)}{\bar{u}(x,Q^2) + \bar{d}(x,Q^2)}$$

PDF set	$R_s(0.023, 1.38 \text{ GeV})$	$R_s(0.023, M_Z)$
NNPDF3.0	$0.45 {\pm} 0.09$	$0.71 {\pm} 0.04$
NNPDF3.1	0.59 ± 0.12	$0.77 {\pm} 0.05$
NNPDF3.1 collider-only	$0.82{\pm}0.18$	$0.92{\pm}0.09$
NNPDF3.1 HERA + ATLAS W, Z	$1.03 {\pm} 0.38$	$1.05 {\pm} 0.240$
xFitter HERA + ATLAS W, Z (Ref. [72])	$1.13^{+0.11}_{-0.11}$	-

DIS: DGLAP global analysis

- Extremely sophisticated methods to address all types of uncertainties: statistical, systematics, theoretical,...
- Groups keep differences: combinations exist (PDF4LHC).
- Fits can be used to extract values of the strong coupling constant, heavy quark masses, even EW boson masses or $\sin \theta_W$.
- Analogous methods can be used to extract FFs, but in this case e^+e^- is the main source of precise data.
- Interplay between PDFs and new physics is currently a growing concern at the (HL-)LHC (usually addressed within SMEFT).

nPDFs:

Available sets:

	KSASG20	TUJU21	EPPS21	nNNPDF3.0	nCTEQ15HQ [†]
Order in α_s	NLO & NNLO	NLO & NNLO	NLO	NLO	NLO
<i>l</i> A NC DIS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
vA CC DIS	\checkmark	\checkmark	\checkmark	\checkmark	
pA DY	\checkmark		\checkmark	\checkmark	\checkmark
$\pi A DY$			\checkmark		
RHIC dAu π^0, π^{\pm}			\checkmark		\checkmark
LHC pPb $\pi^0, \pi^{\pm}, K^{\pm}$					\checkmark
LHC pPb dijets			\checkmark	\checkmark	
LHC pPb HQ			✓ GMVFN	✓ FO+PS	✓ ME fitting
LHC pPb W,Z		\checkmark	\checkmark	\checkmark	\checkmark
LHC pPb dir γ				\checkmark	
Q, W cut in DIS	1.3, 0.0 GeV	1.87, 3.5 GeV	1.3, 1.8 GeV	1.87, 3.5 GeV	2.0, 3.5 GeV
$p_{\rm T}$ cut in HQ, π, K	N/A	N/A	3.0 GeV	0.0 GeV, N/A	3.0 GeV
Data points	4353	2410	2077	2188	1484
Free parameters	9	16	24	256	19
Error analysis	Hessian	Hessian	Hessian	Monte Carlo	Hessian
Free-proton PDFs	CT18	own fit	CT18A	~NNPDF4.0	~CTEQ6M
HQ treatment	FONLL	FONLL	S-ACOT	FONLL	S-ACOT
Indep. flavours	3	4	6	6	5
Reference	[1]	[2]	[3]	[4]	[5]

P. Paakkinen, 2211.08906

Available sets:

P. Paakkinen, 2211.08906

Available sets:

Centrality dependence (EPS09s) not from data but from the A-dependence of the parameters.
Several models provide it:Vogt et al., FGS, Ferreiro et al.,...

P. Paakkinen, 2211.08906

able 2 The data used in the EPPS21 analysis. The new data with respect to the EPPS16 analysis are marked with a star

 Most Pb data from CHORUS, 198 Pb points from pPb@LHC: fit for a single nucleus not possible.

Experiment	Observable	Collisions	Data points	x ²	Normalization
JLab Hall C★	DIS	<i>e</i> ⁻ He(3), <i>e</i> ⁻ D	15	4.47	1.027
JLab Hall C★	DIS	e^{-} He(4), e^{-} D	15	4.33	0.985
SLAC E139	DIS	e^{-} He(4), e^{-} D	16	7.75	0.997
CERN NMC 95, re.	DIS	μ^{-} He(4), μ^{-} D	16	17.90	1.000
CERN NMC 95, Q^2 dep.	DIS	μ^{-} Li(6), μ^{-} D	153	159.74	1.002
JLab Hall C★	DIS	<i>e</i> ⁻ Be(9), <i>e</i> ⁻ D	15	4.72	0.971
SLAC E139	DIS	<i>e</i> ⁻ Be(9), <i>e</i> ⁻ D	15	15.19	0.990
CERN NMC 96	DIS	μ^{-} Be(9), μ^{-} C	15	4.84	1.000
JLab Hall C★	DIS	<i>e</i> ⁻ C(12), <i>e</i> ⁻ D	15	2.58	0.981
SLAC E139	DIS	<i>e</i> ⁻ C(12), <i>e</i> ⁻ D	6	4.89	0.998
CERN NMC 95, Q^2 dep.	DIS	$\mu^{-}C(12), \mu^{-}D$	165	131.25	0.997
CERN NMC 95, re.	DIS	$\mu^{-}C(12), \mu^{-}D$	16	16.99	0.998
CERN NMC 95, re.	DIS	$\mu^{-}C(12), \mu^{-}Li(6)$	20	16.27	0.997
JLab CLAS*	DIS	$e^{-}C(12), \mu^{-}D(6)$	25	19.41	0.996
FNAL E772	DY	pC(12), pD	9	8.20	-
SLAC E139	DIS	$e^{-}Al(27), e^{-}D$	15	10.58	0.994
CERN NMC 96	DIS	$\mu^{-}Al(27), \mu^{-}C(12)$	15	7.02	1.000
II ab CLAS*	DIS	e^{-} Al(27), e^{-} D	25	20.68	1.004
SLAC F139	DIS	$e^{-}C_{2}(40) e^{-}D$	6	3.91	0.989
CERN NMC 95 re	DIS	$\mu^{-}Ca(40), \mu^{-}D$	15	30.45	1 004
CERN NMC 95, re	DIS	$\mu^{-}Ca(40), \mu^{-}Li(6)$	20	17.08	0.998
CERN NMC 96	DIS	$\mu^{-}Ca(40), \mu^{-}C(12)$	15	8 35	1.001
ENAL E772	DY	$\mu = ea(10), \mu = e(12)$ nCa(40) nD	9	2.59	_
SLAC E139	DIS	e^{-} Fe(56) e^{-} D	20	23.86	1.002
CERN NMC 96	DIS	μ^{-} Fe(56) μ^{-} C(12)	15	11 11	1.001
	DIS	μ^{-} Fe(56), μ^{-} D	25	26.74	1.005
FNAL F772	DY	e^{-} Fe(56), e^{-} D	9	20.74	-
FNAL E866	DY	nFe(56) $nBe(9)$	28	21.04	
CERN EMC	DIS	$\mu^{-}Cn(64)$ $\mu^{-}D$	10	15 13	_
SLAC E130	DIS	$\mu = \Delta \alpha(108) \ a^{-}D$	6	8 12	0.990
CERN NMC 96	DIS	e^{-} Ag(100), e^{-} D u^{-} Sp(117), u^{-} C(12)	15	10.00	0.990
CERN NMC 96 O^2 dop	DIS	$\mu = \sin(117), \mu = C(12)$	144	84.44	0.999
ENAL E772	DIS	$\mu \sin(117), \mu C(12)$	0	5.02	0.999
ENAL EX66	DY	pW(104), pD pW(184), pBo(0)	28	25.95	-
CEDN NA 10	DY	$\pi^{-W(184)}, \mu Be(3)$	10	10.87	- 1.040(h a) 1.116(l a)
ENAL EGIS	DY	$\pi = W(184), \pi = D$	10	12.26	1.040(II.e), 1.110(I.e)
CEDN NA3	DY	$\pi^{-}W(104), \pi^{-}W(104)$ $\pi^{-}Dt(105), \pi^{-}H$	7	13.20	-
SLAC E130	DIS	$\pi^{-1} \Pi(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)($	16	10.70	- 0.999
DUIC DUENIX	_0	e Au(197), e D	17	6.60	1.009
CERN NMC 06		uAu(197), pp u=Pb(207), u=C(12)	17	4.20	1.008
ILah CLAS*	DIS	$\mu^{-} Pb(207), \mu^{-} C(12)$	25	15 39	0 994
CEDN CHODUS	DIS	$v_{\rm Db}(208) = v_{\rm Db}(208)$	824	000.05	0.771
CERN CHORUS	D13	-Ph(200)	02 4	990.95	-
CERN CMS 5 lev	w-	pPb(208)	10	11.82	-
CERN CMS 8TeV*	W±	pPb(208), pp	44	41.30	0.996
CERN CMS	Z	pPb(208)	6	6.80	-
CERN ATLAS	Z	pPb(208)	7	8.91	-
CERN CMS★	dijet	pPb(208)	83	123.81	-
CERN LHCb*	D meson	pPb(208)	48	45.71	0.999 (fwd.), 1.010 (bwd.)
Total		-	2077	2058 5	

Note the parametrisation bias.

- Presently available
 LHC data start to
 largely influence fits.
- Influence of proton uncertainties.
- u/d decomposition challeging.

Note the parametrisation bias.

- Presently available LHC data start to largely influence fits.
- Influence of proton uncertainties.
- u/d decomposition challeging.

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

Hadron structure beyond collinear:

- Collinear distributions provide limited information on hadrons.
- More complete information requires new distributions and factorisations and evolution equations: TMD, GPD,...

- See e.g. J. Collins, Foundations of Perturbative QCD, Camb. Monogr. Part. Phys. Nucl. Phys.
 Cosmol. 32 (2011) 1-624; R. Boussarie et al., TMD Handbook, 2304.03302; M. Diehl, Phys. Rept. 388 (2003) 41-277.
- N.Armesto, 12-14.06.2024 Partonic structure & small x: theory.

Hadron structure:

Several TMDs (both PDF and FF) to be determined.
Beyond inclusive DIS, further possibilities are SIDIS (FFs required), CC, polarised proton collisions,...

• TMD factorisation can also be tested in non-polarised collisions: dijets, charm,... Two scales required!

 $f_i(x,\mu) = \int \frac{dy^-}{4\pi} e^{-ixp^+y^-} \langle p | \,\bar{\psi}_i(0,y^-,\mathbf{0}_T) W[y,0] \gamma^+ \psi_i(0) \, | p \rangle_R$

$$P_i(x, \boldsymbol{k}_T, \zeta, \mu) = \int \frac{dy^- d^2 \boldsymbol{y}_T}{16\pi^3} e^{-ixp^+ y^- + i\boldsymbol{k}_T \cdot \boldsymbol{y}_T} \tilde{P}_i(y^-, \boldsymbol{y}_T, \zeta, \mu)$$

 $\tilde{P}_{i}(y^{-}, \boldsymbol{y}_{T}, \zeta, \mu) = \langle p | \, \bar{\psi}_{i}(0, y^{-}, \boldsymbol{y}_{T}) \, W_{y}(u)^{\dagger} \, I_{u;y,0} \, \gamma^{+} \, W_{0}(u) \, \psi_{i}(0) \, | p \rangle_{R}$

$$W_y(u) = P \exp\left[-ig_{(0)} \int_0^\infty d\lambda \, u^\mu \, A^{(0)}_\mu(y+\lambda u)\right]$$

Hadron structure:

Several TMDs (both PDF and FF) to be determined.
Beyond inclusive DIS, further possibilities are SIDIS (FFs required), CC, polarised proton collisions,...

• TMD factorisation can also be tested in non-polarised collisions: dijets, charm,... Two scales required!

$$f_i(x,\mu) = \int \frac{dy^-}{4\pi} e^{-ixp^+y^-} \langle p | \,\bar{\psi}_i(0,y^-,\mathbf{0}_T) W[y,0] \gamma^+ \psi_i(0) \, | p \rangle_R$$

$$P_i(x, \boldsymbol{k}_T, \zeta, \mu) = \int \frac{dy^- d^2 \boldsymbol{y}_T}{16\pi^3} e^{-ixp^+ y^- + i\boldsymbol{k}_T \cdot \boldsymbol{y}_T} \tilde{P}_i(y^-, \boldsymbol{y}_T, \zeta, \mu)$$

 $\tilde{P}_{i}(y^{-}, \boldsymbol{y}_{T}, \zeta, \mu) = \langle p | \, \bar{\psi}_{i}(0, y^{-}, \boldsymbol{y}_{T}) \, W_{y}(u)^{\dagger} \, I_{u;y,0} \, \gamma^{+} \, W_{0}(u) \, \psi_{i}(0) \, | p \rangle_{R}$

$$W_y(u) = P \exp\left[-ig_{(0)} \int_0^\infty d\lambda \, u^\mu \, A^{(0)}_\mu(y+\lambda u)\right]$$

Diffraction:

At HERA, ~10 % of the events have a pseudorapidity gap in hadronic activity (or intact detected proton):
 diffractive. LPS.

• They measure the probability of the proton to remain intact in the scattering, while producing some activity far from the proton: exchange of colourless object(s), called *Pomeron* and *Reggeon*.

Diffractive event in ZEUS at HERA

Diffraction:

Standard DIS variables:

electron-proton cms energy squared: $s = (k + p)^2$

photon-proton cms energy squared: $W^2 = (q + p)^2$ inelasticity $y = \frac{p \cdot q}{p \cdot k}$ Bjorken x $x = \frac{-q^2}{2p \cdot q}$ (minus) photon virtuality $Q^2 = -q^2$

Diffractive DIS variables:

$$\xi \equiv x_{IP} = \frac{Q^2 + M_X^2 - t}{Q^2 + W^2}$$
$$\beta = \frac{Q^2}{Q^2 + M_X^2 - t}$$

 $t = (p - p')^2$

momentum fraction of the Pomeron w.r.t hadron

momentum fraction of parton w.r.t Pomeron

4-momentum transfer squared

Regge poles:

Regge theory: pre-QCD theory for the strong interaction, they tried to derive the theory of strong interaction from first principles of QFT: unitarity, analyticity, crossing symmetry, short range.
Justifying it from QCD has been a major endeavour of the field: BFKL.

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

Diffractive SF and factorisation:

$$\frac{d^{3}\sigma^{D}}{dx_{IP} dx dQ^{2}} = \frac{2\pi\alpha_{\rm em}^{2}}{xQ^{4}} Y_{+} \sigma_{r}^{D(3)}(x_{IP}, x, Q^{2})$$
$$\sigma_{r}^{D(3)} = F_{2}^{D(3)} - \frac{y^{2}}{Y_{+}} F_{L}^{D(3)}$$
$$Y_{+} = 1 + (1 - y)^{2}$$
$$F_{T,L}^{D(3)}(x, Q^{2}, x_{IP}) = \int_{-\infty}^{0} dt F_{T,L}^{D(4)}(x, Q^{2}, x_{IP}, t)$$
$$F_{2}^{D(4)} = F_{T}^{D(4)} + F_{L}^{D(4)}$$

Diffractive SF and factorisation:

$$\frac{d^{3}\sigma^{D}}{dx_{IP} dx dQ^{2}} = \frac{2\pi\alpha_{\rm em}^{2}}{xQ^{4}} Y_{+} \sigma_{r}^{D(3)}(x_{IP}, x, Q^{2})$$
$$\sigma_{r}^{D(3)} = F_{2}^{D(3)} - \frac{y^{2}}{Y_{+}} F_{L}^{D(3)}$$
$$Y_{+} = 1 + (1 - y)^{2}$$
$$F_{T,L}^{D(3)}(x, Q^{2}, x_{IP}) = \int_{-\infty}^{0} dt F_{T,L}^{D(4)}(x, Q^{2}, x_{IP}, t)$$
$$F_{2}^{D(4)} = F_{T}^{D(4)} + F_{L}^{D(4)}$$

• For fixed t, x_P , collinear factorisation holds (Collins): diffractive PDFs expressing the conditional probability of finding a parton with momentum fraction β with the proton remaining intact.

$$d\sigma^{ep \to eXY}(x, Q^2, x_{IP}, t) = \sum_i f_i^D \otimes d\hat{\sigma}^{ei} + \mathcal{O}(\Lambda^2/Q^2)$$

Diffractive PDFs:

• To extract DPDFs, an additional assumption is made: Regge factorisation for P and R that seems to work for not large too x_P .

$$f_{i}^{D}(x, Q^{2}, x_{IP}, t) = f_{IP/p}(x_{IP}, t) f_{i}(\beta = x/x_{IP}, t)$$
Pomeron flux
$$f_{IP/p}(x_{IP}, t) = A_{IP} \frac{e^{B_{IP}t}}{x^{2\alpha_{IP}(t)-1}}$$

 $f_i(\beta, Q^2)$ evolve with DGLAP evolution equations: fits to HERA data (additional contributions at large $x_P = \xi$ and small β).

DPDFs at **EICs**:

• Limitations at HERA (check of Regge factorisation, P+R contributions with R modelled as π , size and shape of the diffractive glue, need to integrate over t) can be overcome with the EIC: determination of P and R! DPDFs, also in nuclei, t dependence, F_L^D ,...

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

DPDFs at **EICs**:

• Limitations at HERA (check of Regge factorisation, P+R contributions with R modelled as π , size and shape of the diffractive glue, need to integrate over t) can be overcome with the EIC: determination of P and R! DPDFs, also in nuclei, t dependence, F_L^D ,...

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

Diffraction in ep and shadowing:

Exclusive production:

• Exclusive production gives a 3D scan of the hadron/nucleus: gluon GPDs with vector mesons, quark GPDs with DVCS. It can be studied for Q=0 in UPCs, precision and Q>0 in EICs.

$$\int \frac{\mathrm{d}w^{-}}{2\pi} e^{-i\xi P^{+}w^{-}} \left\langle P' \middle| T\overline{\psi}_{j} \left(0, \frac{1}{2}w^{-}, \mathbf{0}_{\mathrm{T}} \right) \frac{\gamma^{+}}{2} \psi_{j} \left(0, -\frac{1}{2}w^{-}, \mathbf{0}_{\mathrm{T}} \right) \middle| P \right\rangle_{\mathrm{c}}$$
Off-diagonal matrix elements, appear in amplitudes.

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

Elastic vector mesons (II):

 Incoherent diffraction sensitive to fluctuations: hot spots? that determine the initial stage of HIC, the distribution of MPIs,...

10²

. (dn) (qψ/L←qγ)α

10²

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

Two scattering case:

$$\times \exp(-i[x_{1T} \cdot (k_T - p_T) + x_{2T} \cdot (p'_T - k_T)]\rho_A(x_{1+}, x_{1T}) \times \rho_A(x_{2+}, x_{2T})\theta(x_{2+} - x_{1+})$$

Two scattering case:

Coherence and shadowing:

$$\exp\left[-\mathrm{i}k_T^2(x_{2+}-x_{1+})\big/(2p_+)\right] = \exp\left[-\mathrm{i}(x_{2+}-x_{1+})/l_c\right], \text{ with } l_c = 2p_+/k_T^2$$

A)
$$p_+ \rightarrow 0 \Rightarrow iT_2(q) \rightarrow 0$$
 : incoherent, $\sigma_A = A\sigma^I$

B)
$$p_+ \to \infty$$
, $\exp[-i(x_{2+} - x_{1+})/l_c] \to 1$

$$i\mathcal{T}_2(q) = \frac{A(A-1)}{2} (it_{\text{forw}})^2 \int d^2 x_T \, e^{-ix_T \cdot (p_T' - p_T)} T_A^2(x_T),$$

$$\sigma_A^2 \stackrel{\blacktriangleright}{=} -\frac{A(A-1)}{2} \int d^2 x_T [T_A(x_T)\sigma]^2 \quad : \text{coherent, } \sigma_A < A\sigma'$$

The lifetime of the qqbar fluctuation is $\ge R_A$ for $x \le 0.1 A^{-1/3}$: small x.

$$E \sim \frac{1}{Q} \times \frac{E_{\text{lab}}}{Q} \simeq \frac{W^2}{2m_{\text{nucleon}}Q^2} \simeq \frac{1}{2m_{\text{nucleon}}x}$$

Coherence and shadowing:

$$\sigma_A^2 \stackrel{\blacktriangleright}{=} -\frac{A(A-1)}{2} \int d^2 x_T [T_A(x_T)\sigma]^2 \quad : \text{coherent, } \sigma_A < A\sigma^{\dagger}$$

The lifetime of the qqbar fluctuation is $\ge R_A$ for $x \le 0.1 A^{-1/3}$: small x.

$$x \sim \frac{1}{Q} \times \frac{E_{\text{lab}}}{Q} \simeq \frac{W^2}{2m_{\text{nucleon}}Q^2} \simeq \frac{1}{2m_{\text{nucleon}}x}$$

Coherence and shadowing:

Contents:

I. Part I: partonic structure

- → Basics of DIS and collinear factorisation.
- \rightarrow PDFs and their determination.
- → Beyond collinear factorisation: TMDs, GPDs.
- → Diffraction.

2. Part 2: small x

- → High-energy QCD.
- → Non-linear phenomena.
- → The Color Glass Condensate approach: evolution equations.
- → The dipole model.
- \rightarrow How to compute observables.
- → Phenomenology in DIS: inclusive and exclusive observables.
- → Phenomenology in hadronic collisions: single inclusive particle production, correlations.

Some bibliography:

- R. Devenish and A. Cooper-Sarker, Deep Inelastic Scattering, Oxford University Press 2004.
- G. P. Salam, *Elements of QCD for hadron colliders*, CERN Yellow Rep. School Proc. 5 (2020) 1-56, https://inspirehep.net/literature/1820528.

- Yu.V. Kovchegov and E. Levin, *Quantum Chromodynamics at High Energy*, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 33 (2012) 1-350.

High-energy QCD:

Hadron physics is forever, because today's devotion to high energies is *temporary*. High energies let us watch the vacuum being excited and think about it for some (Lorentz-dilatated) time. Once the vacuum structure has been understood (the most important and the most difficult step still to make), hadron physics will turn back to small and medium energies. *Yuri Dokshitzer*, <u>98</u>01372

- High energies provide:
- → Large scales for the use of perturbation theory.
- → Large phase space for QCD radiation: large logarithms.

→ Strong simplifications: eikonal approximation, neglection of spin exchanges,...

- Large energy is equivalent to probing the small x structure of hadrons (semihard scales).
- Dilation of scales: configurations become frozen between interaction times.

• Besides, we are interested in the high energy behaviour of gauge theories for the high-energy programme: QCD and, eventually, SM as background.

Radiation: DGLAP vs. BFKL $x_{n-1}, k_{T,n-1}$ $x_{n-2}, k_{T,n-2}$ **, x**,,k_{⊺,} $\mathbf{x}_n, \mathbf{Q}_n$ $dP_i \propto \frac{dx_i}{x_i} \frac{d\theta_i}{\theta_i}, \ \omega_i = x_i E, \ \theta_i \simeq \frac{k_{T,i}}{\omega_i}$ $x_n < x_{n-1} < x_{n-2} < \dots < x_1 < x_0$ A) DGLAP, moderate x: $Q_n^2 \gg k_{T,n-1}^2 \gg k_{T,n-2}^2 \gg \ldots \gg k_{T,1}^2 \gg Q_0^2$ 1. 1

$$\int_{Q_0}^{Q_n} dP_{n-1} \int_{Q_0}^{k_{T,n-1}} dP_{n-2} \dots \int_{Q_0}^{k_{T,2}} dP_1 \propto \left[\frac{\alpha_s N_c}{\pi} \ln \frac{Q_n}{Q_0} \right]^n$$

B) BFKL, small **x**: $\int_{x_n}^{x_0} dP_{n-1} \int_{x_{n-1}}^{x_0} dP_{n-2} \dots \int_{x_2}^{x_0} dP_1 \propto \left[\frac{\alpha_s N_c}{\pi} \ln \frac{x_0}{x_n}\right]^n$ $x_n \ll x_{n-1} \ll x_{n-2} \ll \dots \ll x_1 \ll x_0$

• Both of them lead to a gluon distribution at small x behaving like $xg(x,Q^2) \propto x^{-\lambda}$ at fixed Q², $\lambda \approx 0.2$ -0.3 in data.

• Both of them lead to a gluon distribution at small x behaving like $xg(x,Q^2) \propto x^{-\lambda}$ at fixed Q², $\lambda \approx 0.2$ -0.3 in data.

DIS: legacy from HERA

• Three pQCD-based alternatives to describe ep and eA data

(differences at moderate $Q^2(>\Lambda^2_{QCD})$) and small x):

- \rightarrow DGLAP evolution (fixed order pQCD).
- \rightarrow Resummation schemes (of $[\alpha_s \ln(1/x)]^n$ terms).
- → Non linear effects: saturation.

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

DIS: legacy from HERA

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

Saturation:

- Standard fixed-order perturbation theory (DGLAP, linear evolution) must eventually fail:
- → Large logs e.g. $\alpha_s \ln(1/x) \sim 1$: resummation (BFKL,CCFM,ABF,CCSS).
- → High density \Rightarrow linear evolution must not hold: saturation, either perturbative (CGC) or non-perturbative.

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

Saturation:

- Standard fixed-order perturbation theory (DGLAP, linear evolution) must eventually fail:
- → Large logs e.g. $\alpha_s \ln(1/x) \sim 1$: resummation (BFKL,CCFM,ABF,CCSS).
- → High density \Rightarrow linear evolution must not hold: saturation, either perturbative (CGC) or non-perturbative.

Saturation:

Ryskin, Mueller, McLerran-Venugopalan.

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

dense medium in heavy-

ion collisions.

33

Color Glass Condensate:

• At small enough x for the projectile to interact coherently with the whole hadron, the CGC offers a (weak coupling but non-perturbative) $x \leq \frac{1}{2m_N R_A} \sim 0.1 A^{-1/3}$ description of the hadron wave function.

 The RG equation for the slow/fast separation (JIMVVLK) was derived for scattering of a dilute projectile on a dense

target. Gluon # becomes as high as it can be $O(\alpha_s^{-1})$ below Q_s^2 . $\rho_{proj} \simeq O(1), \ \rho_{tar} \simeq O(1/\alpha_s)$

• Its mean-field version (the Balitsky-Kovchegov equation) is the tool for phenomenology: numerically and analytically understood.

Wilson lines:

• The objects representing the hadron in the CGC are hadron (target) averages (color singlets) of Wilson lines (in the color representation of the particle traversing the field):

$$U(x^+, y^+, \mathbf{x}) \equiv \mathcal{P}^+ \exp\left\{ig \int_{y^+}^{x^+} dz^+ A_T^{-,a}(z^+, \mathbf{x})T^a\right\}$$

 $\langle U_{x_1} \cdots U_{x_n} \rangle_{\text{target}}, \quad U_x \equiv U(x^+, y^+, \mathbf{x})$

• Wilson lines come through an eikonal approximation, and they resume multiple scatterings, they represent the color rotation of the particle traversing the field.

The BK equation:

The BK equation:

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

The BK equation:

The (NLL) BK equation is the actual tool for phenomenology: q • IR safe. • Geometric scaling. q • Saturation scale $Q_{s^2} \propto exp(\lambda Y)$ [fc], $exp(c\sqrt{Y})$ [rc], Y = ln(1/x). F, data: H1 (PLB665, 139; x-averaged) Q²=0.11 GeV² F, solid: GBW initial conditions dotted: MV initial conditions Q²=0.5 GeV² **F**₂; Q2=2.5 GeV2 Q²=1.5 GeV² F₂... 80 2 (GeV²) $Q^2 = 5 \text{ GeV}^2$ Q²=10 GeV² F_2 $Q_{g}^{2}(\mathbf{x})$ Q²=50 GeV² Q2=20 GeV2 (GeV²) initial conditions solid: GBW F, dotted: MV Q²=120 GeV² Q2=80 GeV2 F_2

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

Q²=250 GeV

10

Q²=450 GeV²

10^a

 $\ln(10^{-2}/x)$

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

The dipole picture:

- Photon described by its hadronic fluctuations (long lived, $x < (m_N R)^{-1} \sim 0.1 A^{1/3}$)
- $|\gamma^*\rangle = |q\bar{q}\rangle + |q\bar{q}g\rangle + |q\bar{q}q\bar{q}\rangle + |q\bar{q}gg\rangle + |q\bar{q}q\bar{q}\bar{q}\rangle \dots$
- Components at fixed transverse position during interaction (eikonal approximation).
- Picture useful for saturation (target at rest).

- Unified description of inclusive, diffractive and exclusive processes.
- Now $|q\bar{q}g\rangle$ included (NLO) in inclusive, diffractive and exclusive VM production. N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

Evolution in the dipole picture:

- Emitted gluons have momentum fraction $\in [x, z]$.
- Gluons are attributed either to the hadron or the dipole, but cross section is the same.
- Factors $\alpha_s \ln 1/x \sim 1$ come from each emission; such emissions must be resummed: NLO+NLL evolution equation in $y = \ln 1/x$.

gluons up to y are part of proton

$$\sigma^{\gamma^* p} = \overbrace{\left|\psi^{\gamma^* \to q\bar{q}}\right|_{y}^{2} \otimes 2\mathrm{Im}\mathcal{A}_{y}^{q\bar{q}p} + \left|\psi^{\gamma^* \to q\bar{q}g}\right|_{y}^{2} \otimes 2\mathrm{Im}\mathcal{A}_{y}^{q\bar{q}gp} + \dots}^{q\bar{q}q\bar{q}g} \\ = \underbrace{\left|\psi^{\gamma^* \to q\bar{q}}\right|_{y+\Delta y}^{2} \otimes 2\mathrm{Im}\mathcal{A}_{y+\Delta y}^{q\bar{q}p} + \left|\psi^{\gamma^* \to q\bar{q}g}\right|_{y+\Delta y}^{2} \otimes 2\mathrm{Im}\mathcal{A}_{y+\Delta y}^{q\bar{q}gp} + \dots}_{g\mathrm{luons}\,\mathrm{up}\,\mathrm{to}\,y+\Delta y\,\mathrm{are}\,\mathrm{part}\,\mathrm{of}\,\mathrm{proton}}$$

• Unitarity (probability conservation in QM) implies that the (Img forward) scattering amplitude N≤I (optical theorem $\Rightarrow \sigma_{\propto}N$). But

 $xg(x,Q^2) \propto \int^{Q^2} dk^2 \phi(x,k^2), \quad \phi(x,k^2) \propto \int \frac{d^2r}{r^2} e^{ik \cdot r} N(x,r)$

so $xg(x,Q^2) \propto x^{-\lambda}$ at fixed Q² is not compatible with unitarity. The most celebrated dipole model is GBW, $Q_s^2 \propto x^{-\lambda}$.

$$\mathcal{N}^{GBW}(r,Y\!=\!0) = 1 - \exp\left[-\left(\frac{r^2 Q_{s\,0}^2}{4}\right)^{\gamma}\right]$$

Unitarity:

Dilute-dense:

• Analytical calculations at a classical level only available in a dilutedense situation: dilute projectile on dense target.

• Dense-dense is addressed through numerics of classical QCD.

- Dilute-dilute should go to the linear regime (BFKL) that cannot not be extended to too large energies (unitarity, Froissart bound).
- Evolution equations (JIMWLK/BK) only available for a dilute projectile on a dense target (*jargon: no BFKL Pomeron loops*).

The path to precision:

- LO calculations: they show qualitative agreement with experimental data but lack precision to estimate uncertainties and establish clearly the existence of saturation.
- **NLO calculations**: burst of activity in recent years.
 - → Evolution equations: massive quarks in DIS.
 - → eA: dijet, dihadron and single hadron.
 - → Forward pA: single hadron and jet production
- in hybrid factorization.
- Relation with TMDs (t, p) and TMD factorization.
- <u>Further</u>: production at central rapidities, diffraction, exclusive processes, particle correlations, non-eikonal corrections, models for averages,...

The path to precision:

- CGC calculations are usually done in the eikonal approximation, which amounts to neglecting terms subleading in energy.
- Subeikonal effects are key for those observables that are subleading, like spin; they also produce odd harmonics.
- Terms subleading in energy may be important at the EIC.

- CGC calculations are usually done in the eikonal approximation, which amounts to neglecting terms subleading in energy.
- Subeikonal effects are key for those observables that are subleading, like spin; they also produce odd harmonics.
- Terms subleading in energy may be important at the EIC.

- CGC calculations are usually done in the eikonal approximation, which amounts to neglecting terms subleading in energy.
- Subeikonal effects are key for those observables that are subleading, like spin; they also produce odd harmonics.
- Terms subleading in energy may be important at the EIC.

- CGC calculations are usually done in the eikonal approximation, which amounts to neglecting terms subleading in energy.
- Subeikonal effects are key for those observables that are subleading, like spin; they also produce odd harmonics.
- Terms subleading in energy may be important at the EIC.

Observables:

• Compute the contributions relevant for the process from the projectile point of view (using equal or light-front quantization, covariant or light-cone gauges, Feynman diagrams or wave functions in Light Cone PT,...).

• Partons in the different contributions interact with the target through Wilson lines (usually at fixed transverse positions, eikonal approximation), that in the cross section appear as ensembles $\langle W \cdots W \rangle_T$.

Observables:

• At NLO, collinear and soft divergencies appear, which must be shown to be absorbed in DGLAP-type evolution (of PDFs, FFs, jet functions,...) and JIMWLK-type evolution of $\langle W \cdots W \rangle_T$, respectively; additional large logs may appear.

• Models for the non-perturbative input of objects later evolved: PDFs, FFs, jet functions, $\langle W \cdots W \rangle_T$ (MV), Wigner functions,...

Inclusive DIS:

• Description of small x HERA data including heavy quarks: NLO BK.

$$\begin{split} \sigma_{T,L}^{\gamma A \to X}(x_{Bj}, Q^2) &\propto \int_{\mathbf{x}_0, \mathbf{x}_1} \int_0^1 dz_1 \Phi_{T,L}^{q\bar{q},LO}(\mathbf{x}_{01}, z_1, Q^2) \Big[1 - \langle s_{01} \rangle \Big] \\ \sigma_{T,L}(x_{Bj}, Q^2) &= \sum_{q\bar{q} \ st.} |\Psi_{q\bar{q}}^{\gamma^*_{T,L}}|^2 \Big[1 - \langle s_{01} \rangle_0 \Big] + \sum_{q\bar{q}g \ st.} |\Psi_{q\bar{q}g}^{\gamma^*_{T,L}}|^2 \Big[1 - \langle s_{012} \rangle_0 \Big] \\ S_{01} &= \frac{1}{N_c} \left\langle \operatorname{Tr} \{ V(\mathbf{x}_0) V^{\dagger}(\mathbf{x}_1) \} \right\rangle, \end{split}$$

$$\langle s_{01} \rangle_{y=0} = \exp\left[-\left(\frac{Q_s^2 x_{01}^2}{4}\right)^{\gamma} \ln\left(\frac{1}{x_{01}\Lambda_{QCD}} + e\right)\right]$$

$$\sigma_r(y, x, Q^2) = F_2(x, Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L(x, Q^2)$$

 $S_{012} = \frac{N_{\rm c}}{2C_{\rm F}} \left(S_{02} S_{21} - \frac{1}{N_{\rm c}^2} S_{01} \right)$

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

DIS and UPCs: diffraction

• Diffraction is a promising observable for saturation.

DIS and UPCs: diffraction

• Diffraction is a promising observable for saturation.

• Present saturation models lead to a blackening of the hadron (shrinking of the diffractive peak) and a larger total diffractive cross section in eA: interplay between non-linear phenomena and survival probability.

DIS and UPCs: diffraction

• Diffraction is a promising observable for saturation.

 Present saturation models lead to a blackening of the hadron (shrinking of the diffractive peak) and a larger total diffractive cross section in eA: interplay between non-linear phenomena and survival probability.

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

0.8 0.7 0.6 0.5 0.4 0.3

Q² = 5 GeV²

 $\int Ldt = 1 \text{ fb}^{-1}/A$

15 GeV on 100 GeV

 $x = 1 \times 10^{-3}$

22.70

10

0.2

0.9

eAu - Saturation Model

eAu - Shadowing Model (LTS) Shadowing Model (LTS)

saturation model

ep - Saturation Model

0.02

0.018

0.016

0.014

0.012 0.01

0.008

0.002

0 1.8

1.6

1.4

1.2

(1/q tot) 0000 (1/q tot)

(GeV⁻²)

dσ_{diff}/dM_x²

pA: single inclusive

• State of the art for forward particle production in pA collisions: hybrid model, proposed at LO in 2005 (hep-ph/0506308).

• Wave function of the projectile proton treated in the spirit of collinear factorization (incoming parton with negligible transverse momentum).

 Perturbative corrections to this wave function given by usual QCD (+QED for photons) perturbative processes.

• CGC treatment of the target: collection of strong color fields that transfer transverse momentum to the rescattering partons.

• At LO, transverse momentum gained solely from rescattering.

pA: single inclusive

• Full NLO corrections in 2011 (1112.1061, 1203.6139): collinear divergencies absorbed in the DGLAP evolution of PDFs and FFs, rapidity divergencies in the BK evolution of $\langle W \cdots W \rangle_T$.

- Numerical analysis

 (1405.6311): cross sections
 turned out to be negative
 at large transverse
 momentum.
- Recent solutions require additional resummations.

pA: single inclusive

• Full NLO corrections in 2011 (1112.1061, 1203.6139): collinear divergencies absorbed in the DGLAP evolution of PDFs and FFs, rapidity divergencies in the BK evolution of $\langle W \cdots W \rangle_T$.

- Numerical analysis
 (1405.6311): cross sections
 turned out to be negative
 at large transverse
 momentum.
- Recent solutions require additional resummations.

The small system puzzle:

Collective hadronisation

Collective expansion (hydro-like)

Direct photons

Final state interactions (non-hydro)

Observable or effect	PbPb	pPb (high mult.)	pp (high mult.)	Refs.
Low $p_{\rm T}$ spectra ("radial flow")	yes	yes	yes	[1–10]
Intermed. $p_{\rm T}$ ("recombina- tion")	yes	yes	yes	[5, 6, 10– 15]
Particle ratios	GC level	GC level except	GC level except	[8, 9, 16,
		Ω	Ω	17]
Statistical model	$\gamma_s^{\rm GC} = 1, 10-30\%$	$\gamma_s^{\rm GC} \approx 1, 20-40\%$	$\gamma_s^C < 1, 20-40\%$	[9, 18, 19]
HBT radii $(R(k_{\rm T}), R(\sqrt[3]{N_{\rm ch}}))$	$R_{\rm out}/R_{\rm side}\approx 1$	$R_{\rm out}/R_{\rm side} \lesssim 1$	$R_{\rm out}/R_{\rm side} \lesssim 1$	[20–28]
Azimuthal anisotropy (v_n)	$v_1 - v_7$	$v_1 - v_5$	<i>v</i> ₂ , <i>v</i> ₃	[29–31]
(from two part. correlations)				[32–
				39, 39–43]
Characteristic mass depen-	$v_2 - v_5$	<i>v</i> ₂ , <i>v</i> ₃	v_2	[39, 42–
dence				48]
Directed flow (from spectators)	yes	no	no	[49]
Charge dependent flow (CME,	yes	yes	not observed	[50–54]
CMW)				
Higher order cumulants	$ ``4 \approx 6 \approx 8 \approx LYZ'$	' "4 \approx 6 \approx 8 \approx LYZ'	$'``4 \approx 6 \approx 8 \approx LYZ'$	' [39, 55–64,
(mainly $v_2\{n\}, n \ge 4$)	+higher harmonics	+higher harmonics		64–69]
Weak η dependence	yes	yes	not measured	[41, 65, 67,
				70–76]
Factorization breaking	yes $(n = 2, 3)$	yes $(n = 2, 3)$	not measured	[40, 77, 78]
Event-by-event v_n distributions	n = 2 - 4	not measured	not measured	[79, 80]
Event plane and v_n correlations	yes	yes	yes	[81–84]
Direct photons at low $p_{\rm T}$	yes	not measured	yes	[85, 86]
Jet quenching	yes	not observed	not observed	[87–107]
Heavy flavor anisotropy	yes	yes [108]	not measured	[108–118]
Quarkonia	$J/\psi\uparrow,\Upsilon\downarrow$	suppressed	not measured	[108, 118–
				125, 125–
				138]

The small system puzzle:

• Azimuthal correlations extended in η (the ridge) are found in all systems from almost minimum bias pp (10) to central AA (2000) and are describable by viscous relativistic hydro (with suitable ICs):

→ Final state interactions, so
QGP-like physics in all systems?
→ Correlations already present
in the hadron or nucleus wave
functions, as in CGC calculations?

• One way to proceed: go to even smaller systems, ep/eA, down to a point where final state interactions cannot be justified.

- → Correlations appear (e.g. in eA, CGC): evidence of initial state effects?
- → No correlations: evidence of final state interactions?
- Note: ZEUS and ALEPH put strong limits on azimuthal 2-particle correlations in ep at HERA and e⁺e⁻ at LEP.

The small system puzzle:

Multiplicity-dependent c_1 {2} and c_2 {2} with increasing η -separation

 $|\Delta \eta| > 2.0$: $c_1\{2\}$ changes sign \rightarrow consistent with momentum conservation.

 $|\Delta \eta| > 2.0$: $c_2\{2\}$ consistent with zero.

Switching off the flow: e+e-

pA: correlations

- Several explanations in the CGC, that use/assume that:
 - → the final state carries the imprint of initial-state correlations,
 - \rightarrow the CGC wave function is rapidity invariant over $Y \propto 1/\alpha_s$,
 - → the projectile is a dilute object (proton).

Bose enhancement of gluons in the projectile wave function.

$$\propto \delta^{(2)}[k_1-q_1-(k_2-q_2)]+\delta^{(2)}[k_1-q_1+(k_2-q_2)]$$

2) HBT of gluons separated in rapidity. $\propto \delta^{(2)}(k_1 - k_2) + \delta^{(2)}(k_1 + k_2)$

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

Projectile: sources

Black blob: rescatterings

Target: classical colour field

pA: correlations

- Several explanations in the CGC, that use/assume that:
 - → the final state carries the imprint of initial-state correlations,
 - \clubsuit the CGC wave function is rapidity invariant over $Y \propto 1/\alpha_{\rm s}$,
 - → the projectile is a dilute object (proton).

$$2^{n}(2\pi)^{3n} \frac{d^{n}N}{d^{2}\mathbf{k}_{1}\cdots d^{2}\mathbf{k}_{n}} = \left\langle \left| \mathcal{M}_{i_{1}}^{a_{1}}(\mathbf{k}_{1})\cdots \mathcal{M}_{i_{n}}^{a_{n}}(\mathbf{k}_{n}) \right|^{2} \right\rangle_{p,T} \qquad \mathcal{M}_{i}^{a}(\mathbf{k}) = 2g \int_{\mathbf{q}} L^{i}(\mathbf{k},\mathbf{q})\rho_{p}^{b}(\mathbf{q})U^{ba}(\mathbf{k}-\mathbf{q}) \\ \frac{d^{2}N}{d^{2}\mathbf{k}_{1}d^{2}\mathbf{k}_{2}} = \frac{g^{4}}{(2\pi)^{6}} \int_{\mathbf{q}_{1},\mathbf{q}_{2},\mathbf{q}_{3},\mathbf{q}_{4}} L^{i}(\mathbf{k}_{1},\mathbf{q}_{1})L^{i}(\mathbf{k}_{1},\mathbf{q}_{2})L^{j}(\mathbf{k}_{2},\mathbf{q}_{3})L^{j}(\mathbf{k}_{2},\mathbf{q}_{4}) \\ \times \left\langle \rho_{p}^{b_{1}}(\mathbf{q}_{1})\rho_{p}^{*b_{2}}(\mathbf{q}_{2})\rho_{p}^{b_{3}}(\mathbf{q}_{3})\rho_{p}^{*b_{4}}(\mathbf{q}_{4}) \right\rangle_{p} \\ \times \left\langle U^{a_{1}b_{1}}(\mathbf{k}_{1}-\mathbf{q}_{1})U^{\dagger b_{2}a_{1}}(\mathbf{k}_{1}-\mathbf{q}_{2})U^{a_{2}b_{3}}(\mathbf{k}_{2}-\mathbf{q}_{3})U^{\dagger b_{4}a_{2}}(\mathbf{k}_{2}-\mathbf{q}_{4}) \right\rangle_{T}$$

 Bose enhancement of gluons in the projectile wave function.

$$\propto \delta^{(2)}[k_1-q_1-(k_2-q_2)]+\delta^{(2)}[k_1-q_1+(k_2-q_2)]$$

2) HBT of gluons separated in rapidity. $\propto \delta^{(2)}(k_1 - k_2) + \delta^{(2)}(k_1 + k_2)$

To conclude:

- At high energies, we hope that QCD fields and occupation numbers become large \Rightarrow classical dynamics, while scales allow a perturbative treatment, $\alpha_s \ll 1$: domain of the CGC, where dynamics becomes non linear and parton densities saturate.
- We still demand non-perturbative input, both for initial conditions, target averages, treatment of tails of hadron profiles (both for nuclei and proton),.... \Rightarrow experimental input required,
- coming from RHIC, LHC, JLab, and in the future from the EIC.
- Efforts ongoing to obtain evolution equations linking with DGLAP, non-eikonal and higher-order corrections, etc., to increase precision and estimate the uncertainties.

To conclude:

• To clearly determine whether this new regime of QCD is there (there is no phase transition!), we expect different dependencies of the cross sections. We need lever arms **at small x** in:

→ A (pp to pA, ep to eA): different in linear and non-linear dynamics, but may be hidden by the initial conditions and uncertainties in modelling, e.g., diffraction.

→ $Q^2 \in [Q_s^2/C, CQ_s^2], C \sim 2 - 10, \Lambda_{QCD}^2 \ll Q_s^2$: stronger in

non-linear dynamics (power-like) that in linear case (logarithmic).

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

To conclude:

• To clearly determine whether this new regime of QCD is there (there is no phase transition!), we expect different dependencies of the cross sections. We need lever arms **at small x** in:

→ A (pp to pA, ep to eA): different in linear and non-linear dynamics, but may be hidden by the initial conditions and uncertainties in modelling, e.g., diffraction.

→ $Q^2 \in [Q_s^2/C, CQ_s^2], C \sim 2 - 10, \Lambda_{QCD}^2 \ll Q_s^2$: stronger in

non-linear dynamics (power-like) that in linear case (logarithmic).

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

Massive quarks:

• Massive quarks do not have a collinear divergence (dead cone effect).

• The treatment of DGLAP evolution including massive quarks is an open issue, see e.g. 1510.02491.

• FFNS: fixed number of massless species in evolution, HQ generated radiatively, good close to mass threshold, misses $ln^n(Q^2/m_{HQ}^2)$.

• ZM-VFNS: variable number of massless species in evolution when increasing Q², captures $ln^{n}(Q^{2}/m_{HQ}^{2})$, bad at threshold.

• Matching of both schemes: GM-VFNS, requires matching between parts that are exactly computed (massive matrix elements) and the massless evolution, several recipes.

• Unpolarised proton PDFs show large uncertainties in regions of interest for HL-LHC and future hadron colliders.

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

- Unpolarised proton PDFs show large uncertainties in regions of interest for HL-LHC and future hadron colliders.
- Inclusive measurements in ep largely improve the situation, plus new possibilities: full flavour decomposition, top, intrinsic charm,...
- The EIC adds precision in regions complementary to HERA.
- Note: factorization in pp/pA/AA is taken for granted, may not be so precise or maybe we hide other physics in PDFs.

- Unpolarised proton PDFs show large uncertainties in regions of interest for HL-LHC and future hadron colliders.
- Inclusive measurements in ep largely improve the situation, plus new possibilities: full flavour decomposition, top, intrinsic charm,...
- The EIC adds precision in regions complementary to HERA.
- Note: factorization in pp/pA/AA is taken for granted, may not be so precise or maybe we hide other physics in PDFs.

- Unpolarised proton PDFs show large uncertainties in regions of interest for HL-LHC and future hadron colliders.
- Inclusive measurements in ep largely improve the situation, plus new possibilities: full flavour decomposition, top, intrinsic charm,...
- The EIC adds precision in regions complementary to HERA.
- Note: factorization in pp/pA/AA is taken for granted, may not be so precise or maybe we hide other physics in PDFs.

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

nPDFs for HIC:

• Lack of data \Rightarrow large

uncertainties for the nuclear glue at small scales and x: problem for benchmarking in HIC in order to extract 'medium' parameters.

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

Nuclear PDFs at the EIC:

- Unpolarised nPDFs are very poorly known, particularly for $x < 10^{-2}$.
- Inclusive measurements in eA largely improve the situation, plus new possibilities: flavour decomposition (but u-d challenging), fits for a single nucleus, release assumptions in unknown regions,...
- Fit to a single nucleus possible for the first time: no A-dependent initial conditions.

1708.05654

EPPS16* + EIC (inclusive + charm) EPPS16* + EIC (inclusive only) EPPS16*

- Improves uncertainties substantially out to 10-4
- Shrinks uncertainty band by factors 4-8
- Charm: no additional constraint at low-x but dramatic impact at large-x
- Highest EIC √s is key for low-x reach

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

Nuclear PDFs at the EIC:

- Unpolarised nPDFs are very poorly known, particularly for $x < 10^{-2}$.
- Inclusive measurements in eA largely improve the situation, plus new possibilities: flavour decomposition (but u-d challenging), fits for a single nucleus, release assumptions in unknown regions,...
- Fit to a single nucleus possible for the first time: no A-dependent initial conditions.

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

u-d separation in eA:

The effect of LHeC pseudodata

- Why it's so hard to pin down the flavor dependence?
- Take the valence up-quark distribution u_V^A as an example:

$$u_{V}^{A} = \frac{Z}{A} R_{u_{V}} u_{V}^{\text{proton}} + \frac{A - Z}{A} R_{d_{V}} d_{V}^{\text{proton}}$$

H. Paukkunen

• Write this in terms of average modification R_V and the difference δR_V

$$R_{\rm V} \equiv \frac{R_{u_{\rm V}} u_{\rm V}^{\rm proton} + R_{d_{\rm V}} d_{\rm V}^{\rm proton}}{u_{\rm V}^{\rm proton} + d_{\rm V}^{\rm proton}}, \qquad \delta R_{\rm V} \equiv R_{u_{\rm V}} - R_{d_{\rm V}}$$

• The effects of flavour separation (i.e. δR_V here) are suppressed in cross sections — but also so in most of the nPDF applications.

< 回 > < 注 > < 注 >

An update on nuclear PDFs at the LHeC

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

H. Paukkunen for the LHeC study group

996

$F_{L} \text{ in eA:} \\ \sigma_{r}^{NC} = \frac{Q^{4}x}{2\pi\alpha^{2}Y_{+}} \frac{d^{2}\sigma^{NC}}{dxdQ^{2}} = F_{2} \left[1 - \frac{y^{2}}{Y_{+}} \frac{F_{L}}{F_{2}} \right], \qquad Y_{+} = 1 + (1 - y)^{2}$

• F_L traces the nuclear effects on the glue (Cazarotto et al '08): most sensitive to deviations wrt fixed order perturbation theory.

• Uncertainties in the extraction of F_2 due to the unknown nuclear effects on F_L of order 5 % (> stat.+syst.) \Rightarrow either measure F_L or

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

nDPDFs at EICs:

• Diffractive PDFs have never been measured in nuclei, where incoherent diffraction becomes dominant at relatively small -t: interplay between shadowing and gap survival probability.

Resummation:

• Resummation has been suggested (1710.05935) to cure the problem seen in HERA data of a worsening of the PDF fit quality with decreasing x and Q²: the problem lies in F_{L} (i.e., in the glue).

$$P_{ij}^{N^k LO + N^h LLx}(x) = P_{ij}^{N^k LO}(x) + \Delta_k P_{ij}^{N^h LLx}(x)$$

 $k = 0, 1, 2, h = 0, 1$ at present

• This approach, and saturation, can be checked at smaller x through the tension between observables: F_2 , F_L , σ_r^{HQ} .

Resummation:

• Resummation has been suggested (1710.05935) to cure the problem seen in HERA data of a worsening of the PDF fit quality with decreasing x and Q²: the problem lies in F_{L} (i.e., in the glue).

Resummation:

• Resummation has been suggested (1710.05935) to cure the problem seen in HERA data of a worsening of the PDF fit quality with decreasing x and Q²: the problem lies in F_{L} (i.e., in the glue).

The dipole picture:

- Long-lived (virtual) photon fluctuation, x<(m_NR)⁻¹~0.1A^{1/3}.
- Unified description of inclusive, diffractive and exclusive processes.

$$\frac{\mathrm{d}\sigma_{T,L}^{\gamma^*p\to Ep}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \mathcal{A}_{T,L}^{\gamma^*p\to Ep} \right|^2 (1+\beta^2) R_g^2 \qquad \beta = \tan\left(\frac{\pi\lambda}{2}\right), \ \lambda \equiv \frac{\partial \ln\left(\mathcal{A}_{T,L}^{\gamma^*p\to Ep}\right)}{\partial \ln(1/x)}$$
$$\mathcal{A}_{T,L}^{\gamma^*p\to Ep} = 2\mathrm{i} \int \mathrm{d}^2 \boldsymbol{r} \int_0^1 \mathrm{d}z \int \mathrm{d}^2 \boldsymbol{b} \ (\Psi_E^*\Psi)_{T,L} \ \mathrm{e}^{-\mathrm{i}[\boldsymbol{b}-(1-z)\boldsymbol{r}]\cdot\boldsymbol{\Delta}} \mathcal{N}\left(x,r,b\right)$$

- Correction to non-diagonal gluon PDF (skewedness) introduced.
- Boosted Gaussian VM WF fitted to leptonic decays.
- qqbarg component in diffraction, not yet in exclusive VM. N.Armesto, 12-14.06.2024 Partonic structure & small x: theory.

Small x: inclusive observables

• Simultaneous description of different inclusive observables (with different sensitivities to the gluon and the sea) in DGLAP may show tensions e.g. F_2 and F_L or σ_r^{HQ} if enough lever arm in Q^2 is available.

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

Small x: inclusive observables

• Simultaneous description of different inclusive observables (with different sensitivities to the gluon and the sea) in DGLAP may show tensions e.g. F_2 and F_L or σ_r^{HQ} if enough lever arm in Q^2 is available.

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

Small x: inclusive observables

• Simultaneous description of different inclusive observables (with different sensitivities to the gluon and the sea) in DGLAP may show tensions e.g. F₂ and F_L or σ_r^{HQ} if enough lever arm in Q² is available.

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

QCD for $ep \rightarrow eJ/\psi p$:

- It should not be the gluon PDF but the GPD:
- NLO estimated, not complete.
- Real part via dispersion relations:

N.Armesto, 12-14.06.2024 - Partonic structure & small x: theory.

 $\lambda(Q^2) = \partial \left[\ln(xg) \right] / \partial \ln(1/x)$

 $\frac{\mathrm{Re}A}{\mathrm{Im}A} \simeq \frac{\pi}{2}\lambda$

• Different evolution equations for TMDs and GPDs.

77

Small-x: correlations

• Dihadron azimuthal decorrelation: currently discussed at RHIC as suggestive of saturation.

• To be studied at LHeC/ FCC-eh far from kinematical limits.

• Nuclear and saturation effects on usual BFKL signals (e.g. dijet azimuthal decorrelation, Mueller-Navelet jets) has not been extensively addressed: A-dependence contrary to linear resummation?

