

Heavy Flavor + Quarkonia Experiment

Jing Wang (CERN)

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

- GDR-QCD: From Hadronic Structure to Heavy-ion Collisions
 - IJCLab, Orsay (France)
 - June 11, 2024

Special thanks to Gian Michele and Florian for the discussions!

Waltoen Krassenre, v

After Hydrodynamics What Next?

What's in that liquid? X-ray it.

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

!!!! *** _\$K.

JX-currity

Siecurity

10 Reveal

To

Hard Probes "Rutherford experiment"

• Hard Probes \rightarrow particles created from scatterings of large momentum transfer Q

Hard Probes "Rutherford experiment"

- compared to no medium \rightarrow normally pp collisions as reference

• Hard Probes \rightarrow particles created from scatterings of large momentum transfer Q Get information of medium by measuring how hard probes are modified

VS

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Hard Probes vs Soft Particles

Hard probes \rightarrow large Q

- $Q \sim 1/\tau$ creation time
 - Produced early \rightarrow experience whole evolution
 - Unique access to high temperature stage
- $Q \gg \Lambda_{QCD} \sim 200 \text{ MeV}$
 - Initial production calculable with pQCD
- $Q \gg T_{QGP} \sim 400 \text{ MeV for LHC}$
 - Seldom produced in QGP \rightarrow Keep identity
- With color charge EM Bosons are also hard probes
 - Strong interaction with QGP

Heavy-ion collisions

Heavy quarks (charm, beauty) \rightarrow large mass m_Q

- $m_Q \sim 1/\tau$ creation time
 - Produced early \rightarrow experience whole evolution
 - Unique access to high temperature stage
- $m_Q \gg \Lambda_{QCD}$
 - Initial production calculable with pQCD even at low pT
 - Different length scale structure by varying pT
- $m_Q \gg T_{QGP}$
 - Seldom produced in QGP \rightarrow Keep identity
 - Brownian motion \rightarrow Diffusion coeff. D_s (Fokker-Plank)
- $m_Q \gg m_q$
 - Strong interaction with QGP differently from light quark

Heavy Flavors vs Other Hard Probes

Life of a Heavy Quark in HIC

Transport can be described by Fokker Planck

Yen-Jie Lee, Andre S. Yoon and Wit Busza

Relativistic heavy-ion collisions

Mesons

Fragmentation to c / b hadrons and decay

Connaître Representative Heavy Flavor Hadrons

Charm

D⁰ (c→D⁰ ~ O(50%)) Mass 1.865 GeV **cτ ~ 120 μm**

Study of heavy quarks enabled by measurements of heavy-flavor hadrons • D⁰ and B⁺ mesons are go-to proxy c- and b- hadron

- - Best fragmentation fraction
 - Relatively simple to reconstruct

Beauty

 B^+ (b \rightarrow B⁺ ~ O(40%)) **Mass 5.279 GeV c**τ ~ 490 μm

Connaître Representative Heavy Flavor Hadrons

Charm

 $\int 0 (c \rightarrow D^0 \sim O(50\%))$ **Mass 1.865 GeV cτ ~ 120 μm**

Displaced secondary vertex is an experiment signature of open HF mesons

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Beauty

 B^+ (b \to B⁺ ~ O(40\%)) **Mass 5.279 GeV cτ ~ 490 μm**

Connaître Representative Heavy Flavor Hadrons

Charm

Open heavy flavor

D⁰ (c→D⁰ ~ O(50%)) **Mass 1.865 GeV cτ ~ 120 μm**

Quarkonia

ψ(2S), χ_c

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Beauty

 B^+ (b \to B⁺ ~ O(40\%)) **Mass 5.279 GeV c**τ ~ 490 μm

How to Measure Open Heavy Flavors

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Measure Heavy Flavor HF Decayed Leptons

Measurement objects Reconstruction Decay **Branching ratio** Displacement **Decay length** Fragmentation Fr. Fraction Initial scattering

Inclusive decayed leptons

- Leptons only carry partial kinematics of parent hadrons
- Inclusive c/b-hadrons only

Measure Heavy Flavor Fully Reconstruction

Measurement objects Reconstruction

> Decay **Branching ratio**

Inclusive decayed leptons

- Leptons only carry partial kinematics of parent hadrons
- Inclusive c/b-hadrons only
- Better statistics

Displacement **Decay length**

Fragmentation Fr. Fraction

Initial scattering

Exclusive hadronic reconstruction

- Good control of kinematics
- Distinguish type of hadrons
- Statistics limited by FF, BR e.g. FF x BR ($c \rightarrow D^0 \rightarrow K\pi$) ~ 0.02

Measure Heavy Flavor Partial Reconstruction

(b \rightarrow) J/ ψ , nonprompt J/ ψ

 Balance of statistics and kinematics control

Measurement objects Reconstruction

> Decay **Branching ratio**

Displacement **Decay length**

Fragmentation

Fr. Fraction

Initial scattering

$(b \rightarrow)$ D, nonprompt D

 Balance of statistics and kinematics control

Measure Heavy Flavor HF Tagged Jets

D

Signal Extraction HF Decay Leptons

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

- Template fit on a variable to extract the yields of signals
- Identify sources of backgrounds
- Determine variables, which should have either distinct shapes between components, or well-known yields
- Determine templates
 - Data-driven is the best
 - Simulation is commonly used
 - Need to correct or evaluate data-MC difference

This idea will be used again and again...

Signal Extraction HF Decay Muons - Example

Sources of backgrounds

prompt bkg muon from decay of J/ψ, ψ(2S), Y, W/Z • *hadronic* bkg muon from π / K decay in inner tracker or punching through the calorimeter

• fake bkg wrongly reconstructed/identified track

Variables

• *O* Difference of muon momentum determined in the inner tracker and in the muon chamber

hadronic and fake bkg shapes different from signals • prompt bkg yields scaled from previous measurements

• Templates

From simulations

Signal Extraction HF Decay Electrons - Practice

[PRC 109 (2024) 044907]

Extension for homework $HF \rightarrow e$

- What are the background sources?
- What are the variables to separate signals and backgrounds?
- How the templates are determined?
- Similar one from STAR [1]

Signal Extraction Separate $c \rightarrow$ and $b \rightarrow \mu$

19

Signal Extraction Separate $c \rightarrow$ and $b \rightarrow \mu$

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

CERN

Signal Extraction Separate $c \rightarrow$ and $b \rightarrow \mu$

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Discovery of J/ψ

Fit on invariant mass

Discovery of Higgs boson

[PLB 716 (2012) 30]

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

• Determine decay channel, which need to balance BR branching ratio Purity signal to background ratio

Acceptance

Resolution

Commonly used decay modes	
$D^0 \rightarrow K^- \pi^+$	Fit on inv
$D^+ \rightarrow K^- \pi^+ \pi^+$	
$D_{S}^{+} \rightarrow \phi (K^{+} K^{-}) \pi^{+}$	 Determ BR bit
$D^{*+} \rightarrow D^0 (K^- \pi^+) \pi^+$	 Purity
$\Lambda_{c^+} \rightarrow p K^- \pi^+$ larger BR	- inte
$\Lambda_{c}^{+} \rightarrow p K_{s}^{0} (\pi^{+} \pi^{-})$ K _s improves purity	
$B^+ \rightarrow J/\psi (\mu^+\mu^-) K^+$	► Acce
$B^+ \rightarrow \bar{D}^0 (K^+ \pi^-) \pi^+$	
$B^0 \rightarrow J/\psi$ (μ+μ-) K_{s^0} (π+π-)	r Reso
$B^0 \rightarrow D^-(K^+\pi^-\pi^-)\pi^+$	
$B_{S^0} \rightarrow J/\psi (\mu^+ \mu^-) \phi (K^+ K^-)$	
$\Lambda_b{}^0 \rightarrow \Lambda_c{}^+ \left(p \operatorname{K}{}^- ^+\right) ^-$	

variant mass

nine decay channel, which need to balance ranching ratio y signal to background ratio ermediate resonance improves purity

ptance

lution

Commonly	v used	decav	modes

$D^0 \rightarrow K^- \pi^+$	Fit on in
$D^+ \rightarrow K^- \pi^+ \pi^+$	
$D_{S}^{+} \rightarrow \phi (K^{+} K^{-}) \pi^{+}$	 Determ BR bit
$D^{*+} \rightarrow D^0 (K^- \pi^+) \pi^+$	 Purity
$\Lambda_{c^+} \rightarrow p K^- \pi^+$	- inte
$\Lambda_{c}^{+} \rightarrow p K_{s}^{0} (\pi^{+} \pi^{-})$	- moi - lept
B ⁺ \rightarrow J/ψ (μ ⁺ μ ⁻) K ⁺ lower background	 Acce
B ⁺ \rightarrow \overline{D}^0 (K ⁺ π ⁻) π ⁺ better acceptance	- muo
B ⁰ \rightarrow J/ψ (μ ⁺ μ ⁻) K _s ⁰ (π ⁺ π ⁻)	► Reso
$B^0 \rightarrow D^-(K^+\pi^-\pi^-)\pi^+$	
$B_{S^0} \rightarrow J/\psi$ (μ+μ-) φ (K+K-)	
$\Lambda_{b^0} \rightarrow \Lambda_{c^+} (p \operatorname{K} \pi^+) \pi^-$	

variant mass

nine decay channel, which need to balance or anching ratio

- y signal to background ratio
- ermediate resonance improves purity
- ore daughters have worse purity
- ton channels lower combinatorial background eptance e.g.
- **Ions difficult to access low p**_T at mid rapidity blution

Commonl		used	decay	modes
00	- J		<u> </u>	

$D^0 \rightarrow K^- \pi^+$	Fit on in
$D^+ \rightarrow K^- \pi^+ \pi^+$	
$D_{S^+} \rightarrow \phi (K^+ K^-) \pi^+$	 Detern BR b
$D^{*+} \rightarrow D^0 (K^- \pi^+) \pi^+$	 Purity
$\Lambda_{c^+} \rightarrow p K^- \pi^+$	- inte
$\Lambda_{c}^{+} \rightarrow p K_{s}^{0} (\pi^{+} \pi^{-})$	- mo - lep
$B^+ \rightarrow J/\psi$ ($\mu^+\mu^-$) K ⁺	 Acce
$B^+ \rightarrow \bar{D}^0 \left(K^+ \pi^- ight) \pi^+$	- mu
B ⁰ → J/ψ (μ ⁺ μ ⁻) K _s ⁰ (π ⁺ π ⁻)	► Keso
$B^0 \rightarrow D^-(K^+\pi^-\pi^-)\pi^+$	 Determ
$B_{S^0} \rightarrow J/\psi (\mu^+\mu^-) \phi (K^+K^-)$	 Ident
$\Lambda_b{}^0 \rightarrow \Lambda_c{}^+ (p K{}^- ^+) ^-$	

variant mass

- nine decay channel, which need to balance oranching ratio
- y signal to background ratio
- ermediate resonance improves purity
- ore daughters have worse purity
- ton channels lower combinatorial background ptance *e.g.*
- ions difficult to access low p_T at mid rapidity olution

nine templates tify potential peaky background

Invariant Mass Fit $D^0 \rightarrow K\pi$ as Example

- Signal shape width reflects track momentum resolution
- Combinatorial randomly pairing two oppositesign tracks
 - Likelihood ratio test degree of freedom needs to balance fitting performance and overfitting
- Peaky background
 - K- π swap D⁰ \rightarrow K π is reco-ed but the mass assignment is swapped
 - KK and $\pi\pi$ D⁰ \rightarrow KK/ $\pi\pi$ is reco-ed as $D^0 \rightarrow K\pi$

Invariant Mass Fit Extension

- What peaky backgrounds for $B^+ \rightarrow J/\psi K^+$?
- What functions are used to model each component?

• What is the event-mixing technique used to achieve measurements down to 0 p_T by ALICE

Separate Prompt and Nonprompt D mesons

[PLB 850 (2024) 138389]

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Beam spot

DCA

- Template fits on D meson DCA
 - DCA ~ 0 for prompt D
 - Large DCA for nonprompt D

B meson

DCA of nonprompt D

K

π

Yield Extraction Excited State Quarkonia

- Mass resolution is critical to separate excited states
 - Require ~100 MeV resolution to separate Y(2S) and Y(3S)

Yield Extraction Excited State Quarkonia

• For a pair of particles with same decay mode, commonly use yield ratio, e.g.

$$\sigma_{(2S)\to\mu\mu} = \left(\frac{N_{(2S)\to\mu\mu}}{N_{(1S)\to\mu\mu}}\right)\sigma_{(1S)\to\mu\mu}$$

to measure the low-stat particle

- avoid systematics convoluted with statistics for low-stat particle if they can be canceled in ratio
 - muon efficiency & resolution for $Y(nS) \rightarrow \mu\mu$

Huge Combinatorial Background in HIC

CMS Experiment at the LHC, CERN Data recorded: 2018-Nov-12 08:36:52.866176 GMT Run / Event / LS: 326586 / 2491137 / 6

Up to O(10⁴) final-state particles in a central heavy-ion event

Need to find good selections to suppress backgrounds first before invariant mass fits

Suppress Background Multivariate Classification

If want to keep red and remove blue balls...

Some variables can separate signals and backgrounds to a certain extent

- Decay length significance
- Secondary vertex probability
- Pointing angles

. . .

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Suppress Background Multivariate Classification

If want to keep red and remove blue balls...

Variable 2

Combining multi variables in a smart way separate backgrounds and signals better \rightarrow where ML can help

[Animation]

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Initial Production pQCD Test

- Measurements can be described by pQCD calculations with sizable theoretical uncertainty at low p_T
- Different factorization schemes FONLL Fixed-Order plus Next-to-Leading Logs [website]
- Dominant theoretical uncertainties Factorization and renormalization scale, PDF Can be constrained by high-precision measurements - Simultaneous constraints by varying collision energy and rapidity

Initial Production Nuclear Modification

Is initial production in A-A collisions just superposition of nucleon-nucleon collisions?

- p-A collisions to test these kind of effects
 - Ion as collision particles
 - No medium effect expected

 Observable of particle yield modification in pA collisions compared to pp

$$R_{pA} = \frac{\mathrm{d}\sigma_{pA}/\mathrm{d}p_{\mathrm{T}}}{A\,\mathrm{d}\sigma_{pp}/\mathrm{d}p_{\mathrm{T}}} \qquad \leftarrow \mathbf{pA}$$

R_{pA} should be 1 in the naive picture above

Initial Production Nuclear PDF

- D⁰ suppressed at low p_T in forward rapidity in pA
 - Nuclear PDF model can describe it Nucleons in ions have different PDF from free protons
- nPDF is common input for theoretical calculations Not limited to heavy flavors
 - constrained by different probes, among them
 - heavy flavors are important probes for gluon nPDF
 - gluon nPDF is one of the poorest constrained

Initial Production Nuclear PDF

For low-p_T D mesons in A-A collisions

$$x \sim 2 \frac{\sqrt{(m_D^2 + p_T^2)}}{\sqrt{s_{NN}}} e^{-y}$$

• $x \sim 10^{-3}$ -10⁻² for mid-rapidity

- mix of x ~ 10⁻⁵-10⁻⁴ and x ~ 10⁻²-10⁻¹ for LHCb rapidity
- In most cases for HF hadrons, nPDF leads to
 - suppression at low p_T shadowing
 - mild enhancement at very high p_T anti-shadowing

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Nuclear Modification Factor RAA in AA Collisions

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Recall

Nuclear modification factor RAA

 $R_{AA} = 1$: superposition of nucleon-nucleon collisions

$$R_{AA} = \frac{\mathrm{d}N_{AA}/\mathrm{d}p_{\mathrm{T}}}{T_{AA}\mathrm{d}\sigma_{pp}/\mathrm{d}p_{\mathrm{T}}}$$

← Heavy-ion

← pp

Nuclear Modification RAA D⁰ Mesons

PRC 99 (2019) 034908 JHEP 01 (2022) 174 PLB 782 (2018) 474 Jing Wang, Heavy Flavour and

- Prompt D⁰ suppression in wide kinematics
 - Charm quark lose energy in QGP via collisions low p_T and radiations high p_T

Energy loss of hard parton in QGP in pQCD picture

Bullet in gelatin block

D⁰ **R**_{AA} Understanding the Shape

JHEP 01 (2022) 174 PLB 782 (2018) 474

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

- Multiple effects interplay
 - Collisional and radiative energy loss
 - ▶ p_T shape before modification

D^o R_{AA} Understanding the Shape

JHEP 01 (2022) 174 PLB 782 (2018) 474

- Multiple effects interplay
 - Collisional and radiative energy loss
 - ▶ p_T shape before modification
 - lower slope at high p_T
 - Collective flow + coalescence
 - medium pushes very low- p_T partons to higher p_T
 - nPDF shadowing
 - suppress low p_T

R_{AA} Mass Dependence of Energy Loss

PLB 829 (2022) 137077 EPJC 78 (2018) 762 EPJC 78 (2018) 509 Jing Wang, Heavy Flavour and

- Flavor dependent energy loss
 Dead cone effect
 - Radiation is suppressed inside $\theta < m/E$
 - Energy loss $\Delta E_{l} > \Delta E_{c} > \Delta E_{b}$

R_{AA} Flavor Dependence

Non-prompt D R_{AA} / Prompt D R_{AA}

nPDF small effect

CERN

 Simultaneous effect on charm and beauty

Mass dependent energy loss significant effect

Beauty / charm

Enhance difference between c and b

Hadronization

significant effect

Reduce diff between c and b

Initial Spatial Anisotropy of Medium

Azimuthal anisotropic initial shape in peripheral events

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Collective Flow

Science 298 (2002) 2179

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Collective Flow

1.6 Existence of QGP -> Final-state N do N $v_n \cos\left[n\left(\phi - \Psi_n\right)\right]$ 0.8 **0.6** ⊞ -3 -2 2 -1 lime

Science 298 (2002) 2179

Collective Flow Heavy Quarks

PLB 816 (2021) 136253 PLB 813 (2021) 136054 PLB 807 (2020) 135595 Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Do heavy quarks flow along with the medium?

Analysis Technique Flow Coefficient

[PRL 120 (2018) 202301]

- Simultaneously fit invariant mass distribution and average v_2 Scalar Product \rightarrow get signal v_2
- One of common methods for property measurements of resonances, if
 - signal and backgrounds have distinct magnitudes of the observables

Collective Flow Open Charm

PLB 816 (2021) 136253 PLB 813 (2021) 136054 PLB 807 (2020) 135595 Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

- Significant non-zero open charm flow signal
 - Smaller v₂ than light hadrons at low p_T
 - Magnitude reflects thermalization degree

- Consistent between LHC results
 - (c \rightarrow) μ seems to shift to lower p_T

Collective Flow Open Charm

PLB 816 (2021) 136253 PLB 813 (2021) 136054 PLB 807 (2020) 135595 Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

- Non-zero D meson v_2 up to high p_T
 - Same magnitude with light hadrons
 - Path-length dependence of energy loss

Open Charm Flow LHC vs RHIC

PLB 816 (2021) 136253 PRL 118 (2017) 212301

- Similar D v₂ between LHC PbPb 5 TeV and RHIC AuAu 200 GeV
 - despite different temperature & size?
 - decisive precision at sPHENIX

Collective Flow Open Beauty

PLB 850 (2024) 138389 JHEP 10 (2023) 115 PLB 807 (2020) 135595 Jing Wang, Heavy Flavour and C

- Significant non-zero open beauty flow signal
 - Smaller v₂ than charm hadrons at low p_T
 - Weaker collective flow behavior
 - Similar v_2 with open charm at high p_T
 - Path length dependence of energy loss

Collective Flow Mass Hierarchy

• v₂ hierarchy from lightest to heaviest hadrons

Guess whether the order still stands if adding quarkonia?

JHEP 10 (2020) 141 JHEP 10 (2023) 115 PLB 819 (2021) 136385 PRL 123 (2019) 192301 Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Collective Flow Mass Hierarchy Including Quarkonia

• v₂ hierarchy from lightest to heaviest hadrons

Happy with the flow picture? Sorry... Quarkonia actually have different stories

Recall Open HF hadron in HIC

Yen-Jie Lee, Andre S. Yoon and Wit Busza

Relativistic heavy-ion collisions

Fragmentation to c / b hadrons and decay

Life of a Lucky Heavy Quarkonium in HIC

Yen-Jie Lee, Andre S. Yoon and Wit Busza

Life of a Weak Unlucky Quarkonium in HIC

Yen-Jie Lee, Andre S. Yoon and Wit Busza

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Dissociation in potential model picture of quarkonia in heavy-ion collisions

We don't see this J/ψ in final state

Life of a Weak Lucky Quarkonium in HIC

Yen-Jie Lee, Andre S. Yoon and Wit Busza

Charmonia in QGP Sequential Melting

EPJC 78 (2018) 762 EPJC 78 (2018) 509 EPJC 78 (2018) 509

Sequential melting

- Charmonia strongly suppressed in PbPb collisions
- Binding energy hierarchy
 - weaker bound state easier to be dissociated
- Stronger suppression in central events *Central: large Npart
 - higher temperature and larger size

leaker bound

Charmonia in QGP Regeneration

EPJC 78 (2018) 762 JHEP 02 (2024) 066

Regeneration

- Uncorrelated QQ in QGP regenerate quarkonia
- Increasing R_{AA} at low p_T towards central events
 - central events have larger $\sigma_{c\bar{c}}$

Charmonia in QGP Regeneration

PLB 797 (2019) 134917 PRL 98 (2007) 232301 PLB 849 (2024) 138451 Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Regeneration

- Uncorrelated QQ in QGP regenerate quarkonia
- Increasing R_{AA} at low p_T towards central events
 central events have larger σ_{cc̄}
- Significant in LHC but not in RHIC
 - higher collision energy has larger $\sigma_{c\bar{c}}$

Bottomonia in QGP

Sequential melting

- Bottomonia strongly suppressed in PbPb collisions
- Binding energy hierarchy
 - weaker bound state easier to be dissociated
- Weak (if any) uncorrelated recombination expected for Y(nS)
 - smaller $\sigma_{b\bar{b}}$ than $\sigma_{c\bar{c}}$

Dissociation + Regeneration Picture Challenge

PLB 790 (2019) 270 PRL 130 (2023) 112301

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Happy with dissociation + regeneration picture?

- Why is Y(1S) suppression degree so similar in LHC and RHIC?
 - even if they have different initial temperatures
- Why does Y(1S) not continue decreasing in most central events?
 - models with regeneration still don't describe it
- Feed-down contribution not well constrained

Dissociation + Regeneration Picture Challenge

[2303.17026]

More excited states Y(3S) observation

- Challenging for theoretical models Particle ratio cancels nPDF effect
- Crucial to constrain feed-down contribution

Revisit J/ψ Really Primordial?

Early bound state picture

What we expect so far

• Few surrounding jet activities

Late jet fragmentation picture

How open heavy flavors are formed

• J/ ψ only carries partial transverse momentum in the jet shower

J/ ψ Production Potential Jet Fragmentation

Early bound state picture Late jet fragmentation picture

- J/ ψ have more surrounding jet activities than (model) expected in pp
 - Similar to open heavy flavors
 - Parton energy loss may also play an important role in J/ψ suppression in HIC

Open HF Hadrons Really from Fragmentation?

- Fragmentation universality assumed across collision systems Default scheme in generators, constrained by measurements in e⁺e⁻ and ep collisions

 - Successful in HF meson production in pp

Hadronization Non-perturbative problem

Open HF Hadrons Really from Fragmentation?

- Fragmentation universality assumed across collision systems Default scheme in generators, constrained by measurements in e⁺e⁻ and ep collisions

 - Successful in HF meson production in pp
- Modification of hadronization expected in medium Fragmentation + coalescence (combination with partons from medium)

Hadronization Non-perturbative problem

Hadronization Study In Experiments

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

more valence quarks

Coalescence Charm Bayron Λ_c in AA Collisions

EPJC 78 (2018) 762 JHEP 02 (2024) 066

- Significant larger Λ_c / D⁰ in AA compared to pp at intermediate p_T
 - Consistent with coalescence picture

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Hadronization in pp Charm Bayron Λ_c

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

- Fragmentation function constrained by e+e- predicts Λ_c / D^0 to be 0.05 0.1 in pp
 - Weak p_T dependence

Hadronization in pp Charm Bayron Λ_c

- Significant larger Λ_c / D⁰ observed in pp
 - Stronger enhancement at low pT
- Theoretical efforts to describe it
 - More excited baryons
 - Color reconnection
 - Coalescence also in pp
- 1 Details see theoretical lectures

In experiments, multiplicity is a way to vary final state effects and connect different collision systems

Hadronization in One Picture Λ_c/D^0 vs Multiplicity

- p_T -Integrated Λ_c / D⁰ increases dramatically at small multiplicity from e⁺e⁻ to low-multiplicity pp
 - but no data there
- Λ_c / D^0 keeps same for a wide range of multiplicity from pp to peripheral AA
- p_T -Integrated Λ_c / D^0 keeps same but p_T redistributed from peripheral to central AA

Hadronization in One Picture A_b/B^o vs Multiplicity

[PRL 132 (2024) 081901]

CERN

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Hadronization Strangeness Mesons

- the measurements of strangeness hadrons
 - D_s/D+ in PbPb PLB 827 (2022) 136986 ALICE
 - B_s/B+ in PbPb PLB 829 (2022) 137062 CMS
 - D_s/D⁺ vs multiplicity in pPb 2311.08490 LHCb
 - B_s/B^o vs multiplicity in pPb PRL 131 (2023) 061901 LHCb
 - D_s/D+ vs multiplicity in pp PLB 829 (2022) 137065 ALICE

Extension for Homework

• Using the same way we read Λ_c and Λ_b results, understand what is the current picture from

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Small Systems Being Hot Really Matters?

Can be (kinda) understood in QGP

collisions A **Observations in**

Strong suppression

Enhancement of baryon production

Collective flow

QQ sequential suppression

Small systems where no QGP is expected

Hadronization modification in pp/pA

?	
?	

Observations Π pp/pA collisions

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Small Systems Collective Behaviors

PRL 121 (2018) 082301 PLB 813 (2021) 136036 PLB 791 (2019) 172 PRL 124 (2020) 082301 Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

- Non-zero v₂ of charm hadrons in high-multiplicity pp and pPb collisions
- Source of flow signals not decisive
 - Maybe initial transverse momentum correlation in CGC framework
 - Maybe small QGP medium in final states

Small Systems Non-Flow Subtraction

PRL 121 (2018) 082301 PLB 813 (2021) 136036 PLB 791 (2019) 172 PRL 124 (2020) 082301 Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

- Non-flow contribution needs to be subtracted
 - Major sources
 - Back-to-back dijets / multi-jets
 - Resonance decay
 - Subtraction method differs between experiments, commonly assuming nonflow
 - independent of multiplicity
 - dominates in low-multiplicity events

Small Systems Quarkonia Sequential Suppression

Small Systems Quarkonia Sequential Suppression

- Cancel initial state effects
- Vary multiplicities
 - Examine potential final state effects
 - comover dissociation
 - small medium droplet created

X(3872) / ψ (2S) across collision systems

[2402.14975]

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Apply Production Mechanism Probe Exotica Structure

X(3872) to $\psi(2S)$ yield ratio across collision systems

- Dissociated by interactions with comovers (pp/pPb) or medium (PbPb)
 Different binding operation
 - Different binding energy
- Enhanced via recombination

X(3872)

ψ(2S)

- Both effects depend on inner structure differently

Tightly bound Small radius

20-year debate of X(3872) nature

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Apply Production Mechanism Probe Exotica Structure

• Discriminate nature of exotica - Independent input in addition to quantum number

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Let Probes Be Probes

- Specific shear viscosity η/s derived by HF D_s
 - Consistent with soft probe
 - Sizable uncertainty though
 - Hard probes \rightarrow unique high temperature
- Need substantial efforts to achieve
 - Observables > properties
 - Phenomenology > microscopic structure

Help you understand what people are talking about in next SQM

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Goal of This Lecture

Win a particle magnet by answering 3 questions correctly Unlimited try...

I'll be around all the way to Friday to redeem the prize

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Enjoy Play Time!

Heavy flavor result playground

Get to know the fruitful heavy flavor measurements by different experiments

[jing.wang@cern.ch]

Isabelle

Thanks for your attention!

٤.

de tra

If there's more time

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Let's have more fun!

HF Probe Initial Condition Tilt of Medium

HF Probe Initial Condition Strong EM Field

• Tilt \rightarrow Longitudinal structure of initial $\sqrt{1}$ energy density distribution ➡ Non-zero (rapidity-dependent) v₁

ZEP

• Strong EM field emerges at early stage • Decays quickly \rightarrow unique chance for heavy flavors \Rightarrow Split v₁ of c and $\bar{c} \rightarrow$ non-zero (rapidity-dep) Δv_1

• Difference b/w LHC and RHIC for Δv_1 Possibly different effect dominates

J/ψ Polarization Initial B Field, Vorticity

- $\lambda_{\theta} > 0 \rightarrow$ Transverse polarization in the direction perpendicular to the reaction plane → connected with
 - Strong magnetic field
 - Rotation at early stage via spin-orbit coupling

HF Probe Fluctuations Initial Geometry

- High-order vn probes event-by-event fluctuation of initial geometry
 - Similar to soft probes but different lengthwave probes

HF Probe Fluctuations Energy Loss

 D° 4-particle correlation v_2 {4}

- Probe event-by-event fluctuation $\begin{array}{l} - v_2 \{2\}^2 \approx \langle v \rangle^2 + \sigma^2 \\ - v_2 \{4\}^2 \approx \langle v \rangle^2 - \sigma^2 \end{array}$ flow fluctuation
- Indeed $v_2{4} < v_2{2}$ for D⁰
 - Provide additional constraints
- v₂ fluctuations from both initial geometry (soft) and energy loss (hard)

Exotica T_{cc} in High Color Density Environment

Tcc yield vs. multiplicity in pp

- Similar idea applied on another exotic T_{cc}
- No suppression in high multiplicity •
 - Different response as X(3872) to the color dense environment

Charmonia in QGP Other Effects

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

- Stronger suppression at forward rapidity than mid-rapidity
 - similar observable in both LHC and RHIC

Cold nuclear matter effects

*Not saying rapidity dependence is due to CNM

- Comover breakup, nuclear absorption
- Nuclear PDF
- Initial coherent energy loss

Dead Cone Effect Direct Observation in pp

Yield Extraction Heavy Quarkonia

[EPJC 78 (2018) 509]

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

• Simultaneously fit invariant mass and pseudo-proper decay length \rightarrow Similar as open HF

Relativistic Heavy-Ion Collisions

Before collisions (two pancakes of nucleons) Collisions (the harder, the earlier) QGP emergence (tons of soft scatterings) Cool down while expansion 18 1 **38** (1) **Relativistic heavy-ion collisions** Quark Gluon Plasma Baryons Mesons

Yen-Jie Lee, Andre S. Yoon and Wit Busza

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Hadronization

Analysis Technique Flow Coefficient

- Common method for property measurements of resonances, if
 - signal and backgrounds have distinct magnitudes of the observables
 - the observable does not have strong dependence of invariant mass

• Simultaneously fit invariant mass distribution and v_2 vs invariant mass \rightarrow get signal v_2

Luminosity Projection Conservative

Quantity	pp	0–0	Ar–Ar	Ca–Ca	Kr–Kr	In–In	Xe–Xe	Pb–Pb
$\sqrt{s_{\rm NN}}$ (TeV)	14.00	7.00	6.30	7.00	6.46	5.97	5.86	5.52
$L_{\rm AA}~({\rm cm}^{-2}{\rm s}^{-1})$	$3.0 imes 10^{32}$	$1.5 imes10^{30}$	$3.2 imes 10^{29}$	$2.8 imes10^{29}$	$8.5 imes10^{28}$	$5.0 imes10^{28}$	$3.3 imes10^{28}$	$1.2 imes 10^{28}$
$\langle L_{\rm AA} \rangle ~({\rm cm}^{-2}{\rm s}^{-1})$	$3.0 imes 10^{32}$	$9.5 imes10^{29}$	$2.0 imes10^{29}$	$1.9 imes10^{29}$	$5.0 imes10^{28}$	$2.3 imes10^{28}$	$1.6 imes10^{28}$	$3.3 imes10^{27}$
$\mathscr{L}_{AA}^{month} (nb^{-1})$	$5.1 imes 10^5$	$1.6 imes 10^3$	$3.4 imes 10^2$	$3.1 imes 10^2$	$8.4 imes10^1$	$3.9 imes 10^1$	$2.6 imes 10^1$	5.6
$\mathscr{L}_{NN}^{month} (pb^{-1})$	505	409	550	500	510	512	434	242
$R_{\rm max}(\rm kHz)$	24 000	2169	821	734	344	260	187	93
μ	1.2	0.21	0.08	0.07	0.03	0.03	0.02	0.01
$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ (MB)	7	70	151	152	275	400	434	682
				at $R =$	0.5 cm			
$R_{\rm hit}~({\rm MHz/cm^2})$	94	85	69	62	53	58	46	35
NIEL (1 MeV n_{eq}/cm^2)	$1.8 imes 10^{14}$	$1.0 imes 10^{14}$	$8.6 imes10^{13}$	$7.9 imes10^{13}$	$6.0 imes10^{13}$	$3.3 imes10^{13}$	$4.1 imes 10^{13}$	$1.9 imes 10^{13}$
TID (Rad)	$5.8 imes10^{6}$	$3.2 imes 10^6$	$2.8 imes 10^6$	$2.5 imes10^{6}$	$1.9 imes 10^6$	$1.1 imes 10^6$	$1.3 imes 10^6$	$6.1 imes 10^5$
				at $R = 1$	100 cm			
$R_{\rm hit}~(\rm kHz/cm^2)$	2.4	2.1	1.7	1.6	1.3	1.0	1.1	0.9
NIEL (1 MeV n_{eq}/cm^2)	$4.9 imes10^9$	$2.5 imes 10^9$	$2.1 imes 10^9$	$2.0 imes 10^9$	$1.5 imes 10^9$	$8.3 imes 10^8$	$1.0 imes 10^9$	$4.7 imes 10^8$
TID (Rad)	$1.4 imes 10^2$	$8.0 imes10^1$	$6.9 imes10^1$	$6.3 imes10^1$	$4.8 imes 10^1$	$2.7 imes 10^1$	$3.3 imes10^1$	$1.5 imes 10^1$

operational month (assuming a running efficiency of 65%).

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Table 1: Projected LHC performance: For various collision systems, we list the peak luminosity L_{AA} , the average luminosity $\langle L_{AA} \rangle$, the luminosity integrated per month of operation \mathscr{L}_{AA}^{month} , also rescaled to the nucleon–nucleon luminosity \mathscr{L}_{NN}^{month} (multiplying by A^2). Furthermore, we list the maximum interaction rate R_{max} , the minimum bias (MB) charged particle pseudorapidity density $dN/d\eta$, and the interaction probability μ per bunch crossing. For the radii 0.5 cm and 1 m, we also list the particle fluence, the non-ionising energy loss, and the total ionising dose per

Feed-Down, Binding Energy

Beam Schedule Long Term

Γ					2	2(0	2	2	1					Ι					2	2	C)	2	2	2)									2	2	0)]	2	3	3									2	2	0	2	2	4							
	J	- 1	М	A	١	1	J	J		A	S	D	Ν	D).	ן	F	Μ	1	4	Μ	IJ	J	J	A	١	S	С) [V	D	J	F	Μ	A	۱	М	J		ון	Ą	S	SC)	N	D	J	F	Μ	1/	۱	Ν	J	J	A	١	S	0	Ν	D	J	J	F
																																											R	 {(ır I	n	3																

Last update: April 2023

Shutdown/Technical stop Protons physics Ions

Commissioning with beam Hardware commissioning

How to Measure Heavy Flavors

- Better statistics
- Leptons only carry partial kinematics of parent hadrons
- Inclusive c/b-hadrons only

Measurement objects Reconstruction

> Decay **Branching ratio**

Displace **Decay length**

Fragmentation Fr. Fraction

Initial scattering

Exclusive hadronic reconstruction

- Statistics limited by FF, BR e.g. FF x BR ($c \rightarrow D^0 \rightarrow K\pi$) ~ 0.02
- Good control of kinematics
- Distinguish type of hadrons

Azimuthal anisotropic initial shape in peripheral events

Jing Wang, Heavy Flavour and Quarkonia: Experiment (June 11, 2024)

Initial Spatial Anisotropy of Medium

