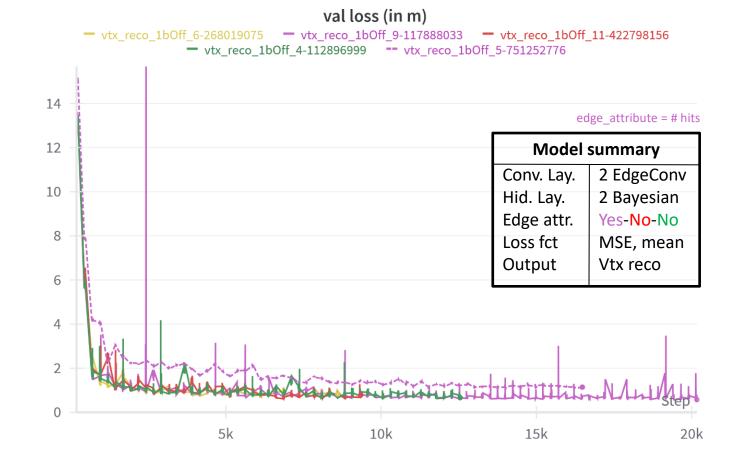


L ^A N C E

SKYNET vertex reconstruction

Lorenzo Perisse

ILANCE, CNRS – University of Tokyo

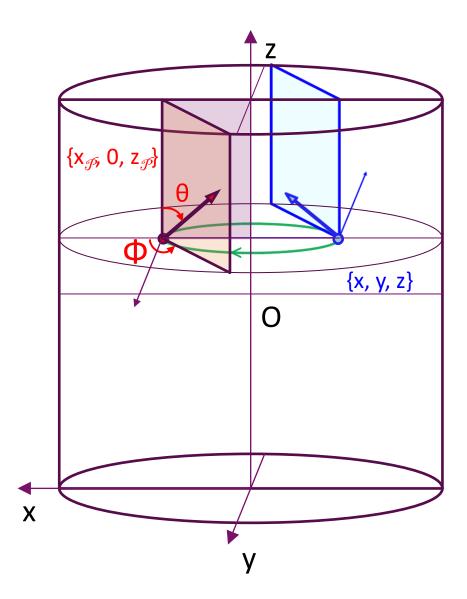

January 19th, 2024

SKYNET-VTX

• General test on 10 MeV positrons in HK without dark noise

• LEAF performance: resolution (68% CL) \approx 45 cm and \sim 70 cm with dark noise

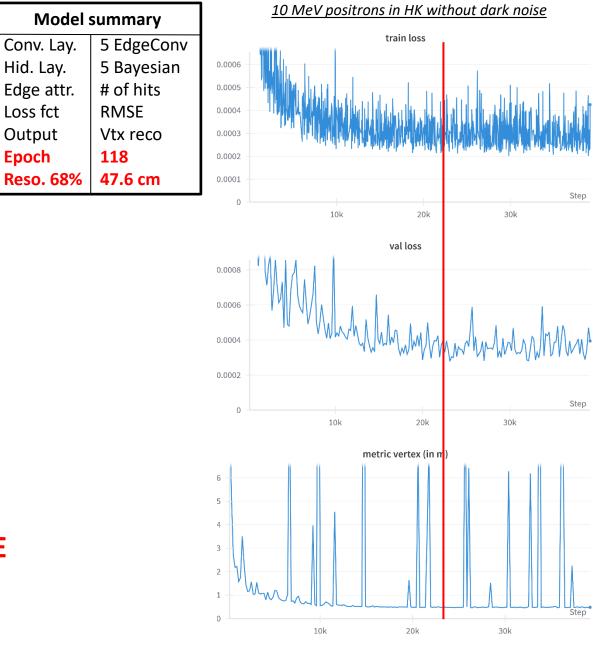
- First test: GNN regression for {x,y,z}
 - Resolution $\approx 1 \text{ m}$


\Rightarrow Not competitive even though the GNN is not optimized

SKYNET-VTX: SLICE EDITION

- Due to tank symmetry by revolution, all events can be mapped to the slice plane *I*:= {y=0, x & z>0}
 - Rotation around (Oz) the vertex & PMT hits by ϑ_{true}
 - Rotation around (Oz) by ϑ_{true} + flip the vertex & PMT hits

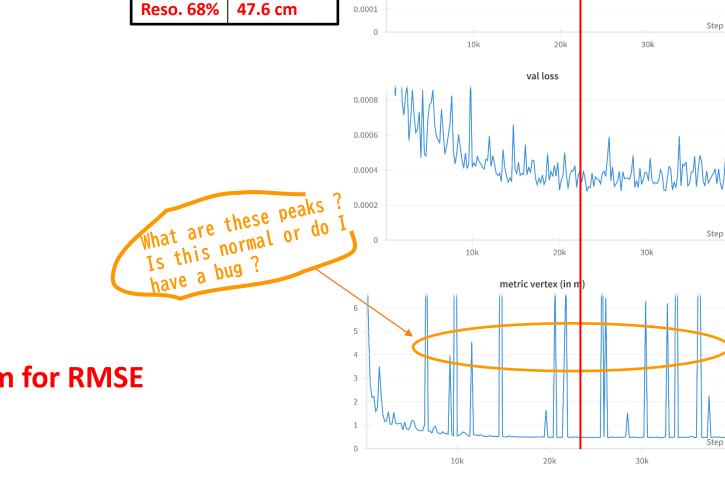
- Second test: GNN regression for $\{x_{\mathcal{P}}, z_{\mathcal{P}}\}$ in \mathcal{P}
 - Resolution \approx 50 cm


 \Rightarrow 3D \rightarrow 2D regression: interesting results even though the GNN is not optimized

SKYNET-VTX: SLICE EDITION

- Map all events to ${\mathscr P}$ then regression of mapped vertex
- Labels: map vertex in $\mathscr{P} \{ x_{\mathscr{P}}, z_{\mathscr{P}} \}$
- Node features: PMT hits $\{X_{\mathcal{P}}, Y_{\mathcal{P}}, Z_{\mathcal{P}}, T\}$
- Convolution layers: DynamicEdgeConv
- Hidden and final layers: Bayesian
- Output: vertex { $x_{\mathscr{P}}$, $z_{\mathscr{P}}$ }
- Loss function: RMSE

\Rightarrow Best resolution @ 47.6 cm for RMSE


5

10 MeV positrons in HK without dark noise

train loss

SKYNET-VTX: SLICE EDITION

- Map all events to ${\mathscr P}$ then regression of mapped vertex
- Labels: map vertex in $\mathscr{P}\{x_{\mathscr{P}}, z_{\mathscr{P}}\}$
- Node features: PMT hits $\{X_{\mathcal{P}}, Y_{\mathcal{P}}, Z_{\mathcal{P}}, T\}$
- Convolution layers: DynamicEdgeConv
- Hidden and final layers: Bayesian
- Output: vertex $\{x_{\mathscr{P}}, z_{\mathscr{P}}'\}$
- Loss function: RMSE

0.0006

0.0005

0.0004

0.0003

0.0002

Model summary

5 EdgeConv

5 Bayesian

of hits

Vtx reco

RMSE

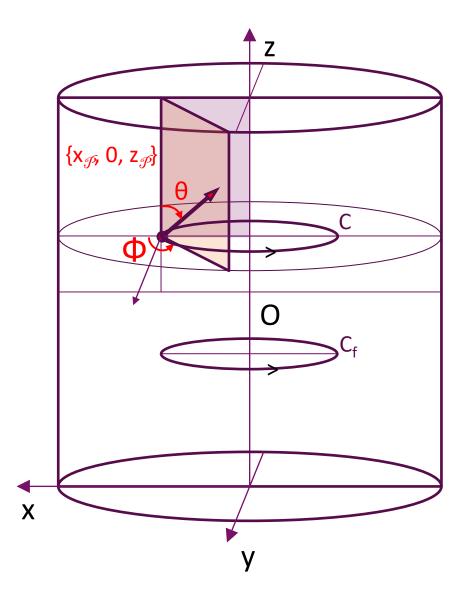
118

Conv. Lay.

Hid. Lay.

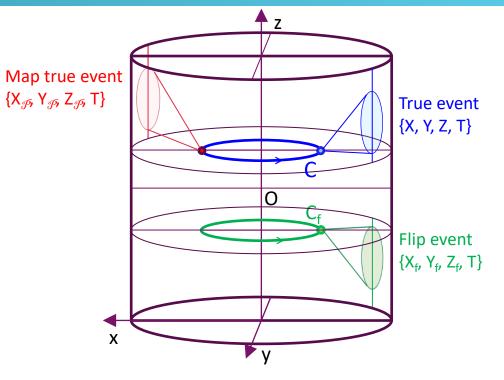
Edge attr.

Loss fct


Output

Epoch

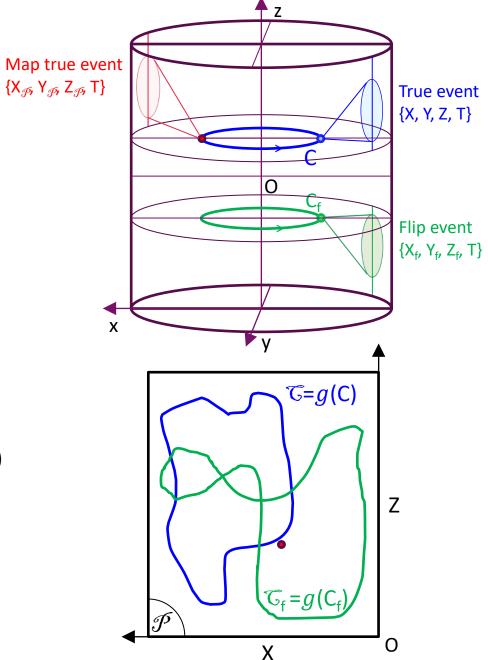
⇒ Best resolution @ 47.6 cm for RMSE (... or do I have a bug ?)


SLICE EDITION, MAIN ISSUES

- Reconstruct {x_f, z_f, t} and not {x, y, z, t}
 - Additional step to find the best vertex over two circular pathes C and C_f

SLICE EDITION, MAIN ISSUES

- Reconstruct {x_f, z_f, t} and not {x, y, z, t}
 - Additional step to find the best vertex over two circular pathes C and $\rm C_{\rm f}$
- Real event PMT info {X, Y, Z, T} and not { $X_{\mathcal{P}}, Y_{\mathcal{P}}, Z_{\mathcal{P}}, T$ }
 - Not possible to directly map PMTs to ${\mathscr P}$
 - C: path generated by {X, Y, Z, T} rotated from 0 to 2π
 - C_f: path generated by {X, Y, Z, T} flipped around (Ox) then rotated from 0 to $2\pi \rightarrow \{X_f, Y_f, Z_f, T\}$

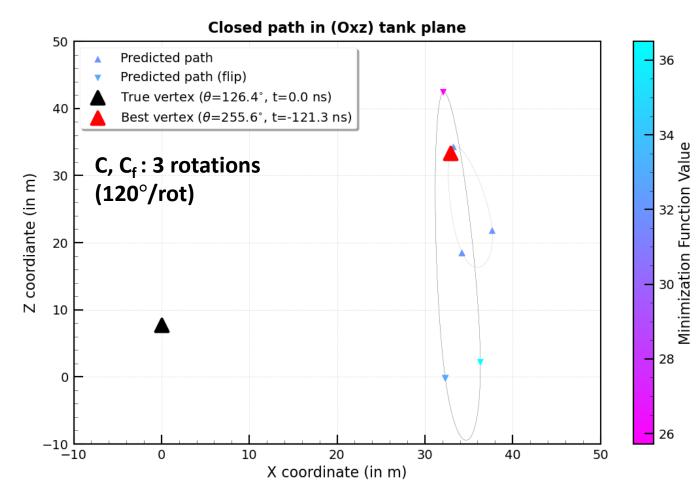


SLICE EDITION, MAIN ISSUES

- Reconstruct {x_f, z_f, t} and not {x, y, z, t}
 - Additional step to find the best vertex over two circular pathes
 C and C_f
- Real event PMT info {X, Y, Z, T} and not { $X_{\mathcal{P}}, Y_{\mathcal{P}}, Z_{\mathcal{P}}, T$ }
 - Not possible to directly map PMTs to ${\mathscr P}$
 - C: path generated by {X, Y, Z, T} rotated from 0 to 2π
 - C_f: path generated by {X, Y, Z, T} flipped around (Ox) then rotated from 0 to $2\pi \rightarrow \{X_f, Y_f, Z_f, T\}$
- Define a function g over C and C_f: $g({X, Y, Z, T}_{\theta}) \mapsto {x_{\mathcal{P}}, z_{\mathcal{P}}, t}_{\theta}$
 - $\mathcal{C}=g(C)$ and $\mathcal{C}_f=g(C_f)$ in \mathcal{P} are continuous (trivial proof if GNN function is continuous, proof by computation on a grid otherwise)
 - Best candidate vertex = minimize a continuous a continuous function f defined in \mathcal{P} i.e. over \mathcal{C} and \mathcal{C}_{f}

$$f(\theta) \coloneqq \text{NLL} = \sum_{PMT(\theta)} -\log(P(t_{PMT(\theta)} - t_{VTX} - TOF))$$

• In the slice \mathcal{P} , **best candidate vertex** ~ map true event


• Define a function g over C and C_f:

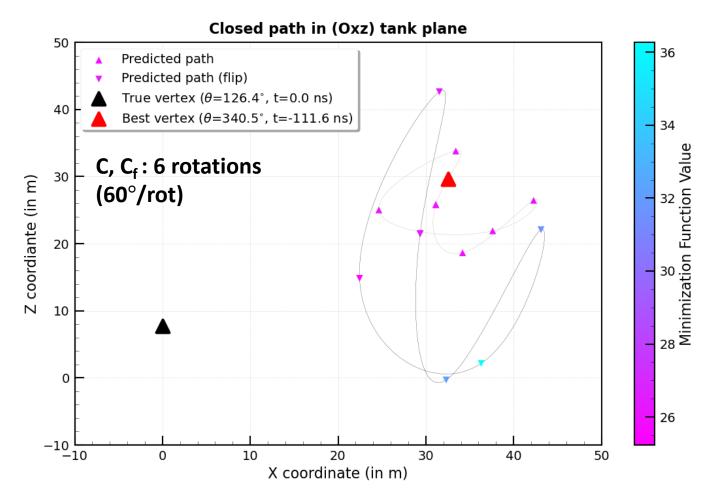
 $g(\{X,Y,Z,T\}_{\theta})\mapsto \{x_{\mathcal{P}},z_{\mathcal{P}},t\}_{\theta}$

- 𝔅=𝑔(𝔅) and 𝔅_f=𝑔(𝔅_f) in 𝔊 are continuous:
 proof by computation on a grid
- Best candidate vertex = minimize a continuous function f defined in \mathcal{P} i.e. over \mathcal{C} and \mathcal{C}_{f}

$$f(\theta) = \sum_{PMT(\theta)} -\log(P(t_{PMT(\theta)} - t_{VTX} - TOF))$$

• TO PROVE: In the slice \mathcal{P} , best candidate vertex ~ map true event

Note: slight variation of points due to Bayesian layers ; use mean GNN output over 100 iterations for each points, $\sigma(mean) \approx 10\%$


• Define a function g over C and C_f:

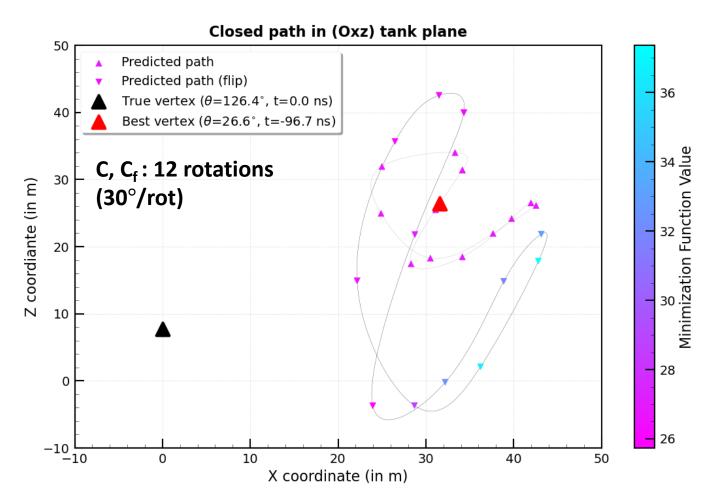
 $g(\{X,Y,Z,T\}_{\theta})\mapsto \{x_{\mathcal{P}},z_{\mathcal{P}},t\}_{\theta}$

- 𝔅=𝑔(𝔅) and 𝔅_f=𝑔(𝔅_f) in 𝒯 are continuous:
 proof by computation on a grid
- Best candidate vertex = minimize a continuous function f defined in \mathcal{P} i.e. over \mathcal{C} and \mathcal{C}_{f}

$$f(\theta) = \sum_{PMT(\theta)} -\log(P(t_{PMT(\theta)} - t_{VTX} - TOF))$$

• TO PROVE: In the slice \mathcal{P} , best candidate vertex ~ map true event

Note: slight variation of points due to Bayesian layers ; use mean GNN output over 100 iterations for each points, $\sigma(mean) \approx 10\%$


• Define a function *g* over C and C_f:

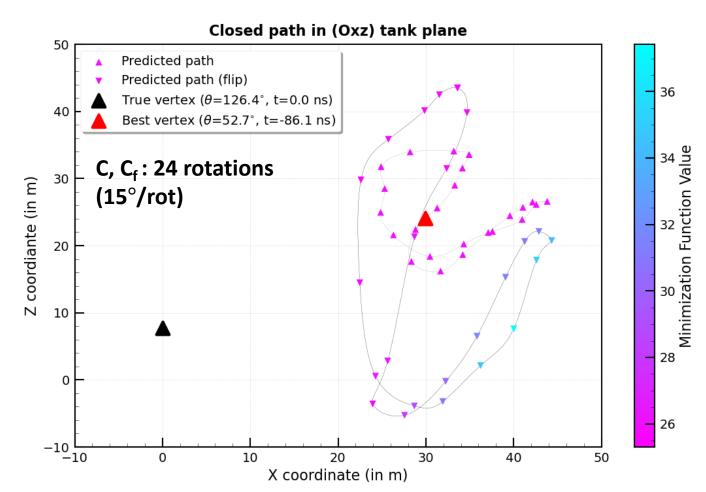
 $g(\{X,Y,Z,T\}_{\theta})\mapsto \{x_{\mathcal{P}},z_{\mathcal{P}},t\}_{\theta}$

- 𝔅=𝑔(𝔅) and 𝔅_f=𝑔(𝔅_f) in 𝔊 are continuous:
 proof by computation on a grid
- Best candidate vertex = minimize a continuous function f defined in \mathcal{P} i.e. over \mathcal{C} and \mathcal{C}_{f}

$$f(\theta) = \sum_{PMT(\theta)} -\log(P(t_{PMT(\theta)} - t_{VTX} - TOF))$$

• TO PROVE: In the slice \mathcal{P} , best candidate vertex ~ map true event

Note: slight variation of points due to Bayesian layers ; use mean GNN output over 100 iterations for each points, $\sigma(mean) \approx 10\%$


• Define a function g over C and C_f:

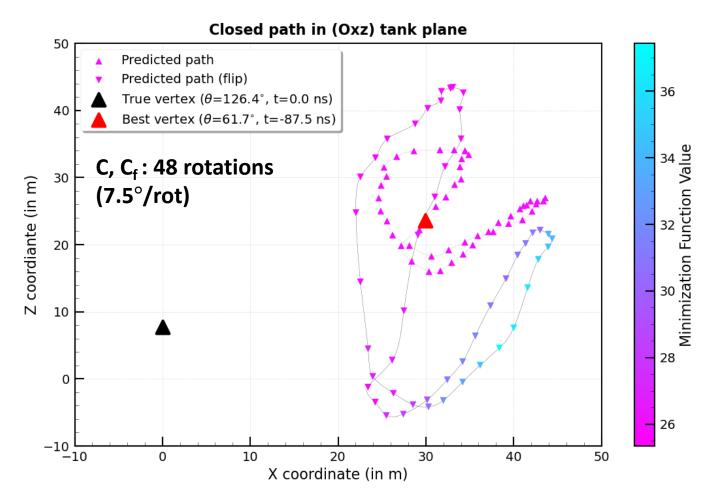
 $g(\{X,Y,Z,T\}_{\theta})\mapsto \{x_{\mathcal{P}},z_{\mathcal{P}},t\}_{\theta}$

- 𝔅=𝑔(𝔅) and 𝔅_f=𝑔(𝔅_f) in 𝔊 are continuous:
 proof by computation on a grid
- Best candidate vertex = minimize a continuous function f defined in \mathcal{P} i.e. over \mathcal{C} and \mathcal{C}_{f}

$$f(\theta) = \sum_{PMT(\theta)} -\log(P(t_{PMT(\theta)} - t_{VTX} - TOF))$$

• TO PROVE: In the slice \mathscr{P} , best candidate vertex ~ map true event

Note: slight variation of points due to Bayesian layers ; use mean GNN output over 100 iterations for each points, $\sigma(mean) \approx 10\%$


• Define a function g over C and C_f:

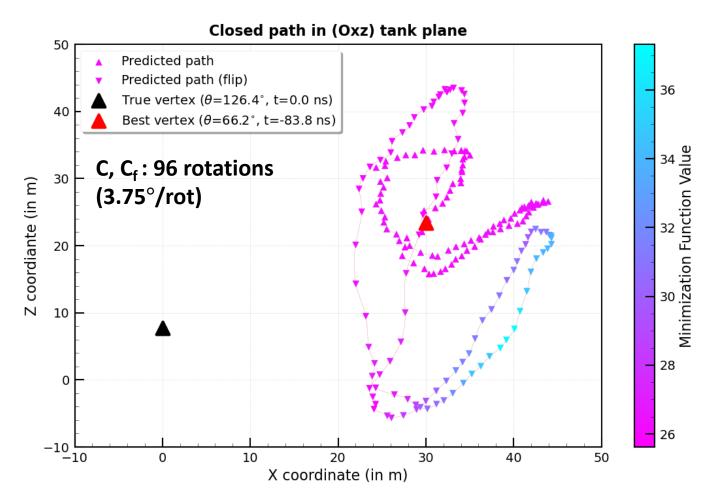
 $g(\{X,Y,Z,T\}_{\theta})\mapsto \{x_{\mathcal{P}},z_{\mathcal{P}},t\}_{\theta}$

- 𝔅=𝑔(𝔅) and 𝔅_f=𝑔(𝔅_f) in 𝔊 are continuous:
 proof by computation on a grid
- Best candidate vertex = minimize a continuous function f defined in \mathcal{P} i.e. over \mathcal{C} and \mathcal{C}_{f}

$$f(\theta) = \sum_{PMT(\theta)} -\log(P(t_{PMT(\theta)} - t_{VTX} - TOF))$$

• TO PROVE: In the slice \mathscr{P} , best candidate vertex ~ map true event

Note: slight variation of points due to Bayesian layers ; use mean GNN output over 100 iterations for each points, $\sigma(mean) \approx 10\%$


• Define a function *g* over C and C_f:

 $g(\{X,Y,Z,T\}_{\theta})\mapsto \{x_{\mathcal{P}},z_{\mathcal{P}},t\}_{\theta}$

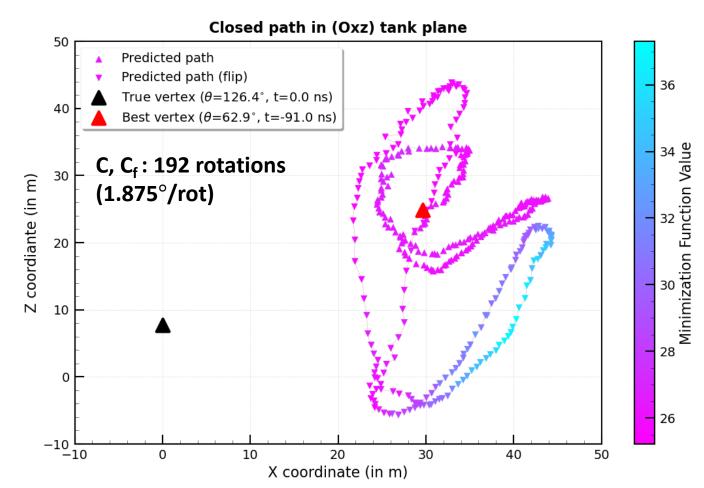
- 𝔅=𝑔(𝔅) and 𝔅_f=𝑔(𝔅_f) in 𝔊 are continuous:
 proof by computation on a grid
- Best candidate vertex = minimize a continuous function f defined in \mathcal{P} i.e. over \mathcal{C} and \mathcal{C}_{f}

$$f(\theta) = \sum_{PMT(\theta)} -\log(P(t_{PMT(\theta)} - t_{VTX} - TOF))$$

• TO PROVE: In the slice \mathcal{P} , best candidate vertex ~ map true event

Note: slight variation of points due to Bayesian layers ; use mean GNN output over 100 iterations for each points, $\sigma(mean) \approx 10\%$

CONTINOUS FUNCTIONS $g, f ext{ IN } \mathscr{P}$


• Define a function g over C and C_f:

 $g(\{X,Y,Z,T\}_{\theta}) \mapsto \{x_{\mathcal{P}},z_{\mathcal{P}},t\}_{\theta}$

- 𝔅=𝑔(𝔅) and 𝔅_f=𝑔(𝔅_f) in 𝔊 are continuous:
 proof by computation on a grid
- Best candidate vertex = minimize a continuous function f defined in \mathcal{P} i.e. over \mathcal{C} and \mathcal{C}_{f}

$$f(\theta) = \sum_{PMT(\theta)} -\log(P(t_{PMT(\theta)} - t_{VTX} - TOF))$$

• TO PROVE: In the slice \mathcal{P} , best candidate vertex ~ map true event

Note: slight variation of points due to Bayesian layers ; use mean GNN output over 100 iterations for each points, $\sigma(mean) \approx 10\%$

CONCLUSION

$3D \rightarrow 2D$ vertex regression :

- Continuous behavior of mapping functions g and f checked
- Algorithm ready for 2D vertex regression + f-minimization in \mathcal{P}
- Waiting for CC-IN2P3 to run jobs

Next steps, 3 directions:

- **Optimization of resolution**: hyper parameters, GPU time, # rotation for C and C_f, # of interpol. points in $\mathcal{C}=g(C)$ and $\mathcal{C}_f = g(C_f)$, # of Bayesian iterations
 - Maybe to be done by interns in April if resolution + GPU time are satisfactory for first analysis ?
- **Development:** Add direction & energy (most of the algorithm is written, comparison + optimization needs to be done)
- Analysis: neutron classification, rework SKYNET-class for WCTE (use mPMT) + benchmark with Antoine version
 - WCTE neutron tagging analysis: mean path in Gd-loaded water (+ is resolution possible ?), tagging accuracy