Neural-Network-based Surrogate Simulator for Particle Accelerator with High Dimensional Control Settings

Emmanuel Goutierre / Hayg Guler

H. Guler¹, C. Bruni¹ J. Cohen², M. Sebag²

 1 Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab)

² Laboratoire Interdisciplinaire des Sciences du Numérique (LISN)

Tuesday 28th November 2023

Introduction

Particle Accelerator Physics

- understand machine data could get tricky, much rely on simulations
- High fidelity simulations, often slow
- Machine (during commissioning) is not at the optimum, tuning might take time.
- Need to adapt the simulation on different working points.

Machine Learning

- **•** Fast-executing
- **•** Data Driven
- Questions on its guarantee
- Training time / need GPU

Needs : Data

- **e** From accurate Simulations
- From Real-Time beam diagnostics / controls

Table of Contents

¹ [Surrogate Models for Particle Accelerator](#page-3-0)

- [Example of the optimization of a machine](#page-6-0)
- **•** [Existing surrogate models](#page-13-0)

² [LinacNet](#page-16-0)

- [Physics-aware modelling](#page-17-0)
- [Neural Network for 6D distribution](#page-20-0)
- **[Training Procedure](#page-32-0)**
- **e** [Results](#page-36-0)

[Conclusion](#page-39-0)

Table of Contents

¹ [Surrogate Models for Particle Accelerator](#page-3-0)

- [Example of the optimization of a machine](#page-6-0)
- **•** [Existing surrogate models](#page-13-0)

[LinacNet](#page-16-0)

- [Physics-aware modelling](#page-17-0)
- [Neural Network for 6D distribution](#page-20-0)
- **[Training Procedure](#page-32-0)**
- **e** [Results](#page-36-0)

[Surrogate Models for Particle Accelerator](#page-3-0) [Conclusion](#page-39-0) Conclusion Conc

How does a surrogate model work?

Figure: Training of a Surrogate Model

Why Surrogate Models of Particle Accelerator Simulator?

General motivation concerning needs for surrogate models for particle accelerators.

[Example of the optimization of a machine](#page-6-0)

Table of Contents

¹ [Surrogate Models for Particle Accelerator](#page-3-0)

- [Example of the optimization of a machine](#page-6-0)
- **•** [Existing surrogate models](#page-13-0)

² [LinacNet](#page-16-0)

- [Physics-aware modelling](#page-17-0)
- [Neural Network for 6D distribution](#page-20-0)
- **[Training Procedure](#page-32-0)**
- **e** [Results](#page-36-0)

[Conclusion](#page-39-0)

[Example of the optimization of a machine](#page-6-0)

ThomX: A Compact Compton Source

Figure: Linac of ThomX.

ThomX

- X-ray source by Compton backscattering
- Compact Accelerator $(70m^2)$
- In commissioning at the IJCLab since May 2021

Linac

• Accelerate the electron beam up to 50 MeV

Goal

Use machine learning to tackle the problem of adjusting the Linac parameters to fulfill the beam requirements for the transfer line.

[Example of the optimization of a machine](#page-6-0)

Accelerator Tuning

A : Controllable Parameters

- 15 controllable parameters
	- ▶ Laser position and size
	- Gun and Cavity phase and field
	- ▶ Solenoid Fields
	- **Steerer Fields**
	- Quadrupoles Fields

[Surrogate Models for Particle Accelerator](#page-3-0) [Conclusion](#page-39-0) Conclusion Conc

[Example of the optimization of a machine](#page-6-0)

Accelerator Tuning

A : Controllable Parameters

- 15 controllable parameters
	- Laser position and size
	- Gun and Cavity phase and field
	- Solenoid Fields
	- **Steerer Fields**
	- Quadrupoles Fields

B : Hidden Parameters

- Mechanical Misalignment
- Unknown initial particle distribution
- Slow drift of electromagnetic elements

[Example of the optimization of a machine](#page-6-0)

Accelerator Tuning

A : Controllable Parameters

- 15 controllable parameters
	- Laser position and size
	- Gun and Cavity phase and field
	- Solenoid Fields
	- ▶ Steerer Fields
	- ▶ Quadrupoles Fields

\mathcal{O} : Observables

- ^a 17 Observables
	- Position and Charge at BPMs
	- Charge at ICTs
	- Position and Size at Screen
	- Charge at Faraday Cup

B : Hidden Parameters

- **•** Mechanical Misalignment
- Unknown initial particle distribution
- Slow drift of electromagnetic elements

[Example of the optimization of a machine](#page-6-0)

Accelerator Tuning

B : Hidden Parameters

- **•** Mechanical Misalignment
- Unknown initial particle distribution
- Slow drift of electromagnetic elements

\mathcal{O} : Observables

- ^a 17 Observables
	- Position and Charge at BPMs
	- Charge at ICTs

A : Controllable Parameters • 15 controllable parameters Laser position and size Gun and Cavity phase and field

> Solenoid Fields ▶ Steerer Fields ▶ Quadrupoles Fields

- Position and Size at Screen
- Charge at Faraday Cup

F: Objective function

- Quality of the beam
- Function of (A, B)

[Example of the optimization of a machine](#page-6-0)

Accelerator Tuning

B : Hidden Parameters

- **•** Mechanical Misalignment
- Unknown initial particle distribution
- Slow drift of electromagnetic elements

\mathcal{O} : Observables

- ^a 17 Observables
	- Position and Charge at BPMs
	- Charge at ICTs

A : Controllable Parameters • 15 controllable parameters Laser position and size Gun and Cavity phase and field

> Solenoid Fields **Steerer Fields** ▶ Quadrupoles Fields

- ▶ Position and Size at Screen
- ▶ Charge at Faraday Cup

F: Objective function

- Quality of the beam
- Function of (A, B)

Goal

- Optimize : find set of parameters (A) depending on hidden parameters (B) to get minimal objective function (F) with the aid of observable (\mathcal{O})
- Classical way : manual tuning, heavy load on expert

[Existing surrogate models](#page-13-0)

Table of Contents

¹ [Surrogate Models for Particle Accelerator](#page-3-0)

[Example of the optimization of a machine](#page-6-0)

• [Existing surrogate models](#page-13-0)

² [LinacNet](#page-16-0)

- [Physics-aware modelling](#page-17-0)
- [Neural Network for 6D distribution](#page-20-0)
- **[Training Procedure](#page-32-0)**
- **e** [Results](#page-36-0)

[Conclusion](#page-39-0)

[Existing surrogate models](#page-13-0)

"Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems $^{\prime\prime}{}^{1}$ (Apr. 2020)

Figure: Optimization performed with the surrogate model.

Analysis

- **Faster optimization than with direct call to simulator**
- Only 6 input variables and 7 outputs on a narrow domain
- **Optimization performed only on simulations**

¹Edelen et al., ["Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator](#page-0-1) [systems".](#page-0-1)

[Existing surrogate models](#page-13-0)

"An adaptive approach to machine learning for compact particle accelerators"² (Sept. 2021)

Figure: Neural Network architecture for the Hires UED.

Analysis

- Online tuning, adaptive to time varying perturbation.
- **•** Use only 2D projections of the beam
- Need for lot of high quality experimental data

 2 Scheinker et al., ["An adaptive approach to machine learning for compact particle accelerators".](#page-0-1)

Table of Contents

[Surrogate Models for Particle Accelerator](#page-3-0)

- [Example of the optimization of a machine](#page-6-0)
- **•** [Existing surrogate models](#page-13-0)

² [LinacNet](#page-16-0)

- [Physics-aware modelling](#page-17-0)
- **[Neural Network for 6D distribution](#page-20-0)**
- **[Training Procedure](#page-32-0)**
- **e** [Results](#page-36-0)

[Physics-aware modelling](#page-17-0)

Table of Contents

¹ [Surrogate Models for Particle Accelerator](#page-3-0)

- [Example of the optimization of a machine](#page-6-0)
- **•** [Existing surrogate models](#page-13-0)

² [LinacNet](#page-16-0)

• [Physics-aware modelling](#page-17-0)

- [Neural Network for 6D distribution](#page-20-0)
- **[Training Procedure](#page-32-0)**
- **e** [Results](#page-36-0)

[Conclusion](#page-39-0)

[Physics-aware modelling](#page-17-0)

Multi-Layer Perceptron: A First Model

Figure: MLP as a surrogate model of a Linac

Multi Layer Perceptron

- **•** Stack all inputs and outputs
- 10k simulations sampling A and B
- Minimization of the L2 loss

Figure: Training Curve

[Physics-aware modelling](#page-17-0)

Physics-aware: Cutting the non-causal links

Figure: LinacNet with 6 modules corresponding to 6 diagnostic stations on the Linac

LinacNet

- Split input and output according to their position in the Linac
- Neural Network Architecture reflecting a Linac architecture
- Each Module models one Diagnostic (could be real or virtual)

[Neural Network for 6D distribution](#page-20-0)

Table of Contents

¹ [Surrogate Models for Particle Accelerator](#page-3-0)

- [Example of the optimization of a machine](#page-6-0)
- **•** [Existing surrogate models](#page-13-0)

² [LinacNet](#page-16-0)

• [Physics-aware modelling](#page-17-0)

• [Neural Network for 6D distribution](#page-20-0)

- **[Training Procedure](#page-32-0)**
- **e** [Results](#page-36-0)

[Conclusion](#page-39-0)

[Neural Network for 6D distribution](#page-20-0)

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- **•** Track the full distribution of particles
- Inspired by Qi et al., ["PointNet: Deep Learning on Point Sets for 3D Classification and](#page-0-1) [Segmentation"](#page-0-1) (CVPR 2017)

[Neural Network for 6D distribution](#page-20-0)

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- **•** Track the full distribution of particles
- Inspired by Qi et al., ["PointNet: Deep Learning on Point Sets for 3D Classification and](#page-0-1) [Segmentation"](#page-0-1) (CVPR 2017)

[Neural Network for 6D distribution](#page-20-0)

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- **•** Track the full distribution of particles
- Inspired by Qi et al., ["PointNet: Deep Learning on Point Sets for 3D Classification and](#page-0-1) [Segmentation"](#page-0-1) (CVPR 2017)

[Neural Network for 6D distribution](#page-20-0)

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- **•** Track the full distribution of particles
- Inspired by Qi et al., ["PointNet: Deep Learning on Point Sets for 3D Classification and](#page-0-1) [Segmentation"](#page-0-1) (CVPR 2017)

[Neural Network for 6D distribution](#page-20-0)

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- **•** Track the full distribution of particles
- Inspired by Qi et al., ["PointNet: Deep Learning on Point Sets for 3D Classification and](#page-0-1) [Segmentation"](#page-0-1) (CVPR 2017)

[Neural Network for 6D distribution](#page-20-0)

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- **•** Track the full distribution of particles
- Inspired by Qi et al., ["PointNet: Deep Learning on Point Sets for 3D Classification and](#page-0-1) [Segmentation"](#page-0-1) (CVPR 2017)

[Neural Network for 6D distribution](#page-20-0)

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- **•** Track the full distribution of particles
- Inspired by Qi et al., ["PointNet: Deep Learning on Point Sets for 3D Classification and](#page-0-1) [Segmentation"](#page-0-1) (CVPR 2017)

[Neural Network for 6D distribution](#page-20-0)

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- **•** Track the full distribution of particles
- Inspired by Qi et al., ["PointNet: Deep Learning on Point Sets for 3D Classification and](#page-0-1) [Segmentation"](#page-0-1) (CVPR 2017)

[Neural Network for 6D distribution](#page-20-0)

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- **•** Track the full distribution of particles
- Inspired by Qi et al., ["PointNet: Deep Learning on Point Sets for 3D Classification and](#page-0-1) [Segmentation"](#page-0-1) (CVPR 2017)

[Neural Network for 6D distribution](#page-20-0)

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- **•** Track the full distribution of particles
- Inspired by Qi et al., ["PointNet: Deep Learning on Point Sets for 3D Classification and](#page-0-1) [Segmentation"](#page-0-1) (CVPR 2017)

[Neural Network for 6D distribution](#page-20-0)

PointNet as a Beam Representation Network

Figure: One module of ThomNet

- **•** Track the full distribution of particles
- Inspired by Qi et al., ["PointNet: Deep Learning on Point Sets for 3D Classification and](#page-0-1) [Segmentation"](#page-0-1) (CVPR 2017)

[Training Procedure](#page-32-0)

Table of Contents

¹ [Surrogate Models for Particle Accelerator](#page-3-0)

- [Example of the optimization of a machine](#page-6-0)
- **•** [Existing surrogate models](#page-13-0)

² [LinacNet](#page-16-0)

- [Physics-aware modelling](#page-17-0)
- [Neural Network for 6D distribution](#page-20-0)

• [Training Procedure](#page-32-0)

e [Results](#page-36-0)

[Conclusion](#page-39-0)

Accelerator as a sequence of modules

- We divide our accelerator in a sequence of sub-parts
- Each part could contain controls / measurements (real or virtual)
- Learning a full machine could be complicated, costly

Good for

- **a** transfer to a real machine
- \bullet optimize : could be done by part / module
- Retrain locally due to drift in the data
- Address larger machines

[Training Procedure](#page-32-0)

Sequential Network as a Multi-Objective Optimization

- **General question in machine learning**
- how to learn a sequence of models, tasks ?
- Could be heterogeneous : classification, regression, etc
- Conflicting between modules could deteriorate the global loss
- Independent Errors : $Err_{i,i+1}(d_i, d_{i+1}, a; \theta) = I(f_{i,i+1}(d_i, a; \theta), d_{i+1})$
- End-to-End Errors : $Err_{0,i}$ $(d_0, d_i, a; \theta) = I(f_{0,i} (d_0, a; \theta), d_i)$

Scalarization of the Multi-Objective Loss

$$
\mathcal{L}_{w}\left(d,a;\theta\right)=\sum_{i=1}^{N}w_{i-1,i}Err_{i-1,i}\left(d_{i-1},d_{i},a;\theta\right)+w_{0,i}Err_{0,i}\left(d_{0},d_{i},a;\theta\right)
$$

[Training Procedure](#page-32-0)

One example of learning a sequence : $MGDA³$

Dynamic weighting of the module that moderates conflicting loss between modules

$$
w^* = \underset{w}{\text{arg min}} \mathcal{L}_w, \qquad w > 0, \qquad \sum_{i=1}^N w_{i-1,i} + w_{0,i} = 1
$$

Properties

- **Common descent direction to all objectives**
- **Stop when encountering a Pareto-invariant point**

³ Sener and Koltun, ["Multi-Task Learning as Multi-Objective Optimization".](#page-0-1)

[Results](#page-36-0)

Table of Contents

¹ [Surrogate Models for Particle Accelerator](#page-3-0)

- [Example of the optimization of a machine](#page-6-0)
- **•** [Existing surrogate models](#page-13-0)

² [LinacNet](#page-16-0)

- [Physics-aware modelling](#page-17-0)
- [Neural Network for 6D distribution](#page-20-0)
- **[Training Procedure](#page-32-0)**
- **e** [Results](#page-36-0)

[Conclusion](#page-39-0)

[Results](#page-36-0)

Numerical Results

The best model achieves results comparable with the diagnostic station accuracy.

Table: MAE of the position. The accuracy of the BPM is $\sim 100 \mu m$

Table: MAE of the charge. The accuracy of the ICT is ∼ 10pC

[Surrogate Models for Particle Accelerator](#page-3-0) [Conclusion](#page-39-0) Conclusion Conc

[Results](#page-36-0)

Distributions

Figure: Comparison between the projection of the simulated beam (left) and predicted beam (right) on the transverse and longitudinal space.

Table of Contents

[Surrogate Models for Particle Accelerator](#page-3-0)

- [Example of the optimization of a machine](#page-6-0)
- **•** [Existing surrogate models](#page-13-0)

[LinacNet](#page-16-0)

- [Physics-aware modelling](#page-17-0)
- [Neural Network for 6D distribution](#page-20-0)
- **[Training Procedure](#page-32-0)**
- **e** [Results](#page-36-0)

³ [Conclusion](#page-39-0)

Perspectives

Results

- Reflecting the physical constraints in the neural architecture speed up the training and gives better results
- Precision of the same orders as the diagnostics installed on ThomX

Challenges

- **•** Training of a modular model
- Performance for the optimization task to be tested

Questions?