

Case Study: Surrogate Modelling for FLUTE

Chenran Xu, Andrea Santamaria Garcia

Artifact Preparation Workshop, 27-28 Nov. 2023

KIT - The Research University in the Helmholtz Association

www.kit.edu

Test Facility FLUTE

The linear accelerator **[FLUTE](https://www.ibpt.kit.edu/flute.php)** at KIT serves as a test facility for various accelerator physics studies.

Wide parameter space:

- Charge: 1 pC 1 nC
- Energy: 40 100 meV
- Rep. rate: up to 50 Hz

Multiple operation modes:

- Test for beam diagnostics (TDS)
- THz Generation (CSR, CTR, Undulator)
- Injector into cSTART storage ring

Surrogate Model for Reinforcement Learning

Reinforcement learning is a promising method to achieve autonomous accelerator operation.

- A. Eichler, First Steps Toward an [Autonomous](https://accelconf.web.cern.ch/ipac2021/doi/JACoW-IPAC2021-TUPAB298.html) Accelerator, a Common Project Between [DESY](https://accelconf.web.cern.ch/ipac2021/doi/JACoW-IPAC2021-TUPAB298.html) and KIT
- J. Kaiser, Learning to Do or Learning While Doing: [Reinforcement](https://arxiv.org/abs/2306.03739) Learning and Bayesian [Optimisation](https://arxiv.org/abs/2306.03739) for Online Continuous Tuning
- C. Xu, Beam Trajectory Control with [Lattice-Agnostic](https://accelconf.web.cern.ch/ipac2023/doi/jacow-ipac2023-thpl029/) Reinforcement Learning

However, (model-free) RL algorithms are very sample inefficient, requiring often $10^5 - 10^6$ interactions to train.

A **fast**, **accurate** surrogate model will greatly benefit the RL method development for accelerators.

- Fast \rightarrow reduced training iteration time
- Accurate \rightarrow less challenging sim2real transfer

Previous Work: Low-Energy Section Modelling

Proof-of-principle surrogate modelling using fully-connected neural network

Restrict to 4 input and 6 output parameters

- NN Structure: $[32, 32, 32]$, \tanh activation
- \cdot Train data: 10^4 ASTRA simulations with uniform randomly sampled parameters
- **Training**: 200 epochs

See **[IPAC22-TUPOPT070](https://accelconf.web.cern.ch/ipac2022/doi/JACoW-IPAC2022-TUPOPT070.html)** for more details.

Low-Energy Section Model Validation

The NN model (with < 1 ms inference time) has overall good agreement with ASTRA results (≥ 1 min).

Comparison with Real Measurement

The train model could also provide accurate prediction for real-world measurement.

Possibility to use the surrogate as **virtual diagnostics** in case of destructive measurements.

Outlook 1: Active Learning

For random or grid sampling, $N_{\text{samples}} \propto \exp(D_{\text{Input}})$.

However, a large percentage of the parameter combinations lead to useless results.

Active learning can be used to reduce the required samples, for example

- Bayesian active learning (c.f. [Gal2017\)](https://arxiv.org/pdf/1703.02910.pdf)
- Surrogate for subsystems to validate/reject parameter regions, i.e. for DA [estimation](https://accelconf.web.cern.ch/ipac2023/doi/jacow-ipac2023-wepa026/)

Outlook 2: Point Cloud Representation

In order to predict more complex beam dynamics (micro-bunches, sub-structure), we should move from scalar values to full 6-D phase space prediction.

Auto-encoders and NNs have been successfully applied to predict 2D phase space information, but are harder to be extended to 6D.

The **Point cloud** seems to be an ideal representation of the **macro-particles** used in tracking simulations.

Inspired by Hayg, see also the later talk on **LinacNet**.

Reference: [PointNet](https://github.com/charlesq34/pointnet)

Outlook 3: Combine with Differentiable Simulation

Use a surrogate model only when necessary.

A complete (start-to-end) surrogate model could **over-complicate** the problem if the beam dynamics can be accurately modeled, which is actually the case in many simple sections of the accelerator.

Recent developments in **differentiable beam dynamics** simulations enables fast tracking. For example:

- Cheetah: GitHub [repository](https://github.com/desy-ml/cheetah)
- BMAD-X: [description](https://accelconf.web.cern.ch/ipac2023/doi/jacow-ipac2023-wepa065/); use case phase space [reconstruction](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.145001),

Thanks for your attention

Backup

