

On behalf of the LPNHE neutrino group

From Tokai to Kamioka: the T2K experiment

- T2K: long baseline neutrino oscillation experiment located in Japan
- ν_{μ} or $\bar{\nu}_{\mu}$ beam produced at J-PARC accelerator
- Near detector ND280: characterizes (anti) neutrino flux and cross-section before neutrino oscillations
- Far detector Super-Kamiokande (SK): detects ν_{μ} ($\bar{\nu}_{\mu}$) and ν_{e} ($\bar{\nu}_{e}$) charged current interactions through Cherenkov effect
- Off-axis techniques: ND280 and SK at 2.5° from beam for a narrower band beam peaked at 0.6 GeV

- Achievements: $\theta_{13} \neq 0$ evidence, ν_e appearance in ν_{μ} beam at 7.3 σ , hints of Charge-Parity Violation (CPV)
- Current goals: precise measurements of δ_{CP} , Δm^2_{23} and θ_{23}

Number of ν -mode 1Re + 1Re1de vs $\bar{\nu}$ -mode 1Re events [2]:

Figure 1. In 2020 T2K published first hints of CPV in leptonic sector: ruling out the 2 CP conserving points $\delta_{CP} = 0, \pi$ at the 2σ confidence level [1]

The upgrade of the Near Detector ND280

Reasons for the upgrade:

The upgraded detector:

 Reduce systematic uncertainties via better measurements of neutrino interactions

The High-Angle TPC Reconstruction Software

(1) Spatial resolution as a function of (2) Spatial resolution as a function of ionization electrons' drift distance track angle

- I Fine Grained Detector (SuperFGD) sandwich between
- 2 High-Angle Time Projection Chambers (HA-TPC) instrumented with resistive MicroMegas

Figure 6. Momentum resolution as a function of the track angle for 25 cm (blue), 50 cm (green) and 75 cm (red) drift distances

- HA-TPC prototype exposed to the DESY test beam 2021 showed a spatial resolution better than 800 µm for all the track topologies
- The Geant4 simulations results obtained showed a momentum resolution preco-ptrue better than 3% for horizontal tracks and of the order of 10% for vertical tracks because of their shorter length

The Encapsulated Resistive Anode Micromegas (ERAM) technology

Figure 2. Previous bulk micromegas (left) and new encapsulated resistive anode micromegas technology (right)

Charge deposited spread on adjacent pads with Gaussian behavior:

- \rightarrow Larger e^- avalanche + time information
- \rightarrow Improved spatial resolution: **200 \mum for horizontal tracks** [3] (vs 600 μ m with bulk MicroMegas)

Neural networks for track reconstruction in the HA-TPC

Initial momenta predictions from qmax images

First tracks and HA-TPC installation

Figure 3. First cosmic tracks at CERN (April 2023)

 ResNet50 fed with HAT-TPC images of deposited charge (Monte-Carlo simulations)

- Prediction of track parameters: 8% momentum resolution
- Ongoing work to perform PID

References

- [1] K. Abe and et al. Constraint on the matter-antimatter symmetry-violating phase in neutrino oscillations. *Nature*, 580(7803):339–344, apr 2020.
- [2] K. Abe et al. Measurements of neutrino oscillation parameters from the t2k experiment using 3.6×10^{21} protons on target. *The European Physical Journal C*, 83(9), sep 2023.
- [3] U. Yevarouskaya et al. Analysis of test beam data taken with a prototype of tpc with resistive micromegas for the t2k near detector upgrade. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 1052:168248, 2023.

* anaelle.chalumeau@lpnhe.in2p3.fr, ** ulysse.virginet@lpnhe.in2p3.fr

HCÉRES Meeting, Monday December 4th, 2023