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Outline

- AGN variability and Reverberation Mapping
- Vera Rubin Observatory’s LSST and AGN census

- Our pipeline (results and progress)

Survey of lots of objects in the sky over
time and timelapse. Streaks conceptually
represent connection of NOIRLab and
SLAC through this partnership.

= ] Teal colors connect to the
physical observatory.

. i Big Data is an important part of Rubin
This represents community, ideas,

B oy - citferent types of ®  oObservatory. Straight lines with dots
— n J at the ends represent traces on digital

objects. Varying sizes and shapes conveys %
; e 2 & electronic readout boards.

inclusivity.
g A ‘ R U B I N First national US Observatory to
-

be named after a woman! The full

0 B S E R V A T 0 R Y name here celebrates this.

‘ Teal colors connect to the
physical observatory.
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SOME PHYSICS

Reverberation Mapping

Given a velocity and a distance, we can use

Kepler's laws to tell us the BH mass! Observer
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Reverberation mapping relies
on the fact that the light
emitted by the BLR is

reprocessed from the central
continuum source, and that the
central continuum source is
variable




@i

SOME PHYSICS

Given a velocity and a distance, we can use

Reverberation Mapping

Keplers laws to tell us the BH mass!

Accretio

O Q Time delay
Disk " D
O
O

Mrk 335

LI A P S T T T

T I T I PO 0 O TN WA O (it O Y S (NN L 130

41

49200

Julian Date (-2400000)

— M fTBLRFWHMQ
BH=J)J— ~
G
log Lsioo R T
41 42 43 44 45 46 all
. 2.0 £ |
2 s—'\O
1.5 € \
102 !3 B
- 1.0
>
°
=
=3 0.5
<10 -
00 ¥ 3
g
-0.5
100 49150
-1.0
0.5
2 0.0F g gp-db - -15
S.0s
1.0 =29

o /\

©
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Reverberation mapping relies
on the fact that the light
emitted by the BLR is
reprocessed from the central
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Late Route A,

a.Gravitational Lensing (HOLICOW)

b. Surface Brightness Fluctuations in Galaxies

c.Masers

d.Mira variables

©.Tip of Red Giant Branch1

1£.Tip of Red Giant Branch 2

g-Cepheid variables

Early Route

h.Baryon Acoustic Fluctuation + Big Bang nucleosynthesis
i.Cosmic Microwave Background (Planck)

J Wilkinson Microwave Anisotropy Probe (CMB) +
Baryon Acoustic Oscillations

k. Atacama Cosmology Telescope Polarimetor (CMB) +
Baryon Acoustic Oscillations

1. South Pole Telescope Sunyaev-Zel'dovich effect survey (CMB) +
Baryon Acoustic Oscillations.




The Vera C. Rubin Observatory

The goal of the Vera C. Rubin Observatory project is to conduct the 10-year Legacy Survey of

Space and Time (LSST). LSST will deliver a 500 petabyte set of images and data products -

create a decade-long movie of our Universe, that will address some of the most pressing questions about the
structure and evolution of the universe accounting for tens of millions of AGNs (z = 7).

The 8.4-meter Simonyi Survey Telescope uses a special three-mirror design, which creates an exceptionally
wide field of view, and has the ability to survey the entire sky in only three nights.

LSST Throughput Curves with HST FOS composite LSST Throughput Curves with HST FOS com posite
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Modeling AGN Variability, making predictions

We are developing a pipeline for time delay measurements in LSST
photometric channels that can measure the emission line time
delays for any quasar detected by Vera Rubin Observatory from
any part of the observable sky; incorporated the latest suite of
cadence simulations and assess them based on the success rate of
lag recovery

e Analysis with real light curves (spectro-photometric
reverberation mapping using SALT, etc.)

e Time-delay measurements

e Efficient analyses accounting for the contamination from the
starlight and other emission lines

e Incorporating distribution of widths for realistic black hole
mass distribution, line widths

e Improving the prediction quality, testing on the DDF fields
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Producing mock light-curves

e  Campaign duration (10 years)

e  Number of visits per photometric band
e Photometric accuracy

e  black hole mass distribution

e line EWs and FWHMs from the latest SDSS Quasar
Catalogue (DR16)

e Emission lines contamination folded with
theoretical light-curves using power spectral
distribution and Timmer-Koenig algorithm (with
red noise properties typical of quasars)

e Pairs of channels with uniform and variable time
distributions

e Time delay estimation wusing standard
radius-luminosity relation



Representative light-curves from OpSim runs
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Fig. 6. The adopted and recovered time delay as a function of redshift
for faint AGN (log Lypn = 44.7 erg s™', upper panel) and for bright
AGN (log Lzyy = 45.7 erg s, lower panel) from 10 years of observa-
tions in the DDF. Other parameters have standard values given in Ta-
ble 1.
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Fig. 7. The adopted and recovered time delay as a function of redshift
for faint AGN (log Lsgg = 44.7 erg s™', upper panel) and for bright
AGN (log Lypo = 45.7 erg s ', lower panel) from 2 years of observa-
tions in the DDF. Other parameters have standard values given in Ta-
ble 1.
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tions in the DDF. Other parameters have standard values given in Ta-
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Table 3. The effective mean separation in the observing dates in r band and the redshift-averaged offset of the mean recovered time delay in

comparison to the assumed time delay for bright quasars, 10 years of data

Cadence formal name

effective
separation
[days]

offset
in delay
%]

SI-MS
S$2-MS
$3-MS
S4-MS

baseline_v2.0_10yrs

baseline_v2.1_10yrs

baseline_v2.2_10yrs

draft_connected_v2.99_10yrs
draft_v2.99_10yrs
light_roll_v2.99_10yrs
retro_baseline_v2.0_10yrs

roll_early_v2.99_10yrs

13.7
124
16.0
16.6
16.2

117
10.0
12.8
10.2
119
11.1
72

ddf_accourd_sf0.30_1sf0.4_1sr0.5_v2.1_10yrs
ddf_bright_s1£§.35_v2.1_10yrs
ddf_double_s1£8.35_v2.1_10yrs
ddf_old_rot_s1£0.35_v2.1_10yrs
ddf_quad_s1£0.35_v2.1_10yrs

ddf_quad_subfilter_s1f§.35_v2.1_10yrs

ddf_season_length_s1£0.20_v2.1_10yrs

ddf_season_length_s1f0.35_v2.1_10yrs

Redshift

-
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Czerny, Panda, et al. (2023)

Predictions for LSST: BLR time-lag vs. AGN luminosity
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Fig. 6. The adopted and recovered time delay as a function of redshift
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AGN (log Layy = 45.7 erg s~', lower panel) from 10 years of observa-
tions in the DDF. Other parameters have standard values given in Ta-
ble 1.
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SP, Czerny & Pozo-Nunez (in prep.)
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: N ik - s : Improving the program to consistently generate the light-curves
In progress e €] for all 6 photometric bands, with instrument delays.

Efficient analyses accounting for the contamination from the
starlight and other emission lines

probabilistic - cross-correlation approach
Mock catalog of light curves (1 deg’? of the night sky will

USIﬂg. galj'SS|an processes an,d mOdel_ : account for ~1000-4000 quasars): to produce artificial
selection via-crossvalidation == photometric light curves for each quasar

Pozo Nufiez et al. (2023) L0 - = ' - Retrieving the expected number of quasars per square degree
: as a function of redshift and the quasar magnitudes

Improving the prediction quality, testing on the DDF fields

Study of break frequencies, PSD distribution

00 —50 0 ;
T (days) At present using the x? method for time delay estimation, test

and compare other methods:

[ ICCF, DCF, zDCF, JAVELIN, von-Neumann, &
b Bartels methods
e 53 including the successful implementation of our code in a series
I of works)

Flux (arbitrary units)

Frequency

200 250 300
Time (days)




Re-evaluating LSST survey s-trategiés‘ for

opti mal recovery: of AGN - pro pert|e5 across Improving the program to consistently generate the light-curves
redshifts (esp.In the DDFs) - G : < for all 6 photometric bands, with instrument delays.

SP, Pozo-Nufiez, Czerny et al. (2024) E L Efficient analyses accounting for the contamination from the
' starlight and other emission lines |4

; , Mock catalog of light curves (1 deg’? of the night sky will
M 1 07 s : account for ~1000-4000 quasars): to produce artificial

0.01<2<05
photometric light curves for each quasar
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1.

Advantages of Continuum Reverberation Mapping

Delay

«—

AGN variability can be studied:

a.  Either by quantifying the changes in the emission line variations (i.e, BLR)

relative to the AGN continuum

b. Characterizing the variations in the AGN continuum

Emission

Time delay

Continuum
emitting region
(CER)

Disk RM (Phil Uttley)

ALl
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Figure 4. DCE and AD models for an arbitrary quasar obtained
with the same model parameters as shown in Figure Al. The
LSST transmission curves (ugrizy) are convolved with the quan-
tum efficiency of the CCD camera and denoted by colored solid
lines.
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Figure 6. Same as Figure 5, but for Case(a) and an AD time
delay spectrum recovered from observations with variable DCE
from the BLR (red dotted line). The results arc shown for a time
sampling Ar = 2 days (filled squares).
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Panda et al. (2024, ApJ Letters accepted)

A New Scaling relation (~150 times faster and more efficient!)
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