

Astrometric Redshifts of Supernovae

Jaemyoung (Jason) Lee, Masao Sako, Rick Kessler, and the LSST Collaboration

> May 9th, 2024 Fink-Brazil Workshop

DESC Project 319 (PUBID:149)

Redshifts in SN Ia Cosmology

From the DES Collaboration, <u>arXiv:2401.02929</u>

Too many Rubin (LSST) SNe Ia for spectroscopic follow-up => non-spectroscopic redshift measurements (photo-z's) crucial

- Too many Rubin (LSST) SNe Ia for spectroscopic follow-up => non-spectroscopic redshift measurements (photo-z's) crucial
- (Nearly) independent redshift measurement from conventional photo-z's

- Too many Rubin (LSST) SNe Ia for spectroscopic follow-up => non-spectroscopic redshift measurements (photo-z's) crucial
- (Nearly) independent redshift measurement from conventional photo-z's

Astrometric redshifts shown to be useful for sources with distinct emission lines (quasars)

- Too many Rubin (LSST) SNe Ia for spectroscopic follow-up => non-spectroscopic redshift measurements (photo-z's) crucial
- (Nearly) independent redshift measurement from conventional photo-z's

Astrometric redshifts shown to be useful for sources with distinct emission lines (quasars)

> No additional measurements needed

Differential Chromatic Refraction (DCR)

Atmospheric refractive index: λ -dependent

More DCR shift at higher air mass (AM), or amount of air along the line of sight (AM: 1.0 at zenith)

DCR shift by redshift

$$ar{R}_{ ext{DCR}} = rac{\int_0^\infty R_0(\lambda) an z_a F(\lambda) S(\lambda) d\lambda}{\int_0^\infty F(\lambda) S(\lambda) d\lambda}$$

 $S(\lambda): ext{ Source Flux}, \, F(\lambda): ext{Filter Function}$

 $R_0(\lambda): f(n(\lambda)), \, z_a: ext{ zenith angle }$

DCR shift by redshift

DCR shift by redshift

Methodology

- > SNANA simulations (ELAsTiCC) for realistic astrometric simulations (OBS)
- > SED (spectral energy distribution) from underlying model to calculate DCR shifts according to $[z, AM, color (c), stretch (x_1)]$ analytically for *ugriz* bands (MODEL)

Methodology

- > SNANA simulations (ELAsTiCC) for realistic astrometric simulations (OBS)
- > SED (spectral energy distribution) from underlying model to calculate DCR shifts according to $[z, AM, color (c), stretch (x_1)]$ analytically for *ugriz* bands (MODEL)

>
$$\chi^2 = \sum \frac{(\Delta_{\text{OBS}} - \Delta_{\text{MODEL}})^2}{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}, P(z, x_1, c) = e^{-\frac{\chi^2}{2}}$$

> Construct PDF => marginalize over c, x_1

Methodology

- > SNANA simulations (ELAsTiCC) for realistic astrometric simulations (OBS)
- > SED (spectral energy distribution) from underlying model to calculate DCR shifts according to $[z, AM, color (c), stretch (x_1)]$ analytically for *ugriz* bands (MODEL)

>
$$\chi^2 = \sum \frac{(\Delta_{\text{OBS}} - \Delta_{\text{MODEL}})^2}{\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2}, P(z, x_1, c) = e^{-\frac{\chi^2}{2}}$$

> Construct PDF => marginalize over c, x_1

- > Two methods to get astro- $z(z_{DCR})$:
 - > CDF50: 50th percentile of CDF $\pm 1\sigma$, PDFPeak: Peak of PDF $\pm 1\sigma$

Two methods of z_{DCR} estimation: CDF50 vs. PDFPeak

Selection Cuts (for cosmology quality SNe)

> Light-curve requirements: $T_{\text{rest}} < -3 \& T_{\text{rest}} > 10 (69\% \text{ of candidates remaining})$

> 3 bands with S/N > 8 for Realistic SIMs (43% of candidates remaining)

> LCFIT+z convergence + FITPROB > 0.01 when combining with SN photo-z's ($33 \sim 37\%$ of candidates remaining)

Performance metrics

> Residuals
$$\Delta z \equiv \frac{z_{\text{estimate}} - z_{\text{true}}}{1 + z_{\text{true}}}$$
, Bias $\equiv \langle \Delta z \rangle$

> (Accuracy) Outlier fraction η_x , fraction of candidates where $|\Delta z| > x$ (Default: x = 0.10)

> (Precision) MAD (Median absolute deviation) deviation $\sigma_{MAD} = 1.4826 \times Median |\Delta z - Median(\Delta z)|$

Realistic SIMs

- $\sigma_{\rm syst} = 5$ mas
- Realistic T_{obs} (epoch), marginalized over x_1 , c
- Degradation at high-redshifts

•
$$\Delta z \equiv \frac{z_{\text{estimate}} - z_{\text{true}}}{1 + z_{\text{true}}}$$

• η_x : fraction of candidates $\bigvee_{N}^{\frac{K}{2}} 0.6$ where $|\Delta z| > x$ 0.4

Realistic SIMs

- $\sigma_{\rm syst} = 5$ mas
- Realistic T_{obs} (epoch), marginalized over x_1 , c
- Degradation at high-redshifts

•
$$\Delta z \equiv \frac{z_{\text{estimate}} - z_{\text{true}}}{1 + z_{\text{true}}}$$

• η_x : fraction of candidates $\sum_{N=0}^{\frac{K}{2}} 0.6$ where $|\Delta z| > x$ 0.4

Realistic SIMs (Histograms)

Combining with photo-*z*'s

Host photo-z (z_{Host})

• From RAIL, better performance at high-redshifts

Astro-z Combined $(z_{\text{DCR+Host}})$

• Noticeably better performance at low-redshifts

SN photo- $z(z_{SN})$

SN photo-z + Astro-z (z_{SN+DCR})

SN photo- $z(z_{SN})$

SN photo-z + Host photo-z ($z_{SN+Host}$)

SN photo-z + Host photo-z + Astro-z ($z_{SN+DCR+Host}$)

Events with LCFIT+z convergence

	Number of LCFIT+z events with:					
Type	No cuts	Default cuts	Default + FITPROB cuts			
$z_{ m SN}$	$12,\!589$	$7,\!295$	$6,\!657$			
$z_{ m SN+Host}$	$12,\!324$	$7,\!176$	$6,\!615$			
$z_{ m SN+DCR}$	$12,\!246$	$7,\!660$	7,255			
$z_{\rm SN+DCR+Host}$	12,779	7,568	7,215			

• Combining with z_{DCR} recovers about 600 candidates or 9%!

Outlier Fractions by True Redshift

Bias and MAD Deviation by True Redshift

Systematic Effects

Type	Bias (CDF50)	Bias (PDFPeak)	$\eta_{0.10} \ ({\rm CDF50})$	$\eta_{0.10}$ (PDFPeak)	$\sigma_{\rm MAD}$ (CDF50)	σ_{MAD} (PDFPeak)
Perfect	-0.003 ± 0.000	-0.003 ± 0.000	0.016	0.016	0.008	0.008
$\sigma_{\rm syst} = 2 {\rm mas}$	-0.007 ± 0.000	-0.003 ± 0.000	0.015	0.016	0.009	0.009
$\sigma_{\rm syst} = 5 {\rm mas}$	-0.010 ± 0.000	-0.004 ± 0.000	0.028	0.024	0.011	0.011
$\sigma_{\rm syst} = 10 \text{ mas}$	-0.019 ± 0.000	-0.007 ± 0.000	0.065	0.046	0.019	0.015
c marginalized	-0.004 ± 0.000	-0.004 ± 0.000	0.018	0.018	0.007	0.007
x_1 marginalized	-0.003 ± 0.000	-0.003 ± 0.000	0.015	0.015	0.008	0.008
realistic $T_{\rm obs}$	-0.002 ± 0.000	-0.002 ± 0.000	0.041	0.041	0.010	0.010
All syst. for realistic	-0.010 ± 0.001	-0.004 ± 0.001	0.064	0.073	0.016	0.014

Table 9. Bias, outlier fractions, and σ_{MAD} for various systematics. The impact of $\sigma_{syst} = 2$ or 5 mas, marginalization over c and x_1 is small, while using realistic T_{obs} results in more degradation. Larger σ_{syst} results in substantially larger degradation compared to other systematics. 'All syst. for realistic' means using realistic T_{obs} , marginalizing over c and x_1 , and assuming $\sigma_{syst} = 5$ mas.

Conclusion

- > **Developed methodology** for SN Ia astro-*z*'s using DCR
- > **Reasonable** z_{DCR} at $z_{\text{true}} < 0.6$ for LSST-like simulations
- > **Combining** z_{DCR} with z_{Host} and z_{SN} substantially **improves** z_{SN}

Conclusion

- > **Developed methodology** for SN Ia astro-*z*'s using DCR
- > **Reasonable** z_{DCR} at $z_{\text{true}} < 0.6$ for LSST-like simulations
- > **Combining** z_{DCR} with z_{Host} and z_{SN} substantially **improves** z_{SN}
- ➤ <u>Will implement astro-*z*'s into the LSST SN Ia photo-*z* pipeline</u>

Conclusion

- > **Developed methodology** for SN Ia astro-*z*'s using DCR
- > **Reasonable** z_{DCR} at $z_{\text{true}} < 0.6$ for LSST-like simulations
- > **Combining** z_{DCR} with z_{Host} and z_{SN} substantially **improves** z_{SN}
- ➤ <u>Will implement astro-*z*'s into the LSST SN Ia photo-*z* pipeline</u>

Ist time astro-z's were applied to SNe Ia and constructed the full PDF for astro-z's
 Can be adapted for other sources with distinct emission lines like SNe II

Thank you very much! Questions?

Extra Slides

Perfect SIMs

Various Metrics

• low-*z*: $z_{\text{true}} < 0.6$, high-*z*: $z_{\text{true}} > 0.6$

Type	Bias (low-z)	Bias (high-z)	$\eta_{0.10} \ (\text{low-z})$	$\eta_{0.10}~({ m high-z})$	$\sigma_{\rm MAD}~({\rm low-z})$	$\sigma_{ m MAD}$ (high-z)
$z_{ m DCR}$	$0.006 {\pm} 0.002$	-0.047 ± 0.002	0.144	0.439	0.031	0.121
$z_{ m Host}$	$0.012 {\pm} 0.003$	-0.052 ± 0.002	0.421	0.268	0.123	0.066
$z_{ m DCR+Host}$	$0.005 {\pm} 0.001$	-0.025 ± 0.002	0.151	0.212	0.039	0.057
$z_{ m SN}$	$0.014 {\pm} 0.001$	$0.002{\pm}0.001$	0.094	0.265	0.007	0.064
$z_{ m SN+Host}$	$0.005 {\pm} 0.001$	-0.004 ± 0.001	0.032	0.089	0.008	0.024
$z_{ m SN+DCR}$	0.003 ± 0.001	-0.036 ± 0.001	0.023	0.224	0.007	0.044
$z_{ m SN+DCR+Host}$	$0.003 {\pm} 0.001$	-0.008 ± 0.001	0.018	0.087	0.007	0.023

Table 8. Bias and error on the mean, $\eta_{0.10}$, and σ_{MAD} for low-z ($z_{true} < 0.6$) and high-z ($z_{true} > 0.6$) for various combinations of the three methods discussed in this work. For z_{DCR} , z_{Host} , and $z_{DCR+Host}$, we show the PDFPeak values. z_{DCR} shows good performance at low-z while z_{Host} shows good performance at high-z, which leads to z_{SN+DCR} being significantly improved at low-z compared to z_{SN} and $z_{SN+Host}$ being significantly improved at high-z. $z_{SN+DCR+Host}$ show similar performance to z_{SN+DCR} and $z_{SN+Host}$ at low-z and high-z respectively.

Redshift and AM distributions (maybe get rid of this)

Astro- $z(z_{\text{DCR}})$

• $\sigma_{\text{syst}} = 5 \text{ mas}$, Realistic T_{obs} (epoch), marginalized over x_1 , c, better at low-z

Host photo-*z* (z_{Host})

• Better performance at high-*z*

SN photo- $z(z_{SN})$

SN photo-z + Host photo-z ($z_{SN+Host}$)

SN photo-z + Host photo-z + Astro-z ($z_{SN+DCR+Host}$)

SN photo- $z(z_{SN})$

SN photo-z + Astro-z (z_{SN+DCR})

Outlier Fractions by True Redshift

Bias and MAD Deviation by True Redshift

Treatment of Incompatible Priors

Various Metrics

• low-*z*: $z_{\text{true}} < 0.6$, high-*z*: $z_{\text{true}} > 0.6$

Type	Bias (low-z)	Bias (high-z)	$\eta_{0.10}~(ext{low-z})$	$\eta_{0.10} ~{\rm (high-z)}$	$\sigma_{ m MAD}$ (low-z)	$\sigma_{ m MAD}$ (high-z)
$z_{ m DCR}$	$0.007 {\pm} 0.002$	-0.046 ± 0.002	0.144	0.438	0.031	0.121
$z_{ m Host}$	$0.012 {\pm} 0.003$	-0.052 ± 0.002	0.421	0.268	0.123	0.066
$z_{ m DCR+Host}$	$0.005 {\pm} 0.001$	-0.024 ± 0.002	0.151	0.212	0.039	0.057
$z_{ m SN}$	$0.014 {\pm} 0.001$	$0.002 {\pm} 0.001$	0.094	0.265	0.007	0.064
$z_{ m SN+Host}$	0.005 ± 0.001	-0.004 ± 0.001	0.032	0.089	0.008	0.024
$z_{ m SN+DCR}$	$0.003 {\pm} 0.001$	-0.036 ± 0.001	0.022	0.224	0.007	0.044
$z_{ m SN+DCR+Host}$	$0.003 {\pm} 0.001$	-0.008 ± 0.001	0.019	0.087	0.007	0.023

Table 8. Bias and error on the mean, $\eta_{0.10}$, and σ_{MAD} for low-z ($z_{true} < 0.6$) and high-z ($z_{true} > 0.6$) for various combinations of the three methods discussed in this work. For z_{DCR} , z_{Host} , and $z_{DCR+Host}$, we show the PDFPeak values. z_{DCR} shows good performance at low-z while z_{Host} shows good performance at high-z, which leads to z_{SN+DCR} being significantly improved at low-z compared to z_{SN} and $z_{SN+Host}$ being significantly improved at high-z. $z_{SN+DCR+Host}$ show similar performance to z_{SN+DCR} and $z_{SN+Host}$ at low-z and high-z respectively.

Astro- $z(z_{\text{DCR}})$

SN photo-z + Host photo-z ($z_{SN+Host}$)

• Using LCFIT+z, *z*_{Host} from RAIL

SN photo-z + Host photo-z + Astro-z ($z_{SN+DCR+Host}$)

• <u> $8 \sim 9\%$ more</u> LCFIT+z converged candidates that pass selection cut

Outlier Fractions, Bias and MAD Deviation by True Redshift

