# PETS: Pure Expansion Template for SNIa

Cássia da Silva Nascimento (UFRJ) MSc. João Paulo Correia de França (CBPF) Dr. Ribamar Rondon de Rezende dos Reis (UFRJ/OV)





# Type la Supernova in Cosmology

- Provided the first evidence of an accelerated expansion of the universe (Perlmutter et. al 1997, Riess et al. 1998);
- Key probe to cosmology;
- Not perfect standard candles -> need to undergo a **standardization** procedure;
- With next generations surveys (like Vera Rubin LSST) we will gain statistical power when constraining cosmology;
- In this project we try to access the systematics associated with the standardization procedure.

## State-of-the-art Light Curve Fitters

SALT2 (Spectral Adaptive Light Curve Template 2) (Guy et al. 2005, Guy et al. 2007, Betoule et al. 2014)

 $\phi_{SALT2}(p,\lambda;\mathbf{x}) := x_{0,SALT2}[M_{0,SALT2}(p,\lambda) + x_{1,SALT2}M_{1,SALT2}(p,\lambda) + \dots] \exp(-cCL(\lambda)),$   $A \text{verage training set SED} \qquad \text{Describes the main variability around the average SED} \qquad \text{Describes color index variations.} \\ (\text{stretch-like feature}) \qquad \text{Describes color index variations.} \\ \text{Usually without mention to its} \\ \text{source} \end{cases}$ 

According to Guy et al. 2007, the term in brackets can be understood as a **Principal Component Analysis** (PCA) of a representative training set.

At the time the model was proposed there was not a enough dense high quality data available to perform PCA.

## **State-of-the-art Light Curve Fitters**

SNEMO2 (SuperNova Empirical MOdels) (Saunders et al. 2018):

Employs **Gaussian Process Regressions** (GPRs) to reconstruct SNIa SEDs (Spectral Energy Distribution) and posteriorly, applies **Factor Analysis**;

Replaces SALT2 PCA decomposition with FA and replaces the color law by an extinction curve;

Trained on SNFactory DR9 spectra:

2474 spectra from 171 spectroscopically confirmed SNeIa with redshift ranging from 0.01 to 0.08.

Explores adding more components to the decomposition (SNEMO7, SNEMO15)

# PETS rest-frame flux proposal

We drop the exponential term and add a component with time and wavelength dependencies:

$$\phi_{PETS}(p,\lambda;\mathbf{x}) := x_0[M_0(p,\lambda) + x_1M_1(p,\lambda) + x_2M_2(p,\lambda) + ...].$$
Average training set SED
Training set: **SNFactory DR9 spectra**;
$$f_{1st principal component/common factor}$$

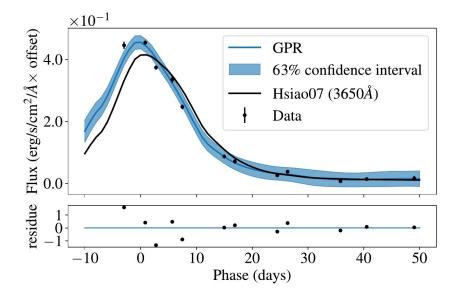
We perform PCA and FA decompositions;

Simple 3-component linear model that does not require the assumption intrinsic color variations and dust extinction affects the flux in the same way;

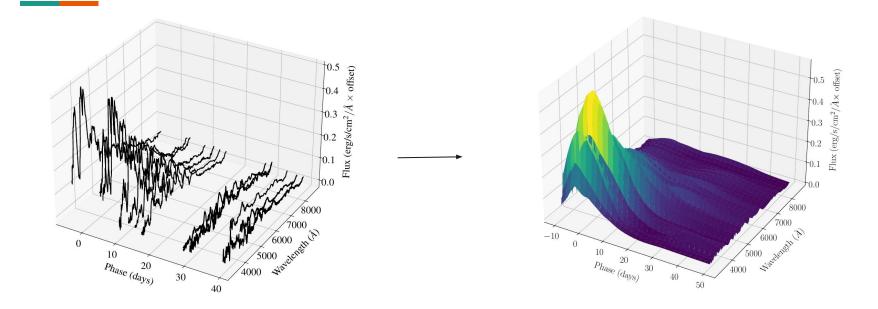
#### **Gaussian Process Regressions**

Defining a mean curve and a kernel, we can interpolate and extrapolate the original data, reconstructing monochromatic light curves.

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left( \mathbf{m}(P), \begin{bmatrix} K(P, P) + \sigma_n^2 & K(P, P_*) \\ K(P_*, P) & K(P_*, P_*) \end{bmatrix} \right),$$
$$\kappa(p_i, p_j) = \frac{\sigma_m^2}{\Gamma(\nu) 2^{\nu-1}} \left[ \frac{\sqrt{2\nu}(p_i - p_j)^2}{\Delta l} \right]^{\nu} K_{\nu} \left[ \frac{\sqrt{2\nu}}{\Delta l} (p_i - p_j)^2 \right]$$



#### **Gaussian Process Regressions**



We go from a SED with several gaps to a SED evaluated in a evenly-spaced 2-d grid.

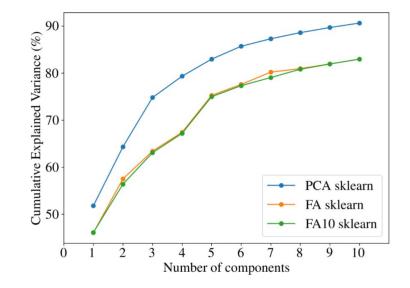
#### **Principal Component Analysis**

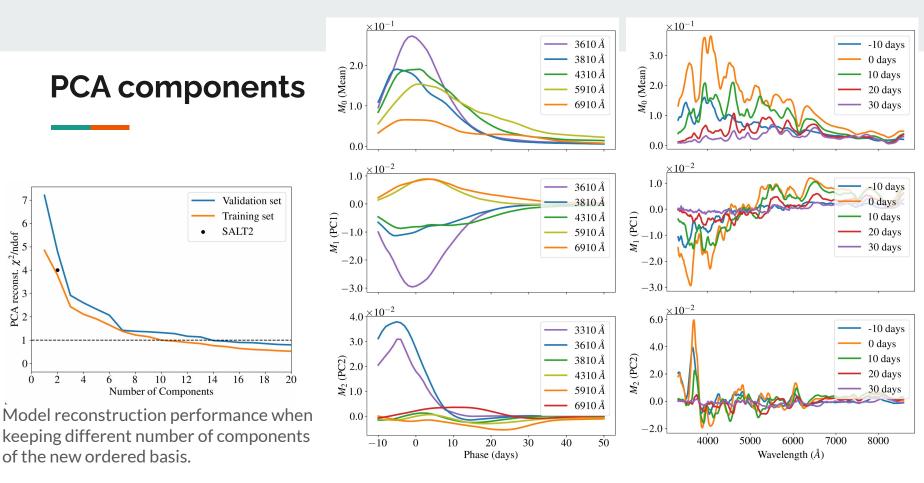
Underlying assumption: SNe Ia SEDs similarities allows us to describe a general SED as a linear combination of a representative set (starting with 150 SEDs/dimensions);

PCA find successively the directions that maximize variance in the original space (PCs);

PCs are a linear combination of the original basis;

For correlated data, a **reduced** set of new basis components must explain well the original space variability -> **New lower dimension basis -> M\_1, M\_2...** 



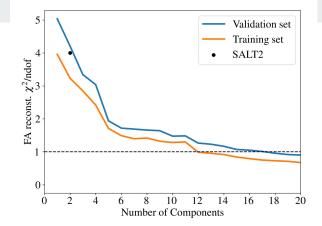


PCs obtained for our set of 150 training SNIa SEDs.

# **Factor Analysis**

FA has an explicit model and assumes the existence of hidden variables.

$$\mathbf{x} = \mathbf{\Lambda} \mathbf{f} + \mathbf{e}$$
  $\mathbf{e} \sim \mathcal{N}(0, \mathbf{\Psi})$ 

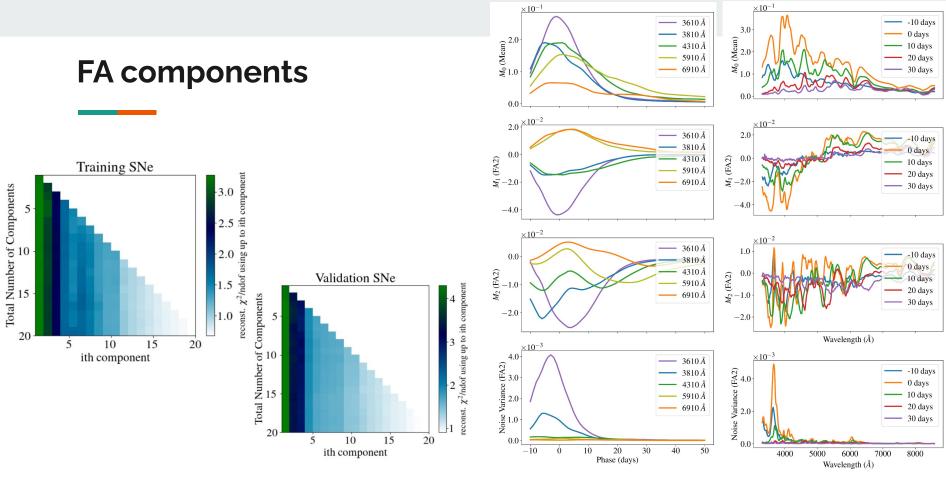


The observations are linear combinations of the **common factors** plus a **specific factor**;

The common factors will be our model components M\_1, M\_2 ....

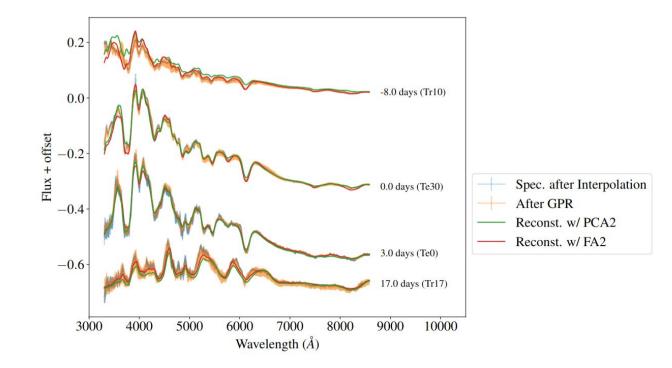
This generative model solves for the **common factors** and **noise variance** in a iterative process;

The common factors for FA considering X number of hidden variables is not a subset of the common factors of a FA considering X+Y numbers of hidden variables.



Factors obtained for our set of 150 training SNIa SEDs for N\_c= 2.

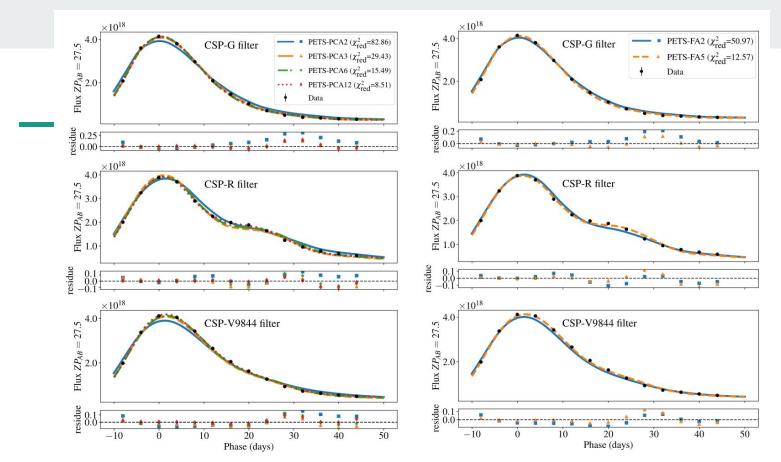
#### **Spectra Reconstructions**



We also analyzed spectra reconstructions. FA outperforms PCA. The models struggle most to reconstruct spectra before the maximum light (where we have less training data) and for lower wavelengths.

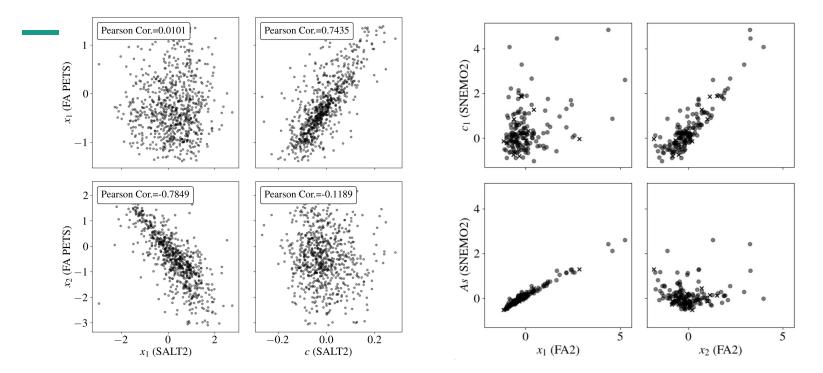
#### **Light Curve Reconstructions**





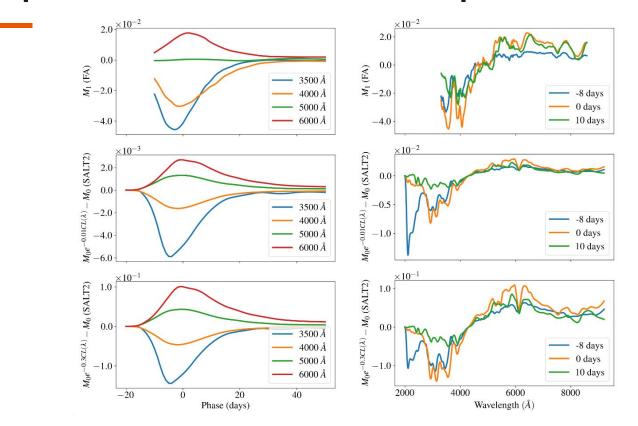
We create a light-curve fitter with different number of components and evaluate the model performances. We show light-curve fitting of a representative validation SNIa. PETS-FA outperforms PETS-PCA. The PCA model shows more significant improvement when adding model components. PETS-PCA2 struggles most to fit the maximum flux.

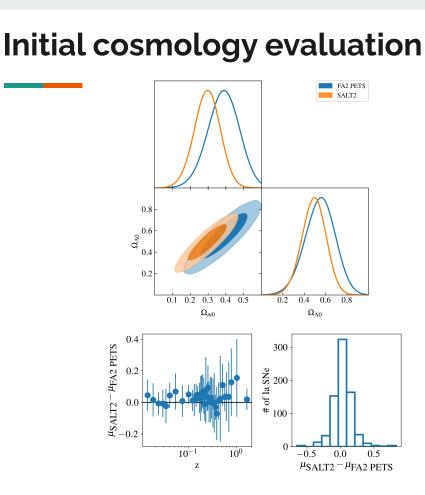
## Correlation with SNEMO2 and SALT2 fit parameters

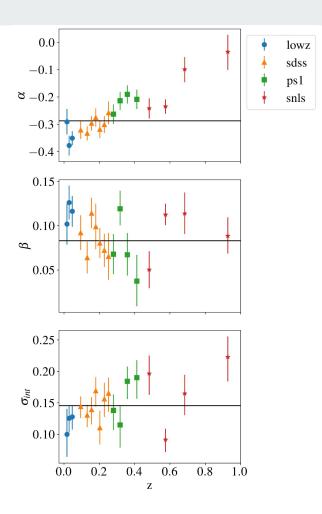


Main SNIa SEDs variation is related to color-index variations. Our M1 surface mainly addresses the color index variations.

#### **Comparison with SALT2 color component**







# **Conclusions and Future works**

The main feature responsible for SNIa SEDs variations is as expected related to the color-index variations;

Our simple 3-component model succeeded in constraining cosmological parameters in accordance to SALT2. But it still lacks model covariance and has poor UV coverage;

Our model does not reduce the systematics associated with the standardization procedure but shows promising results;

We will explore FA oblique rotations since they can offer insight on common factors physical interpretations.

# Thank you!