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Type Ia supernovae are standard(izable) candles

- standard(izable) candles: events that (can be 
systematically corrected to) occur with the same 
luminosity every time 

- measure brightness            know distance!



Type Ia supernovae are standard(izable) candles

- standard(izable) candles: events that (can be 
systematically corrected to) occur with the same 
luminosity every time 

- measure brightness            know distance! 

- bonus: they’re also as bright as a whole galaxy (so 
Rubin can detect out to )z > 1



The Hubble Diagram
Standard candles can tell us about cosmology!
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How do we know these quantities in the Rubin era?
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Cosmology in the Rubin era cannot depend on spectra

- Number of photometrically observed 
SNe Ia will skyrocket in the Rubin era
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- Number of photometrically observed 
SNe Ia will skyrocket in the Rubin era


- SNe Ia with spectra already make 
up only <10% of current sample (5-
year Dark Energy Survey, DES5YR)
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Cosmology in the Rubin era cannot depend on spectra

- Number of photometrically observed 
SNe Ia will skyrocket in the Rubin era


- SNe Ia with spectra already make 
up only <10% of current sample (5-
year Dark Energy Survey, DES5YR)


- SN host galaxies with spectra make 
up 100% of the DES5YR sample 
(HQ+23), but will not scale to Rubin 
data volumes
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Cosmology in the Rubin era will depend on photometry

- Number of photometrically observed 
SNe Ia will skyrocket in the Rubin era


- SNe Ia with spectra already make 
up only <10% of current sample (5-
year Dark Energy Survey, DES5YR)


- SN host galaxies with spectra make 
up 100% of the DES5YR sample 
(HQ+23), but will not scale to Rubin 
data volumes

photometric classification

photometric redshift estimation



SN Photometric Classification
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SCONE
Convolutional Neural Network for Supernova Classifi
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HQ et aa



SCONE performs well on simulations + real data
SN Ia vs. non-Ia classifi

HQ et aa

- accurate:  
 



- fast: trained w/ 40k SNe (15 min on 
GPU)


- other approaches require millions 
of SNe, >10hr to train!


- used in DES, LSST, Roman analyses



SCONE for Early-Time Classification

- early-time: as soon after detection as possible


- vital for optimal allocation of limited spectroscopic resources

HQ et al., AJ, 2022 (arXiv:2111.05539)



 HQ et al., AJ, 2022 (arXiv:2111.05539)

75% average accuracy (with redshift) 
on the night of trigger

SCONE for Early-Time Classification

https://arxiv.org/abs/2111.05539


Training a model with real data

- Very little labeled data (~0.1%, 
~7000 lightcurves)


- Labeled (spectroscopic) subset very 
unrepresentative of full dataset — 
bad for training!

HQ & S. M. Xie, ICML 2024 (arXiv:2402.03325)

Task: PLAsTiCC classifi



Training a model with real data
Task: Classify 14 transient/variable object types

- Very little labeled data (~0.1%, 
~7000 lightcurves)


- Labeled (spectroscopic) subset very 
unrepresentative of full dataset — 
bad for training!

HQ & S. M. Xie, ICML 2024 (arXiv:2402.03325)



Training a model with real data
Augment lightcurves from spectroscopic data to resemble full dataset

from spectroscopic data
redshifting 

augmentation from full dataset

HQ & S. M. Xie, ICML 2024 (arXiv:2402.03325)



Training a model with real data
Augment lightcurves from spectroscopic data to resemble full dataset

HQ & S. M. Xie, ICML 2024 (arXiv:2402.03325)



Training a model with real data
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Training a model with real data

flu
x

label
train w/ 

redshifted 
labeled data

this was 0.1%… 
what about the 
other 99.9%?

time

label

HQ & S. M. Xie, ICML 2024 (arXiv:2402.03325)
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Connect Later: Incorporates Labeled + Unlabeled Data
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HQ & S. M. Xie, ICML 2024 (arXiv:2402.03325)



Connect Later outperforms all variants for 
Task: PLAsTiCC classifi

HQ & S. M. Xie, ICML 2024 (arXiv:2402.03325)

(Avocado)



Photometric Redshift Estimation
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Image Representation Makes Redshift Visible

HQ & M. Sako, AJ, 2023 (arXiv:2305.11869)



Photo-zSNthesis: Converting SN Ia Lightcurves to Redshift PDFs

HQ & M. Sako, ApJ, 2023 (arXiv:2305.11869)



Tested on SDSS simulations + real data

HQ & M. Sako, ApJ, 2023 (arXiv:2305.11869)

within 1% (similar to 
best galaxy photo-z’s)!



Tested on LSST simulations

HQ & M. Sako, ApJ, 2023 (arXiv:2305.11869)

within 1%!



Summary

- Rubin SN cosmology will depend on photometric estimates of SN type & 
redshift


- Photometric classification: SCONE


- Photometric redshift estimation: Photo-zSNthesis



Appendix







Why pretraining?

- Out-of-the-box pretraining objectives have been shown to be more effective 
for unsupervised domain adaptation (UDA) than methods tailored for UDA 
(e.g., DANN, CORAL) [Shen et al., 2022]


- Generally, much more unlabeled data is available than labeled data


- pretrained models can be reused for multiple downstream tasks 
(AstroClassification and Redshifts in our paper)





Discretized PDF

CNN

0.01 < z < 0.05

0.05 < z < 0.1

0.1 < z < 0.15

1.15 < z < 1.2





Tested on SDSS simulations + real data

HQ & M. Sako, ApJ, 2023 (arXiv:2305.11869)



Tested on LSST simulations

HQ & M. Sako, ApJ, 2023 (arXiv:2305.11869)

within 1%!



Survey-Agnostic Performance

HQ & M. Sako, AJ, 2023 (arXiv:2305.11869)



Photo-z’s for Cosmology

Rough estimate of redshift precision vs. w precision


shows we can almost constrain Δw = ± 0.1

HQ & M. Sako, ApJ, 2023 (arXiv:2305.11869)


