Towards Precision Photometric Learning Helen Qu

May 8, 2024 helenqu@sas.upenn.edu

Supernova Cosmology with Machine

Type la supernovae are standard(izable) candles

- standard(izable) candles: events that (can be systematically corrected to) occur with the same luminosity every time
- measure brightness —— know distance!

Type la supernovae are standard(izable) candles

- standard(izable) candles: events that (can be systematically corrected to) occur with the same luminosity every time
- measure brightness know distance!
- bonus: they're also as bright as a whole galaxy (so Rubin can detect out to z > 1)

The Hubble Diagram Standard candles can tell us about cosmology!

 \star

redshift

How do we know these quantities?

distance modulus

redshift

 \star

How do we know these quantities?

How do we know these quantities in the Rubin era?

Alex Gagliano

blue = spectroscopic

red = photometric

N_{tot}: 76538

< 0.1% of LSST SNe will have spectra!

Cosmology in the Rubin era cannot depend on spectra

- Number of photometrically observed SNe Ia will skyrocket in the Rubin era

Cosmology in the Rubin era cannot depend on spectra

- Number of photometrically observed SNe Ia will skyrocket in the Rubin era
 - SNe la with spectra already make up only <10% of current sample (5year Dark Energy Survey, DES5YR)

Cosmology in the Rubin era cannot depend on spectra

- Number of photometrically observed SNe Ia will skyrocket in the Rubin era
 - SNe la with spectra already make up only <10% of current sample (5year Dark Energy Survey, DES5YR)
 - SN host galaxies with spectra make up 100% of the DES5YR sample (HQ+23), but will not scale to Rubin data volumes

Cosmology in the Rubin era will depend on photometry

- Number of photometrically observed SNe Ia will skyrocket in the Rubin era
 - SNe la with spectra already make up only <10% of current sample (5year Dark Energy Survey, DES5YR)
 - SN host galaxies with spectra make up 100% of the DES5YR sample (HQ+23), but will not scale to Rubin data volumes

SN Photometric Classification

photometric classification algorithm

SCONE performs well on simulations + real data SN Ia vs. non-la classification

- accurate:

>99% accuracy on simulations 93% on 568 spectroscopic DES SNe

- fast: trained w/ 40k SNe (15 min on GPU)
 - other approaches require millions
 of SNe, >10hr to train!
- used in DES, LSST, Roman analyses

SCONE for Early-Time Classification

- early-time: as soon after detection as possible
- vital for optimal allocation of limited spectroscopic resources

HQ et al., AJ, 2022 (arXiv:2111.05539)

SCONE for Early-Time Classification

75% average accuracy (with redshift) on the night of trigger

Training a model with real data Task: PLAsTiCC classification (14 transient/variable types)

- Very little labeled data (~0.1%, ~7000 lightcurves)
- Labeled (spectroscopic) subset very unrepresentative of full dataset bad for training!

Training a model with real data Task: Classify 14 transient/variable object types

- Very little labeled data (~0.1%, ~7000 lightcurves)
- Labeled (spectroscopic) subset very unrepresentative of full dataset bad for training!

Training a model with real data Augment lightcurves from spectroscopic data to resemble full dataset

HQ & S. M. Xie, ICML 2024 (arXiv:2402.03325)

redshifting

from full dataset

Training a model with real data Augment lightcurves from spectroscopic data to resemble full dataset

HQ & S. M. Xie, ICML 2024 (arXiv:2402.03325)

Training a model with real data

train w/ redshifted labeled data

Training a model with real data

Training a model with real data

flux

time

this was 0.1%... what about the other 99.9%?

train w/ redshifted labeled data

Connect Later: Incorporates Labeled + Unlabeled Data

pretrain w/ all data

Connect Later outperforms all variants for Task: PLAsTiCC classification (14 transient/variable types)

Photometric Redshift Estimation

Image Representation Makes Redshift Visible

Photo-zSNthesis: Converting SN Ia Lightcurves to Redshift PDFs

Tested on SDSS simulations + real data

Tested on LSST simulations

- redshift
 - Photometric classification: **SCONE**
 - Photometric redshift estimation: **Photo-zSNthesis**

- Rubin SN cosmology will depend on photometric estimates of SN type &

Why pretraining?

- (e.g., DANN, CORAL) [Shen et al., 2022]
- Generally, much more unlabeled data is available than labeled data
- pretrained models can be reused for multiple downstream tasks (AstroClassification and Redshifts in our paper)

- Out-of-the-box pretraining objectives have been shown to be more effective for unsupervised domain adaptation (UDA) than methods tailored for UDA

60716.1

Target

Discretized PDF

SDSS real

Tested on Ence SDSS simulated SDSS simulated

Tested on LSST simulations

Survey-Agnostic Performance

Figure 14. Mean binned residuals, $\Delta z \equiv \frac{z_{\text{pred}} - z_{\text{true}}}{1 + z_{\text{true}}}$, as a function of true redshift, z_{true} , for the DES3YR SNe Ia sample produced by a model trained on the PLAsTiCC dataset. The max(PDF) and mean(PDF) methods of obtaining point estimates from Photo-zSNthesis PDFs are described in §4.1.1.

Photo-z's for Cosmology

shows we can almost constrain $\Delta w = \pm 0.1_{0.0}$

HQ & M. Sako, ApJ, 2023 (arXiv:2305.11869)

 $z_{
m true}$