

Simulation-based inference applied to Kilonova SED modeling

A case of study with AT2017gfo

Phelipe Darc* Clecio R. De Bom

de la

- Simulation-Based Inference (SBI) Amortized Neural Posterior Estimation (ANPE)
- The Astrophysical Parameters of Kilonovae • Kilonovanet Simulator
- Results:
 - Simulated Data
 - Validation with Real Observations (GW170817)

Likelihood-based Methods:

The main objective of our Bayesian spectral energy distribution (SED) model is to estimate the posterior distribution p(A|B) of kilonova parameters A, given an observable B.

• You need to be able to write the likelihood

• <u>Time consuming</u>

• Difficult to assess the faithfulness of the posterior approximations

• Scales poorly with the dimensionality of the explored parameter space

Simulation-Based Inference

Simulation-based inference, also referred to as likelihood-free inference, encompasses a set of techniques aimed at conducting Bayesian inference without the need for directly computing the likelihood function numerically.

Training Embbeding Net Simulator Neural Density estimator (MDN) Uniform Prior $[M_{ej,dyn}, M_{ej,pm}, \phi, \cos(\theta_{obs})]$ Inference

Amortized Neural Posterior Estimation (NPE)

Fig.1) Inference pipeline using Amortized Neural Posterior Estimation

• Fast - Once trained, the density estimator can, in the next phase (inference), quickly and continually infer parameters of BNS kilonovae for any data supported by our prior.

• Testable - It's possible to make repeated and sequential inference to a large amount of data.

• Scalable - It can target the marginal posterior distribution, rather than the full joint posterior.

Simulator - Kilonovanet*

A conditional variational autoencoder trained on three different datasets of simulated kilonova observables from BNS or NSBH mergers :

- Dietrich et al 2021 (BNS)
- Kasen et al 2017 (BNS)
- Annand et al 2020 (BHNS)

Kilonova Parameters:

Fig. 2) Geometry employed in the kilonova description of Dietrichbased simulation model (see also Dietrich et al. 2020). Different colors refer to the different lanthanide fractions of the individual ejecta components: tidal dynamical (red), polar dynamical (blue), and disk wind (purple).

*Lukosiute et al (2022)

• Retrieving Kilonova Parameters

• Assessing Reliability of The

Posterior Approximations

• Validation with Real Observations GW170817 (ATf2017gfo)

Retrieving Kilonova Parameters

Fig. 3) True vs. recovered values for kilonovas parameters in the test set of 2000 spectra. The diagonal solid line is the ideal scenario where the θ pred is equal to θ true.

Fig. 4) Residual Corner Plot shows the 1d and 2d residual distributions obtained by subtracting θtrue from θpred.

Posterior Diagnostic:

Fig. 5) Coverage plot for each kilonova parameter. A conservative posterior estimator will produce curves above the dashed line, and an overconfident posterior estimator will produce curves below the diagonal.

Tab

Model	$\log(M_{\rm ej,dyn}/M_{\odot})$	$\log(M_{\rm ej,pm}/M_{\odot})$	ϕ	$ heta_{ m obs}$	
			[deg]	[deg]	
Dietrich et al. (2020)	$-2.27^{+1.01}_{-0.54}$	$-1.28^{+0.42}_{-0.35}$	$49.50^{+21.16}_{-26.65}$	$42.80^{+40.62}_{-36.51}$	
Lukošiute et al. (2022)	$-2.31^{+0.22}_{-0.22}$	$-1.13^{+0.11}_{-0.21}$	$47.98^{+20.21}_{-12.90}$	$64.55^{+17.39}_{-22.34}$	
ANPE	$-2.42^{+0.59}_{-0.09}$	$-1.20^{+0.17}_{-0.26}$	$34.08^{+30.98}_{-7.82}$	$65.58\substack{+19.84 \\ -38.01}$	
NOTE—Median values and 90% credible intervals for kilonova parameters reported in various					

studies.

2.44 days after the merger 1.44 days after the merger -4-6.0-6.0-5Log(Flux) -7.5 -7.5-9.0 $p_{\varphi}(f(\theta)|X_{obs})$ $p_{\varphi}(f(\theta)|X_{obs})$ $p_{\varphi}(f(\theta)|X_{obs})$ -7 $f(\theta_{obs})$ $f(\theta_{obs})$ $f(\theta_{obs})$ -9.0Dietrich et al.(2020) Best Parameters Dietrich et al.(2020) Best Parameters -10.55000 6000 7000 8000 5000 6000 7000 5000 6000 8000 Wavelength (Å) Wavelength (Å)

GW170817

le 2. Kilonova Para	ameters
---------------------	---------

Spectroscopic time series of AT2017gfo (orange solid line)

Spectra generated using the values reported bDietrich et al. (2020).

Spectra generated by KilonovaNet using the Best fit of our ANPE model ($p\phi(f(\theta)|Xobs)$, black dashed line)

Spectra generated by 500 parameters set randomly sampled from the inferred posterior distribution (light blue solid line)

Conclusion

• Simulation-based inference is a viable approach to Kilonova **SED modelling**

• We demonstrate the reliability of our posterior approximations using diagnostic tools (such as coverage test).

• Our model agrees with previous likelihood-based methods while reducing the inference time down to a few seconds

