

Rapid automated detection and modeling of strong lenses for time delay cosmography and supernova studies with LSST transients

Stefan Schuldt

University of Milan

With Sherry Suyu, Raoul Cañameras, Stefan Taubenberger, Yiping Shu, Alejandra Melo Melo, Irham T. Andika, Satadru Bag, Claudio Grillo and the HOLISMOKES collaboration

Rio de Janeiro - May 06, 2024

Strong gravitational lensing

Strong gravitational lensing

Wide field imaging surveys

- Ongoing:
 - Hyper Suprime Cam (HSC)
 - PanSTARRS
- Upcoming: Rubin Observatory

Legacy Survey of Space and Time (LSST)

- First light planned for 2025
- Image southern sky every few days
- \rightarrow expect ~100,000 new galaxy-scale lenses
 - within billion of galaxies

Image Credit: Rubin Obs./NSF/AURA.

HOLISMOKES!

Highly Optimized Lensing Investigations of Supernovae, Microlensing Objects, and Kinematics of Ellipticals and Spirals (Suyu et al. 2020)

Cañameras

Melo

Sherry Suyu

Shu Taubenberger

And many more...

We are more working supernova physics and cosmology

- \rightarrow lens finding (Canameras+20, 21, 24, Shu+22, Schuldt et al., in prep)
- \rightarrow microlensing and cadence strategy (Suyu+20, Huber+21a, b, Huber & Suyu 24, Bayer+21)
- \rightarrow rapid modeling (Schuldt+22, 23a, 23b)

HOLISMOKES!

Highly Optimized Lensing Investigations of Supernovae, Microlensing Objects, and Kinematics of Ellipticals and Spirals (Suyu et al. 2020)

Cañameras

Melo

Sherry Suyu

Shu

Taubenberger

And many more...

We are more working supernova physics and cosmology

- → lens finding (Canameras+20, 21, 24, Shu+22, Schuldt et al., in prep)
- \rightarrow microlensing and cadence strategy (Suyu+20, Huber+21a, b, Huber & Suyu 24, Bayer+21)
- → rapid modeling (Schuldt+22, 23a, 23b)

Various lens search projects

 \rightarrow ResNet: FPR <0.01% on real COSMOS galaxies and ~60-70% completeness on SuGOHI lenses (Cañameras et al. 2020, 2021, 2024)

gri-color images of newly identified lenses → thousands more!

Also on cluster-scale

0.15. 1.62. 2

HSC|0921+0316

HSCI1351+0028

0.7, 2.0, 1

29.0.68.909.0.032

0.42, 2.6, 1

35, 0.46, 730, 0.048

40,0.36,737,0.054

Training data simulations

Cross matching

Time delays (galaxy scale): days to weeks

- → immediate follow-up planning needed
- \rightarrow need **lens mass model** to predict when and where next image appears

Convolutional neural network

- Lens mass distribution described by:
 - Lens center (x,y)
 - Ellipticity (e_x , e_y)
 - Einstein radius θ_{E}

Speed-up with machine learning

Convolutional neural network

- Lens mass distribution described by:
 - Lens center (x,y)
 - Ellipticity (e_x , e_y)
 - Einstein radius θ_{E}
- External shear:
 - γ_1 and γ_2

Inspired by Hezaveh, Perreault Levasseur and Marshall (2017)

Residual neural network

Network performance

Direct comparison

31 grade A galaxy-galaxy lenses

- model them with traditional MCMC sampling method

→ develop *glee_auto.py and glee_tools.py* to reduce user input time

Direct comparison

31 grade A galaxy-galaxy lenses

- model them with traditional MCMC sampling method

→ develop glee_auto.py and glee_tools.py to reduce user input time \rightarrow days

- model with presented network
 - → milliseconds without light modeling

Summary

Galaxy-scale lens search

Cluster-scale lens search

Automated traditional lens modeling

2

0 Б

-2

Photo-z analysis

Modeling through deep learning

17