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Outline

e Gravitational lensing in a nutshell
e Transients from microlensing
® Strong lensing of transients (SNe)

® Strong lensing without optical

counterparts (GW)

| N,
y

{ ) Discovery Alliance ?Vssc

q
|




BENDING OF LIGHT BY GRAVITY

Null geodesic, % 2
5 L ds® = 1—|——¢ cdt? — 1——¢ do?
Fermat principle c2 c?




BENDING OF LIGHT BY GRAVITY

Null geodesic, 2 2
5 L ds® = 1—|——¢ cdt? — 1——¢ do?
Fermat principle c2 c?

do ,  [1+2¢/c 2¢
dat T © \/1—2¢/c2 _C<1+ (:2)




BENDING OF LIGHT BY GRAVITY

Null geodesic, 2 2
5 L ds® = 1—|——¢ cdt? — 1——¢ do?
Fermat principle c2 c?

do ,  [1+2¢/c 2¢
dat T © \/1—2¢/c2 _C<1+ c2>

Deflection 4 —
angle: c- &




A PLETHORA OF
LENSING PHENOMENA



A PLETHORA OF
LENSING PHENOMENA

Strength




A PLETHORA OF
LENSING PHENOMENA

Strength

® Strong lensing
B Strong magnifications
B Multiple images

B Distortions
—Rings

— Arcs



A PLETHORA OF
LENSING PHENOMENA

Strength

® Strong lensing
B Strong magnifications
B Multiple images
B Distortions
—Rings
— Arcs
® VWeak Lensing
B Small twist
B Small magnification

B Detected statistically



A PLETHORA OF
LENSING PHENOMENA

Strength

® Strong lensing
B Strong magnifications
B Multiple images
B Distortions
—Rings
— Arcs
® VWeak Lensing
B Small twist
B Small magnification

B Detected statistically

Angular scale

® Micro-lensing
B MACHOS
B Planetary search
® Micro and mili-lensing
B Quasars
® “Macro-lensing”
B Galaxies

B Clusters
B Large-scale structure



[

|

1

|
\

4

A PLETHORA OF
LENSING PHENOMENA

Stl:en ===

N
N

\
- ® Strong lensing ™.
A

B Strong magnifications *
|

B Multiple images

B Distortions "
. —Rings of
) S " 4
- N —AI"CS e -

® VWeak Lensing
B Small twist
B Small magnification
B Detected statistically

Angular scale
® Micro-lensing
B MACHOS
B Planetary search
® Micro and mili-lensing
B Quasars
® “Macro-lensing”
B Galaxies

B Clusters
B Large-scale structure



A PLETHORA OF
LENSING PHENOMENA

Strength= == = « _ Angular scale
e’ Y~ s
"¢. Str'ong Iensing \\ "MICI’O IenSIng s‘
)
y B Strong magnifications * 3 W MACHOS y
: : I ’
: B Multiple images , . PIanetary search
: : ®
Y B Distortions ! Mlcro ard” mili- Iensmg
\~ _Rings )’ B Quasars
’ ¢ . 9
¥~ —Arcs " ® “Macro-lensing
® VWeak Lensing B Galaxies
B Small twist W Clusters

B Small magnification B [arge-scale structure

B Detected statistically



A PLETHORA OF
LENSING PHENOMENA

SLIQGD = i Angular __c_a,le
'/‘ Strong lensing ~\\ "MICI’O Iensmg \\
y W Strong magnifications * ' ¥ MACHOS )
: B Multiple images y S Flanetary seafc”
Y B Distortions ! ® Mlcro and mili- lensing
< _Rings L’ B Quasars
T Ares o7 . ® “Macro-lensing”
® Weak Lensing kL GalaXIes\.
B Small twist +B Clusters .

B Small magnification l Large scale structure

B Detected statistically



A PLETHORA OF
LENSING PHENOMENA

Strength= = ==~ _ Angular scale
e’ Y~ s
"¢. Strong Iensing \‘ ',MICI"O Iensmg s‘
)
y B Strong magnifications * 3 W MACHOS y
: : I ’
: B Multiple images , . PIanetary search
: : ®
Y B Distortions ', Mlcro arid mili- Iensmg
\~ _Rings )’ B Quasars
4
¥~ —Arcs _-" ® “Macro-lensing”
n y mmm ™ ~N
® VWeak Lensing .'i Galaxies "+
I
B Small twist +M Clusters .

B Small magnification l Large scale structure

B Detected statistically

+ astrometric microlensing, black-hole shadows, retrolensing,
femtolensing, lensing of gravitational waves....



A PLETHORA OF
LENSING PHENOMENA

Strength= = ==~ _ Angular scale
e’ Y~ s
"¢. Str'ong Iensing \s "MICI’O IenSIng s‘
)
y B Strong magnifications * 3 W MACHOS y
: : I ’
: B Multiple images , . PIanetary search
: : ®
Y B Distortions ', Mlcro arid mili- Iensmg
\~ _Rings )’ B Quasars
4
¥~ —Arcs _-" ® “Macro-lensing”
-~ e mm= ™ ~N
® VWeak Lensing .'i Galaxies "+
I
B Small twist +M Clusters .

B Small magnification l Large scale structure

B Detected statistically

+ astrometrlc mlchIgn,smg,bIad<J1_pLe_shadows retrolensmg,
L Iemtolensmg, lensing of gravitational waves.... >



A PLETHORA OF

LENSING PHENOMENA

Strength= ===~ _ Angular scale
N

» . . -
- ® Strong lensing . ®Micro-lensing "«
Y 4 N ’ )}

B Strong magnifications * \
|

4
[

B Small magnification
B Detected statistically



Galactic microlensing
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Arnaud Cassan ARI/ZAH, Heidelberg University, talk @ Institut d’Astrophysique de Paris, Jan. 11, 2008
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Also microlensing of QSO and SN by stars in lens galaxies
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Can we spot those high-mass Black-Holes Are those really mass-gap objects?
by other means? Or they are lensed?
What is the population of rogue BH? Can we find such objects by other means?

Microlensing can help us build a more complete census of compact objects
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VERA C.RUBIN
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State-of-the art for iImaging astronomy with natural seeing

e Brand new observatory in Cerro Pachan, Chile (alongside Gemini and SOAR)

e Large aperture, brightness, and field of view: 8.4 m primary mirror, new /1.2
optical design

e 10 sqg-deg, 3.2 Gpx camera (world's largest camera)

e Thick CCDs (red-sensitive) and fast readout (2s!)

e (apability for short exposures, fully automated

e Ideal and unique instrument for surveys

e Not just the next step: new time dimension!

e 10 million alerts per night! (need brokers)

e Survey start: 2024 - 2025!

e 8 Science collabaorations, including TVS, SLSC, DESC

e Argentina, Brazil (in-kind contributors) and Chile (site) are members

See overview by Mariana Penna-Lima
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® First “all-sky” microlensing survey: thousands of events
® New directions. Census os compact objects. Planets.
® Millions of transients require automated classification

® real-time for follow-up (brokers)

XGBeost Medel (L0-Fold CV)

® microLlA classifier (Godines++)
(see also Bernardo Fraga’s talk)
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® Needs realistic light-curves
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Simulations of joint Rubin + Roman events

Free-floating plants, binary lenses, Black Holes

Realistic source distribution with proper motions

Includes finite size effects and parallax(es)
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Extensive light-curve fitting with pyLima
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Simulations of joint Rubin + Roman events

Free-floating plants, binary lenses, Black Holes

Realistic source distribution with proper motions

Includes finite size effects and parallax(es)
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Extensive light-curve fitting with pyLima
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Simulations of joint Rubin + Roman events

® Free-floating plants, binary lenses, Black Holes
® Realistic source distribution with proper motions
® Includes error models and cadences of both surveys
® Includes finite size effects and parallax(es) .
® Extensive light-curve fitting with pyLima
Event: 8253 - Roman and RR fits Event: 14 - Roman and RR fits Event: 214 - Roman and RR fits
Red: Roman Red: Roman Red: Roman
Blue:Roman+Rubin Blue:Roman+Rubin

Blue:Roman+Rubin

1175 :
1
1
1

18.00

18.25

18,50 1

-
O i
<18 5 1
= i
19.00 E
19.25 4 i
19504 * i
e "L - - , B T '
]D .2 407w0 jD 1ot 75 100 125 150 jDUS 200 225 3}3’:63’6
Case for Rubin-Roman ® Provide baseline for Roman Anibal Varela, UNSAM
coordination ® Fill the gaps of Roman observations

arXiv:2306.13792 ® Determine parallax for a fraction of the events



® Gravitational lensing (geometrical optics): null geodesics

® Surface brightness conservation + achromatic: gravitational telescope
® Unique probe of the mass distribution in galaxies and clusters & DM, b
| Sensitive on cosmological distances (cosmological model/parameters)

® Probes gravitational potentials in a different way from dynamics

® Strong Lensing: multiple images, strong distortions, large
magnifications, time delays

strong lensing, weak gravity



STRONG LENSING (MACROLENSING)

® Gravitational lensing (geometrical optics): null geodesics

® Surface brightness conservation + achromatic: gravitational telescope
® Unique probe of the mass distribution in galaxies and clusters & DM, b
| Sensitive on cosmological distances (cosmological model/parameters)

® Probes gravitational potentials in a different way from dynamics

m Strong Lensing: multiple images, strong distortions, large
magnifications, time delays

,.'.

%‘rawtatlow‘l arcs

strong lensing, weak gravity



STRONG LENSING (MACROLENSING)

® Gravitational lensing (geometrical optics): null geodesics

® Surface brightness conservation + achromatic: gravitational telescope
® Unique probe of the mass distribution in galaxies and clusters & DM, b
| Sensitive on cosmological distances (cosmological model/parameters)

® Probes gravitational potentials in a different way from dynamics

m Strong Lensing: multiple images, strong distortions, large
magnifications, time delays

strong lensing, weak gravity Gravitational afcs



STRONG LENSING (MACROLENSING)

® Gravitational lensing (geometrical optics): null geodesics

® Surface brightness conservation + achromatic: gravitational telescope
® Unique probe of the mass distribution in galaxies and clusters & DM, b
| Sensitive on cosmological distances (cosmological model/parameters)

® Probes gravitational potentials in a different way from dynamics

m Strong Lensing: multiple images, strong distortions, large

magmﬁcatlons’ time delays (arc finding is a challenge, see Clecio’s talk)

strong lensing, weak gravity

Gravitational arcs



Strong Lensing in the Time Domain

Hy €[0,150] €, € [0.05,0.5]

® Arcs, multiple images o~ —.
Hg:71.0757% B1608 {Suyu+2010, Jee+2019)
II(- . "-,-\3&. ; S RXJ1131 !‘-.lyu&?ﬂ]“.C'lﬂ‘b?l.'l'.g;
o M : 2| = s e s
ass reconStru Ctlon 8 . 63 +5.4 VIFI2033 (Rusu+2020)
O o 08.975 PG1115 (Chen+2019)
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® Cosmology =
3
. o
® Time delays -

® Different physical dependence! 50 60 70 80 90
Hy [kms™ Mpe™!]

® See talks by Joao Franca and Stefan Schuldt
Exemple: QSO RX J1131-123]

Hubble Snace lelescope  Swiss | eonhard Fuler Telescope Fuler deconvalved
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Lensing of Supernovae

® Power of Standard candles + time-delays + Strong Lensing Modeling

® Emerging field
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Lensing of Supernovae

Power of Standard candles + time-delays + Strong Lensing Modeling
Before LSST:

® not enough resolution to identify the images

® enough to localize the system

® if multiple SN in same region (simultaneously or not):
v

Need a look-up table for SL systems
® even for single SN match
® confirmation: !

Prepare

® Build up a sample before pixel data is available, before arc finders
can be run, before modeling is run, and before data goes public
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A semi-automated infrastructure for the aggregation of SL
systems, cross matches, and generation of cut-outs

current version: Last Stand fore bin:

> 30k SL candidates, > 150k images, > 5k spectra
Ongoing work:

® visual inspection: vetting + tagging (zooniverse)

® massive modeling + (new)
Look-up table + sample for ML appliactions - SLImageNet

Pilot program with FINK (offline positional match as a
proof-of-concept)

More on Joao Franga’s talk
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e GW are tensor waves but strain (amplitude) follows same
lensing equations
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Lensing of Gravitational Waves

e GW are tensor waves but strain (amplitude) follows same
lensing equations

e Strong Lensing (lens is galaxy or cluster): multiple images
e different arrival times and different magnifications

 Microlensing (lens is a massive BH):
e frequency dependent magnification: beating pattern
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Ezquiaga & Zumalacéarregui, PRD 102, 124048 (2020)

typical time delays from minutes to months
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Lensed GW with no EM
counterpart

e BBH much more frequent than Kilonovae

event ID: G407378

e | ocalization is bad Szz/erzrle[;:- (23;((5)?6282 distance: 27679 Mpc
(o) .

90% area: 1,002 deg®
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https://gracedb.ligo.org/superevents/S230518h/
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\\‘Tll(]ivi(]ll,::%\n'ky ]()(:H.]‘Hij/.ai lons 7‘ e If GW is Strongly |ensed, its
o €y 60° host galaxy should be too!
‘1,*“. e Strong Lenses are rare,
u : yet, still ~ 100/sg-deg
oo ope | ¢ Use relative time-delays and
0! | " strains to pin-point the right
— system!

ot

Comi)ined sky localization _
* Use quadruply imaged systems
arXiv:2004.13811
e Needs spectroscopic data of both lens and * Relies on detection of all
source galaxies strongly lensed galaxies to

required depth
* High resolution imaging of candidate(s)

* Important optical follow-up program (MMA)
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Lensed Binary Black-Holes

arXiv:2004.13811

Model

Source and lens potential
reconstruction from high
resolution imaging

Extra constraints from relative
magnifications and time-
delays

BBH localization within the
host galaxy!

10% determination of Ho from
a single Strongly Lensed BBH!
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Lensing with no images

Transients offer a unique opportunity to discover

Distinct signal, the simplest being a
Localization region is usually much larger than optical
But strong lenses are rare!

to identify the invisible lensed sources
Key to model/predict
Detailed modeling, precise time delay:
Localization of the source even for dark sirens!

Other possibly repeating signals: GRB, FRB...
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e New window for lensing in the wide-field time-domain
New lensing science requires brokers: FINK!

e slcomp/LaStBeRu: comprehensive multi-purpose look-up
table for SL: use it in real time with FINK

® Finding and localizing Strongly Lensed transients
(even without light!)

e Use FINK to find microlensing events
® Pilot program at CASLEQO (ZTF 1s perfect fit!)

Finding the next... with FINK

® Finding the next strongly lensed supernova

® Finding the next halo microlensing event/free-floating

planet/black-hole ‘
® Finding the first lensed GRB/FRB/GW... WN__KI






