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● LSST-like simulated data - ELAsTiCC


● Fink Classifiers

○ CATS Broad Classifier

○ SuperNNova

○ Early Supernova Ia

○ SLSN


● Fink infrastructure performance

Summary
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● ELAsTiCC: The successor of PLAsTiCC (Photometric LSST 
Astronomical Time-series Classification Challenge)


● Extended LSST Astronomical Time-series Classification 
Challenge led by LSST DESC


● Simulated time-domain events and host galaxy associations

● Designed to test broker’s infrastructure and evaluate ML 

algorithms

● Millions of synthetic light curves using SNANA


○ 6 filters (ugrizY)

○ Rubin depth and cadence

○ Extinction and atmospheric noise

○ Realistic host galaxy associations

○ Several Different models in a tree-based taxonomy


● Closest to LSST-type data so far

● ELAsTiCC V2 is under way

ELAsTiCC 
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● ELASTiCC team streamed alerts daily through the ZTF Alert Distribution Server. 
3 years of simulated light curves. 

● Truth Table released after 3 years of data were streamed.


● After the unblinding, we used the first year of streamed alerts as training sample.

● Enhanced version of the initial training sample

The streamed sample
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Example Light Curves 

2023 OzFink workshop

SNIa Cepheid

KilonovaAGN
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Statistics for ELASTiCC 
17,233,868 alerts - 1,676,431 unique objects for training

34,872,745 alerts - 2,865,642 unique objects for testing
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● CATS (CBPF Alert Transient Search) Broad Classifier


● SuperNNova (Anais Möller) - binary and broad class


● SLSN ( Etienne Russeil)


● Early SNIa (Marco Leoni, Emille Ishida)

Fink Classifiers 
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● Broad Classifier: Uses 5 superclasses from 
the taxonomy


● Multivariate LSTM Fully Convolutional 
Network adapted to two different inputs


● Hyperparameter and architecture 
optimization


● Light curve: gap in MJD to the first point, 
normalized flux, normalized flux error, filter


● Metadata Used:

● Extinction

● Host galaxy photoz + error

● Transient z + error

CATS 
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● 5-fold cross-validation


● 80% of the unique objects


● Split the unique IDs: alerts of a given object 

are either in training or validation


● Alerts + Forced photometry (only LCs with 

more than 1 point)


● Model with the lowest validation loss 

across all folds chosen as the best

CATS - Training 
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● SuperNNova: 

○ Recurrent Neural Networks with Long-Short Term 

Memory

● Detection + forced photometry used to make light 

curve data (+preprocessing)

● Metadata used:


○ Host galaxy redshift

○ Milk way extinction


● Binary and Multi-class

● Balanced training set

SuperNNova
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● Binary classifier using Random Forest algorithm.

● Catch SNIa during its rising phase (at least 2 bands)

● Use RAINBOW (Russeil et al. 2024) to fit all bands 

together


● Metadata used:

○ number of points

○ host galaxy redshift

○ separation between transient and host

Early SNIa
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SLSN
● SLSN+PISN binary using Random Forest

● Multi-view symbolic regression (Russeil et al. 2024) on 

ZTF light curve of a SLSN candidate (r and i bands) 

● Metadata used:

○ RA, DEC., host galaxy z (+ error), host galaxy 

distance 

● Active learning loop
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Results on Y2 and Y3
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Results on Y2 and Y3
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Evolution of metrics
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● SLSN only sees alerts classified as Long by CATS

Combining classifiers - CATS as a first step
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● Combine all SNN binary classifiers into one multi-class

Combining classifiers - SNN binaries

16



● Alerts where CATS and the combined SNN 

agree


● 94% of the test sample


● Significant improvement for the Long and Fast 

classes

Combining classifiers - increasing purity
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● Data is heterogeneous, unbalanced classes - results are satisfactory


● Fast and Long classes are the hardest to classify. Choice of split?


● Confusion between classes is the same - similarities intrinsic to the dataset


● CATS is able to classify objects with high purity with less than 10 detections, and for all 

redshifts


● Combining specialist binary classifiers could yield better results than multi-class


● Hierarchical classification possible with a broad classifier as a first step


● Results improve by combining broad classifiers

Takeaways
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● Engineering team monitored the classifiers’ performance - throughput and memory use


● LSST will stream thousands of alerts every 30 seconds - results must come fast


● Fink computing infrastructure impose limits


● Real-time processing - 82% of the alerts classified by all 9 classifiers in less than 30 

seconds, 90% in less than a minute. No optimization attempted in this work!


● New service available to access ELAsTiCC data now through Fink!

Fink infrastructure performance
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● Fink has several science products available for whoever’s interested in ZTF data.


● LSST will be a different beast - hardware and ML models will need to be adapted


● Fink models and infrastructure are on the right path


● Easy access to data was paramount in this work - new service developed


● Fink is working to provide hardware for model training at scale


● 9 different classifiers can be used in different science cases - informed decision by the user

Conclusion
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Thank you

Visit www.fink-portal.org
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