

DeLLight (Deflection of Light by Light) with LASERIX @ IJCLab

Slowing down the light in vacuum with intense laser pulses

Xavier Sarazin, Seminar given at Subatech (Nantes), January 2024

- > Torricelli: Vacuum is transparent \Rightarrow Light propagates in vacuum
- > Maxwell: vacuum is filled with electrical charges and currents
 - \Rightarrow Maxwell's equations are **linear** in vacuum

$$\begin{cases} \mathbf{D} = \varepsilon_0 \mathbf{E} \\ \mathbf{B} = \mu_0 \mathbf{H} \end{cases} \qquad c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$$

c, ε_0 and μ_0 are UNIVERSAL CONSTANTS

- > Morley-Michelson : No Galilean motion relative to light
 - \Rightarrow The speed of light is constant in galilean reference systems
 - \Rightarrow Vacuum is not a standard medium (ether)

> Einstein : The speed of light is reduced in an accelerated frame (gravitation field)

https://einsteinpapers.press.princeton.edu/vol2-trans/266 (1907); Ann. der Physik 35, 898 (1911); Ann. der Physik 38, 1059 (1912)

$$c \to c \times \left(1 + \frac{\Phi}{c^2}\right) \longrightarrow \Delta n(\text{vacuum}) \propto \frac{\Phi}{c^2}$$

Einstein introduces of a curved spacetime metric to maintain « c=constante »

- ⇒ General Relativity is a *geometric theory*
- \Rightarrow **Vacuum is** *empty*: vacuum has no physical role anymore

> Deflection of light first observed by Eddington in 1919

> Shapiro effect: time delay induced by a « decrease of the speed of light »

Because, according to the general theory, the speed of a light wave depends on the strength of the gravitational potential along its path, these time delays should thereby be increased by almost 2×10^{-4} sec when the radar pulses pass near the sun.

I. Shapiro, PRL 13, 26, 789 (1964)

- > Another empirical approach initially proposed by Wilson (1921) and Dicke (1957)
 - ✓ Euclidean flat metric
 - ✓ Spatial change of the vacuum optical index *n* (and the inertial mass *m*) by the gravitational potential

$$\begin{cases} n(r) = \left(1 - \frac{2\Phi}{c_{\infty}^2}\right)^{-1} \approx 1 + \frac{2GM}{rc_{\infty}^2} \\ m(r) = m_{\infty} \times n^{3/2}(r) \quad \text{(to preserve the equivalence principle)} \end{cases}$$

Wilson, Phys. Rev. **17**, 54 (1921) Dicke, Rev. Mod. Phys. **29**, 363 (1957)

> Vacuum optical index n(r) formally identical to g_{00} in General Relativity

 \Rightarrow See Landau & Lifshitz (1975) : "A static gravitational field plays the role of a medium with electric and magnetic permeabilities $\varepsilon_0 = \mu_0 = 1/\sqrt{g_{00}}$ "

Cosmology in a static Euclidean flat metric with a vacuum optical index increasing with time

Hubble cosmological redshift due to a time variation of both n(t) and inertial masses

SN-Ia data are well fitted by an exponantial variation of the vacuum optical index:

$$n(t) = e^{t/\tau_0}$$

 $\tau_0 = 8.0^{+0.2}_{-0.8}$ Gyr

X.S. et al. Eur. Phys. J. C 78, 444 (2018); arXiv:1805.03503

> Quantum electrodynamics (QED):

The vacuum is filled by quantum fluctuations of the zero-point e.m. fields and e^+/e^- virtual pairs

- ✓ Casimir force
- \checkmark Modified spontaneous emission in a quantum vacuum cavity
- ✓ Anomalous magnetic moment: $g 2 = \frac{\alpha}{2\pi}$ (Schwinger, 1951)
- ✓ e^+/e^- pairs emitted from vacuum ...

 \vec{B}

Nonlinear electrodynamics in vacuum

A not so well-known QED prediction:

Optical nonlinearity in vacuum induced by the coupling of the e.m. field with the e⁺/e⁻ virtual pairs *Schwinger (1951)*

Predicted initially by Euler and Heisenberg (1936) within the Dirac see model

Maxwell's equation in vacuum are not linear:

$$\begin{cases} \mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} \\ \mathbf{B} = \mu_0 \mathbf{H} + \mathbf{M} \end{cases} \text{ with } \begin{cases} \mathbf{P} = \xi \varepsilon_0^2 [(E^2 - c^2 B^2) \mathbf{E} + 7c^2 (\mathbf{E}, \mathbf{B}) \mathbf{B}] \\ \mathbf{M} = -\xi \varepsilon_0^2 c^2 [(E^2 - c^2 B^2) \mathbf{B} - 7(\mathbf{E}, \mathbf{B}) \mathbf{E}] \end{cases} \qquad \xi^{-1} \approx 3 \ 10^{29} \ \text{J/m}^3 \end{cases}$$

The speed of light in vacuum should be reduced at macroscopic scale, in the classical (optical) sense, when it is stressed by intense e.m. fields

General Relativity

Vacuum is empty and replaced by an effective curvature of the space-time

The role of the quantum vacum is absent

Is it the origin of dark matter and dark energy ? Vacuum and Electrodynamics

QED

 ε_0 , μ_0 and *c* are modified at macroscopic scale by the polarisation of e+/e- pairs in vacuum

> Never observed experimentaly

Current experimental tests: Vacuum Magnetic Birefringence

- Search for vacuum birefringence induced by an external continuous magnetic field
- \blacktriangleright Use a Fabry-Perot cavity with a transversal external B field \Rightarrow search for a polarisation rotation
- ▶ Best sensitivity achieved by **PVLAS** [*Physics Reports* 871 (2020) 1–74]
 - Sensitivity must be improved by a factor 35 in order to measure a signal at 5σ in 100 days
 - $\circ\,$ Limitations: magnetic field (B ~ 2.5 T) and birefringence of the mirrors

The DeLLight Experiment

DeLLight with intense laser fields

DeLLight uses highly focused intense laser pulses produced by LASERIX @ IJCLab to achieve strong fields

DeLLight with intense laser fields @LASERIX

Use highly focused laser pulses to achieve strong fields

Refraction measured with a Sagnac Interferometer

- > Extinction factor in the dark output $\Rightarrow \mathcal{F} = \frac{I_{out}}{I_{in}}$
- δy = Direct vertical shift of the probeinside the Sagnac
- Δy = Vertical shift of the interference intensity profile is amplified in the dark output (*Weak Value Amplification*)

 $\Rightarrow \Delta y = \mathcal{A} \times \delta y$

> Amplification factor
$$\mathcal{A} = \pm \frac{1}{2\sqrt{\mathcal{F}}}$$

 \blacktriangleright « *Up* – *Down* » measurements @ 5 Hz

Expected signal and sensitivity

Expected signal:
$$\Delta y = 2.7 \text{ nm } \times \frac{E(Joule) \times f(m)}{\left(w_0^2 + W_0^2 \ (\mu m)\right)^{3/2} \times \sqrt{\mathcal{F}/10^{-5}}} \quad (\text{with } \theta_{tilt} \sim 10^\circ)$$

- ✓ Energy E = 2.5 J @ LASERIX (10 Hz repetition)
- ✓ Extinction $\mathcal{F} = 4 \times 10^{-6}$ ($\mathcal{A} = 250$)
- ✓ Waist at focus $w_0 = W_0 = 5 \,\mu\text{m}$

✓ Spatial resolution $\sigma_y = 10$ nm (CCD shot noise resolution)

ON-OFF measurements @ 5 Hz

1 sigma sensitivity per $\sqrt{T_{obs}(days)}$ with LASERIX

Expected signal and sensitivity

Expected signal:

$$\Delta y = 2.7 \text{ nm } \times \frac{E(Joule) \times f(m)}{\left(w_0^2 + W_0^2 \ (\mu m)\right)^{3/2} \times \sqrt{\mathcal{F}/10^{-5}}} \quad (\text{with } \theta_{tilt} \sim 10^\circ)$$

- ✓ Energy E = 30 J @ HAPLS laser (10 Hz repetition)
- ✓ Extinction $\mathcal{F} = 4 \times 10^{-6}$ ($\mathcal{A} = 250$)
- ✓ Waist at focus $w_0 = W_0 = 5 \,\mu\text{m}$
- ✓ Spatial resolution $\sigma_y = 10$ nm (CCD shot noise resolution)

ON-OFF measurements @ 5 Hz

1 sigma sensitivity within ~ **10** minutes with HAPLS

Expected signal and sensitivity

Expected signal:

$$\Delta y = 2.7 \text{ nm } \times \frac{E(Joule) \times f(m)}{\left(w_0^2 + W_0^2 \ (\mu m)\right)^{3/2} \times \sqrt{\mathcal{F}/10^{-5}}} \quad (\text{with } \theta_{tilt} \sim 10^\circ)$$

- ✓ Energy E = 30 J @ HAPLS laser (10 Hz repetition)
- ✓ Extinction $\mathcal{F} = 4 \times 10^{-6}$ ($\mathcal{A} = 250$)
- ✓ Waist at focus $w_0 = W_0 = 5 \,\mu\text{m}$
- ✓ **Spatial resolution** $\sigma_y = 10$ nm (CCD shot noise resolution)

DeLLight pilot experiment

The DeLLight pilot experiment

Pilot experiment in vacuum chamber

Sagnac interferometer with focus of the probe and pump beams \rightarrow DeLLight deflection measured in air with a low pump energy

Extinction Factor

Extinction in the dark output

Extinction in the dark output

Development of a new **thicker** beamsplitter with $R_{AR} < 10^{-4}$ and $\mathcal{F} < 10^{-5}$ in full spectrum

Extinction in the dark output

With the current beamsplitter, the extinction must be reduced in order to measure the interference signal

Small rotation (~1°) of the beamsplitter $\Rightarrow \mathcal{F} = 5 \times 10^{-4}$

 \Rightarrow Amplification factor $\mathcal{A} = 25$

300 200 -100 -0 -200 0 400 600 800 1000 $\mathcal{F} = 5 \times 10^{-4}$ 300 200 100 -0 -1000 200 400 600 800 0

 $\mathcal{F} = 3 \times 10^{-6}$

Spatial Resolution

Spatial resolution in the dark output limited by:

- Shot noise (ultimate resolution) of the CCD
- Beampointing fluctuations
- Phase noise fluctuations of the interferometer (induced by the external mechanical vibration)

Spatial Resolution: Beam Pointing Fluctuations

Dedicated "OFF-OFF" measurement at low amplification

Spatial Resolution: $\sigma_y = 32.5 \text{ nm}$ \rightarrow limited by the CCD shot noise

$$\Delta y = \langle \Delta y(i) \rangle \pm \frac{\sigma_y}{\sqrt{N_{mes}}} = 0.9 \pm 0.73 \text{ nm}$$

Spatial Resolution: Shot Noise

Shot noise: inherent quantum noise (stat. fluctuations) of the number of detected photons

- Current CCD (pixel size: 5.86 × 5.86 μ m²): $\sigma_y \simeq 30$ nm
- Best CCD (pixel size: $1.85 \times 1.85 \ \mu m^2$): $\sigma_y \simeq 13 \ nm$

Spatial Resolution: Phase Noise

> Phase noise induced by mechanical vibrations of the interferometer

- It limits the spatial resolution when working with high amplification interferometer
- Current setup (without any isolation) : $\sigma_{\theta} \approx 50 \text{ nrad} \Rightarrow \text{Noise } \sim 50 \text{ times to high}$

Spatial Resolution: Phase Noise

> Phase noise induced by mechanical vibrations of the interferometer

- It limits the spatial resolution when working with high amplification interferometer
- Current setup (without any isolation) : $\sigma_{\theta} \approx 50 \text{ nrad} \Rightarrow \text{Noise } \sim 50 \text{ times to high}$
 - \Rightarrow Need to improve the **vibration isolation**
 - ⇒ We are developping a « **High frequency Phase Noise Suppression** » method, by using a secondary 5 ns delay pulse (in a similar way to the monitoring and suppression of the beam pointing fluctuations)

PhD Thesis Ali Aras

High Frequency Phase Noise Suppression

High Frequency Phase Noise Suppression

Measurement of the DeLLight signal induced by optical Kerr effect in air with low energy pump

Measurement of the DeLLight signal in air

- Measurement of a DeLLight signal induced by optical Kerr effect in air
 - Low energy pump pulse: $E \sim 1 10 \mu J$
 - Pump and probe are co-propagating
 - Extinction $\mathcal{F} = 5 \times 10^{-4} \Rightarrow$ Amplification $\mathcal{A} \sim 25$
 - Waist at focus $w_0 \approx 25 \ \mu m$
 - We measure simultaneously δy and $\Delta y = \mathcal{A} \times \delta y$

Measurement of the DeLLight signal in air

What next?

Reduction of the phase noise of the interferometer

- Isolation of the mechanical vibrations
- High frequency phase noise suppression

> Validation of a new beamsplitter with improved features

 $\Rightarrow R_{AR} < 10^{-4}$, $\delta a = 10^{-3}$ for 780 $< \lambda < 820$ nm, Thickness = 10 mm

> Pump-Probe interaction

- Reduction of the beam size of the probe in the interaction area
- Need counter-propagating pump and probe

➢ First DeLLight measurement in vacuum with LASERIX (2 Joules, ~10²⁰ W/cm²) in 2025

Future DeLLight measurement in new generation laser facilities

HAPLS ELI Beamline (30 J, 10 Hz rep. rate) \Rightarrow Expected signal: $\Delta y \sim 0.2$ nm

 \Rightarrow Expected sensitivity: 1 sigma within ~ 30 minutes

Conclusions

A positive measurement would demonstrate that the speed of light in vacuum can be reduced, in the classical sense of the term on a macroscopic scale, in the presence of e.m. fields.

The DeLLight/LASERIX group @ IJCLab

New collaborators

are welcome !

DeLLight group

- Ali Aras (PhD) (Oct. 2023 Oct. 2026)
- Adrien Kraych (postdoc) since Nov. 2021
- Scott Robertson (Theory, former postdoc) (2018 2021)
- François Couchot (CNRS)
- Xavier Sarazin (CNRS)

Former PhD

• Max Mailliet (Oct. 2019 – March 2023)

LASERIX

- Elsa Baynard
- Julien Demailly
- Sophie Kazamias
- Moana Pitmann

Collaborators :

- Arach Djanatti-Ataï (CNRS, APC)
- Marcel Urban (Emeritus)