

²³⁵U fission fragment study with Falstaff at NFS

Outline

- FALSTAFF: goals, methods and experimental setup, preliminary meas.
- Falstaff@NFS
- Perspectives

FALSTAFF: goals, methods and experimental setup

Observables

Physics of the fission process

Excitation energy sharing The deformation at scission The role of structure effects

Coincident measurement of both fragments Fragment mass, energy, charge Gammas & neutrons multiplicities Evolution with excitation energy Evolution with fissionning nucleus

Nuclear application

Characterization of fission products of actinides

Few data available in the fast neutron energy domain

- > A. A. Naqvi et al, PRC 34 (1986) 21
 - Mueller et al., PRC 29 (1984) : ²³⁵U 0.55 et 5.5 MeV
 - Moore et al., Nucl. Data Sheets 184 (2022) : 235U 0.11-92.4 MeV

D. Doré, FALSTAFF Coll.

NACRE Workshop, January 2024

D. Doré, FALSTAFF Coll.

NACRE Workshop, January 2024

5

Pre-evaporation mass

FALSTAFF: goals, methods and experimental setup

6

FALSTAFF: goals, methods and experimental setup

FALSTAFF: goals, methods and experimental setup ...

Energy loss

- measurement at ILL: T. Materna et al., NIMB 505 (2021)
- thickness measurement of emissive foils
- thickness measurement of Chlo window to be done
 - Setup in development

Position resolution

Charge identification through energy loss profile measurement

Possible to identify fragment nuclear charge using the energy loss profile and neural network

Need data with identified fragment to « settle » the neural network → FALSTAFF@VAMOS experiment (D. Ramos)

FALSTAFF @ VAMOS (test experiment, March 2022, PI D. Ramos) ²³⁸U + C (Be) → fusion-fission main channel

Additional information

Charge analysis still in progress, preliminary results are promising

E814 experiment: ²³⁵U Fission fragment study with FALSTAFF at NFS

E814 pictures

E814 : Falstaff@NFS : ²³⁵U

E814 target

²³⁵U target:

- JRC-Geel (99.94% ²³⁵U)
- 195 μg/cm²
- Φ 28 mm
- 1.2 mg
- Ta backing
- Al support

Photostimulable phosphor plate placed at the exit of the FALSTAFF chamber

Incident neutron energy spectrum

Need of reference time

Low energy gamma flash at NFS: no photo-fission

2 LaBr3 detectors from Subatech

51x51x102 mm³ 2 PM of 2'' 2% FWHM pour 1.33MeV Internal bkg 730cps

Neutron time spectra (producing detected fission in FALSTAFF) is obtained using: Different dtime (HF, Falstaff, LaBr3)

Neutron energy spectra & Statistics

Same trends

- Some discrepancies between measurements
 - not important for Falstaff since no absolute cross section measurement

LaBr3

- Energy calibration with sources, some problems ... but OK

Self-activity spectra of LaBr 3 :Ce measured in coincidence (grey line) and anticoincidence (black line) with an active \$4o shield consisting of aBaF 2 detector and a BGO active anti-Compton shield. The spectra are the acquisition time.

LaBr3 ...

➢ Few peaks in distributions for ²⁵²Cf and ²³⁵U

Test with a different electronics to be done soon

In addition:

HpGe will be put close to the ²⁵²Cf source

- \rightarrow to see fission gamma
- ightarrow to try to identify some fragments and check FALSTAFF reconstruction

Calibration

Based on simulations : ²⁵²Cf

Simulations with GEF code K.H. Schmidt et al., Technical report, JEFF Report 24, 2014.

- well known code in the nuclear data community
- parameters "adjusted" on available experimental data but ...

few data in the fast energy domain

FIFRELIN (DES/IRESNE). O. Litaize et al., Phys. Rev. C, 82 (2010) 054616. Not used here because FIFRELIN results for U5 at different energies are not yet available (no pre-neutron data available)

> But, with FALSTAFF data, in the NACRE framework, FIFRELIN developers and FALSTAFF coll. will work together

²³⁵U preliminary results

²³⁵U preliminary results

²³⁵U preliminary results

 Iterative process to correct the energy loss in the IC window and the Stop emissive foil

 Charge not known, UCD used

Mass

NACRE (WP2)

Collaboration : DPhN/Irfu/CEA, GANIL, SPRC/DER/DEN/CEA, Subatech/IN2P3, JRC/Geel

Action 2023:

Analyse et mise en forme des résultats (fragments post-évaporation) pour une utilisation dans le code FIFRELIN en 2024 en collaboration avec le SPRC.

 \rightarrow Réunion reportée de décembre 2023 à début 2024

En parallèle le second bras sera construit et une expérience est envisagée en 2024 sur NFS.

→ Expérience avec 2 bras reportée → Expérience ²³⁷Np (1-arm) acceptée (J.E. Ducret)

Good news

Second arm of FALSTAFF in development (Région Normandie, Irfu/GANIL, Irfu/DPhN)

- Proposition to be submitted this Fall
- Experiment expected in 2025
- Reaction chamber to be delivered in April
- Ionization chamber to be delivered in May
- Seds for Summer
- ANR proposal for manpower and +
- APRENDE proposal

In summary

- Analysis of ²³⁵U (n,f) exp. at NFS is still ongoing
 - Other calibrations for ionisation chamber needed
 - LaBr3 tests to perform
 - Cf meas. with HPGe in coincidence foreseen to check the mass reconstruction method
 - Analysis of FALSTAFF@ VAMOS exp. is in progress:
 - results needed to extract nuclear charge information FALSTAFF
- ²³⁷Np experiment (1-arm) accepted to be performed Fall 2024

Second arm of FALSTAFF in development

Support C. Stodel initiative and JRC-Geel target laboratory

 \rightarrow One slide after questions

Falstaff

Participants to the E814 experiment

 DPhN: Diane Doré, Eric Berthoumieux, Alain Letourneau, Thomas Materna, LoïcThulliez, Marine Vandebrouck, Mattéo Ballu, Pierre Herran, Gurpreet Kaur, Périne Miriot, Borana Mom
 GANIL: Jean-Eric Ducret, Diego Ramos, Xavier Ledoux, Anne-Marie Frelin, Indu Jangid, Priya Sharma
 JRC/Geel: Stephan Oberstedt
 Subatech: Eric Bonnet, Magali Estienne, Muriel Fallot, Amanda Porta, Julien Pépin
 LP2I: Paola Marini, Ludovic Matthieu, Teresa Kurtukian Nieto

+ Technical staff at GANIL and Irfu/Saclay

+ support from CEA/DES/Iresne (Abdel Chebboubi, Olivier Litaize, Olivier Serot)

Mercí

PALAIS (<u>Pla</u>teforme Cib<u>l</u>es pour G<u>A</u>N<u>I</u>L/<u>S</u>PIRAL2) project

→ IN2P3 support for an actinide target laboratory @GANIL

- For stable isotopes (including ²³⁸U material):
 - Upgrade of the existing target laboratory for stable material (2023-2025):
 - from 3*25 m² to ~ 100 m²
 - ✓ 3 new evaporators + 1 magnetron sputtering
 - + X-ray fluorescence for chemical composition
 - \rightarrow Large quantity of high quality stable targets for S3 in 2025-2026
- For actinide targets:
 - Post-doc for knowledge transfer of molecular plating technique, trained @ JRC Geel,
 JGU Mainz, IJC Lab
 - Preliminary studies on requirements for the laboratory building and its equipment, processes of fabrication according to French regulations
 - → Safety licences requests, specification on the laboratories, required skills....
 - → Identifying synergies & complementarity with JRC Geel & JGU Mainz
 - Realization of PALAIS ++