

Fission Yields Evaluations :

235 U(n_{th},f) ; 239 Pu(n_{th},f) & perspectives

S. M. Cheikh¹, A. Regonesi¹, G. Kessedjian¹, O. Serot¹, D. Bernard¹, A. Chebboubi¹, V. Vallet¹, R. Mills² and L. Capponi²

¹CEA, DES, IRESNE, DER, SPRC, LEPh, Cadarache center, F-13108 Saint Paul lez Durance, France

² National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale CA20 1PG, England

Context of new FY evaluation

²³⁵U(n_{th} ,f) FY evaluation : JEFF-4T3 proposal \rightarrow Mixed CEA-NNL Eval. method

²³⁵U(n_{th} ,f) Y(A) evaluation : JEFF-4T3 proposal \rightarrow Mixed CEA-NNL Eval. method

²³⁵U(n_{th} ,f) FY evaluation : JEFF-4T3 proposal \rightarrow Mixed CEA-NNL Eval. method

CEA & NNL mixed method : Cov. from Conservation laws

²³⁹Pu(n_{th} ,f) FY evaluation : JEFF-4T3 proposal \rightarrow Mixed CEA-NNL Eval. method

Impact of Fission Yields on the K_{inf}: UOX pin-cell calculations

Impact of Fission Yields on the Reactivity Loss: UOX pin-cell calculations

Apollo2 + TMC on FY JEFF-4T2 using covariance matrix → M&C2023 & NSE submitted

 $\sigma[\Delta \rho] \sim 24$ pcm with JEFF-4T2 $\sigma[\Delta \rho] \sim 60$ pcm with CEA-Cons-2022

	Δρ [50-0] GWd/t [pcm]	Δρ [50-1.5] GWd/t [pcm]
JEFF-3.1.1 (XS+FY) Total	-37486	-33904
JEFF-3.1.1 (XS+FY) due to FY	-10695	-7301
Impact JEFF-4T2/FY_ ²³⁵ U _{th}	4	-32
Impact CONS-2023/FY_ ²³⁵ U _{th}	4	-68
Impact CONS-2023/FY_ ²³⁹ Pu _{th}	-26	-23

Impact of Fission Yields on the Reactivity Loss : Contributions per nucleus

BU [1.5-50] (GWd/t)

Cez

Impact of Fission Yields on v_d calculations : ²³⁵U(n_{th},f)

Impact of Fission Yields on v_d calculations : ²³⁹Pu(n_{th},f)

 \rightarrow ENDF s JEFF Decay Data present contradictory effects in the vd calculations \rightarrow nuclear charge distributions per mass is questioned for $^{235}U(n_{th},f)$

Goal \rightarrow ²³⁵U(n_{th},f) & ²³⁹U(n_{th},f) complete and consistent evaluation

Goal \rightarrow ²³⁵U(n_{th},f) & ²³⁹U(n_{th},f) complete and consistent evaluation

Goal \rightarrow ²³⁵U(n_{th},f) & ²³⁹U(n_{th},f) complete and consistent evaluation

²³⁵U(n_{th},f) Y(A*) available experimental data on EXFOR/JANIS

²³⁵U(n_{th},f) Y(A*) available experimental data on EXFOR/JANIS

Data	Year	Method	Obs.	P-val *
Geltenbort *	1985	2E-1v	Y(A*), Ek	1
Derengowsky	1970	2E-1v	Y(A*)	3E-11
Hambsch	1989	2E	Y(A*), Ek, σ_{Ek}	0
Al-Adili	2020	2E	Y(A*), Ek, σ_{Ek}	0
Pleasonton	1972	2E	Y(A*)	0
Romano	2007	2E	Y(A*)	0,9
Zeynalov_1	2017	2E	Y(A*)	0
Zeynalov_2	2017	2E	Y(A*)	0
Zeynalov	1998	2E	Y(A*), Ek	0
Simon	1989	2E	Y(A*), Ek	0
Ajitanand_1	1978	2E	Y(A*)	0
Ajitanand_2	1978	2E	Y(A*)	0
Ajitanand	1983	2E	Y(A*), Ek	1,4E-8

PhD thesis 2024-2027 A. Regonesi et al.

G. Kessedjian et al. - Nacre - Janv. 2024

- 2E2V & 2E1V experimental data
- Without saw-tooth assumption
- Mass resolution

²³⁵U(n_{th},f) Y(A*) available experimental data on EXFOR/JANIS

Data	Year	Method	Obs.	P-val *
Geltenbort *	1985	2E-1v	Y(A*), Ek	1
Derengowsky	1970	2E-1v	Y(A*)	3E-11
Hambsch	1989	2E	Y(A*), Ek, σ_{Ek}	0
Al-Adili	2020	2E	Y(A*), Ek, σ_{Ek}	0
Pleasonton	1972	2E	Y(A*)	0
Romano	2007	2E	Y(A*)	0,9
Zeynalov_1	2017	2E	Y(A*)	0
Zeynalov_2	2017	2E	Y(A*)	0
Zeynalov	1998	2E	Y(A*), Ek	0
Simon	1989	2E	Y(A*), Ek	0
Ajitanand_1	1978	2E	Y(A*)	0
Ajitanand_2	1978	2E	Y(A*)	0
Ajitanand	1983	2E	Y(A*), Ek	1,4E-8
PhD thesis A. Regone	2024-202 si et al.	27	- 21 - Wi	E2V & 2I ithout sa

- Mass resolution

G. Kessedjian et al. - Nacre - Janv. 2024

cea

²³⁵U(n_{th},f) u(A*) available approaches and data

Terranova's approach

FIFRELIN

N. Terranova et al./Annals of Nuclear Energy 109 (2017) 469-489

Brosa model Vs JEFF3.1.1 : 5% unc. on Y(A) Unpredictive estimator of neutron emission Exp. $\nu(A^*)$: Mass resolution of 2-3 u dependency

 \rightarrow Provide $P(\nu|A^*)$

Perspectives

□ Thermal neutron induced Evaluation ²³⁵U(nth,f) Y(A*) | Y(A)

- Coupled analysis of pre-neutron $Y(A^*)$ and $P(\nu|A^*)$ is requested to connect pre-N and Post-N fission yields
- KE distribution are requested to determine $P(\nu|A^*)$
- Major Pre-neutron data are dependent to a Saw-Tooth $\nu(A^*)$ dataset Multivariate analysis involved to use only the 2E2V method (1 dataset) or 2E1V method (1 dataset)
 - \rightarrow A complete dataset of {Y(A*) ; Y(A) ; C(A)}
 - allowing the determination of Brosa Modes or ???
 - → Consistent evaluation of fission yields from pre-neutron yields up to chain yields
 - \rightarrow connected to spectroscopy of KE dist. of mass

□ Fast neutron induced ²³⁵U(n_r,f) Y(A*) | Y(A)

- Only partial datasets of fission rates
- Model Inputs are requested to developed evaluation of fast neutron induced fission yields
- 235 U is the most complete fissionning system to test this new approach \rightarrow C(A; E_n) exp. Data available

PhD thesis (2024-27) on Fast neutron induced fission : U5, U8, Pu9

 $Y(A^*, E_K) = Y(A^*). P(E_K | A^*)$

S. M. Cheikh¹, G. Kessedjian¹, O. Serot¹, A. Chebboubi¹, D. Bernard¹, V. Vallet¹, R. Mills² and L. Capponi²

 ¹ CEA, DES, IRESNE, DER, SPRC, LEPh, Cadarache center, F-13108 Saint Paul lez Durance, France
² National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale CA20 1PG, England

Thank you for your attention

jefdoc-1902 jefdoc-2007 jefdoc-2038 jefdoc-2056 jefdoc-2027 jefdoc-2203 jefdoc-2204 jefdoc-2205 jefdoc-2207 jefdoc-2207 jefdoc-2247

Cea

- G. Kessedjian, S.-M. Cheikh et al., FPY 2019, Santa Fe, EPJ Web of Conferences 242, 05001 (2020)
 - S.-M. Cheikh, G. Kessedjian et al., Covariance Workshop 2022, Tokyo, Japan, EPJ Web of Conferences 281, 00023 (2023)
 - G. Kessedjian, S.-M. Cheikh et al., Covariance Workshop 2022, Tokyo, Japan, EPJ Web of Conferences 281, 00022 (2023)
- S.-M. Cheikh, G. Kessedjian et al., M&C2023 conference, Niagara Falls, Canada (2023)
- S.-M. Cheikh, G. Kessedjian et al., NSE, Submitted (2023)
- S.-M. Cheikh, PhD thesis, UGA, 18 Oct. 2023
- S S.-M. Cheikh, G. Kessedjian et al., EPJ A, in preparation

