

Développement de chambres à fission pour l'étude des actinides avec les détecteurs 4π SCONE@NFS et TAC@n_TOF

M. Aiche⁴, M. Bacak^{1,5}, A. Cahuzac¹, G. Bélier², D. Bernard³, <u>E. Berthoumieux</u>¹, E. Dupont¹, B. Fraïsse², F. Gunsing¹, L. Mathieu⁴, G. Noguère³, O. Sérot³, G. Tsiledakis¹

¹ Irfu/DPhN, CEA Paris-Saclay; ² DPTA/SPN, CEA DAM Ile de France;
 ³ IRESNE/DER/SPRC CEA Cadarache; ⁴ LP2i Bordeaux; ⁵ TU Wien

Workshop NACRE – IPHC Strasbourg – 22-23 Janvier 2024

1. R&D fission chamber for fission tagging

2. Measurements performed and in preparation

2016: ²³³U @n_TOF 2021: ²³⁸U @NFS 2023: ²³⁹Pu @NFS

2025: ²⁴¹Pu @n_TOF

3. Summary

Fission Chamber for fission tagging

Principle of fission taggingwith the n_TOF TACwith SCONE

- **Fission tagging** is necessary
 - **\Box** For studying γ from fission (in coincidence mode)
 - For studying capture (in anti-coincidence mode)
- Samples are inside the fission chamber, which is inside the TAC

- **Fission tagging** is necessary
 - For studying n from fission (in coincidence mode)
 - For studying (n,xn) reaction (anticoincidence)
- Samples are inside the fission chamber, which is inside SCONE

Fission Tagging development for the n_TOF TAC

TAC + FTMG-U235 [C. Guerrero et al., EPJA 48 (2012) 29]
Micromegas (MGAS) detectors / electronics outside the TAC
Background issue due to the MGAS thick Cu mesh in the beam

TAC + FICH-U233 [M. Bacak et al., NIMA 969 (2020) 163981]

- Fission chamber
- □ Fast electronics plugged directly on the chamber's PCB
- Minimum amount of material in the beam

TAC + FICH-Pu239 [J. Perkowski et al., in preparation]
Fission chamber with minimum material in the beam
Electronics moved off center (less background)
Additional gas in the beam (more background)

Fission chambers for ²³³U and ²⁴¹Pu

²³³U FICH [M. Bacak, NIMA 969 (2020) 163981]

- □ Compact (L 12 cm x Ø 9 cm) Multi-plate chamber
- Total of ~46 mg of ^{233}U
- 14 samples highly enriched in 233U (JRC-Geel)
- 14 ionization cells / Readout from 8 anodes

- Fast ionizing gas CF₄ / Fast electronics (CEA/DAM/DIF)

New ²⁴¹Pu FICH

- □ Total of ~10 mg of ²⁴¹Pu
- \Box 6 to 8 samples only (more compact \Rightarrow less material in the beam)
- □ Lower gas pressure (less material in the beam ⇒ less background)
- Less massive (for reducing background from scattered neutrons)
- \Box Improved electronics (faster signals for sustaining higher α -count rates)

Comparison/Evolution of fission chambers

	LANL-Pu241 (2010) [1]	DAM-U238 (2016) [2]	n_TOF-U233 (2016) [3]	n_TOF-Pu239 (2020) [4]	DAM-Pu239 (2023)	n_TOF-Pu241 ^(*) (2024)
Gas and drift velocity	90%Ar-10%CH ₄ 6 cm/us	CF₄ 11 cm/us	CF ₄ 11 cm/us	90%Ar-10%CF ₄ 12 cm/us	CF₄ 11 cm/us	90%Ar-10%CF ₄ 12 cm/us
Gap and Voltage	12 mm 250 V/cm	2.5 mm 1300 V/cm	3 mm 1400 V/cm	4.5 mm 470 V/cm	3 mm	~3 mm
Drift time	~200 ns	23 ns	27 ns	37 ns	27 ns	~27 ns
Pressure	1.65 bars	PA + 50 mbar	1100 mbar	PA + epsilon	~100 mbar	< PA
Deposit	Ø 38 mm ~200 ug/cm2 (+ VYNS film)	Ø 33 mm 585 ug/cm2	Ø 40 mm 264 ug/cm2	ø 20 mm 300 ug/cm2		Ø 30 mm 265 ug/cm2
Cathodes	4 (SS 12.5 um)	19 (Ti 50 um)	14 (Al 10 um)	10 (Al 10 um)	8 (Al 10 um)	8 (Al 10 um)
Anodes	?	18 (Ti 50 um)	8 (Al 20 um)	10 (Al 10 um)	4 (Al 1 or 2 um)	8 (Al 10 um)
Cat. + An.		1850 um	300 um	200 um	86 um	160 um
Windows	?	Titanium (100 um)	Kapton (25 um)	Kapton (25 um)	Titanium (10 um)	Kapton (25 um)

(*) n_TOF-Pu241 with 15 mg samples (10 mg of 241Pu) of 70 MBq alpha-activity (assuming 2% 241Am)

Fission Chamber references

[1] F. Tovesson, T.S. Hill, Cross Sections for 239Pu(n,f) and 241Pu(n,f) in the Range En = 0.01 eV to 200 MeV, Nuclear Science and Engineering 165 (2010) 224; <u>https://doi.org/10.13182/NSE09-41</u>

[2] J. Taieb et al., A new fission chamber dedicated to Prompt Fission Neutron Spectra measurements, NIMA 833 (2016) 1–7; <u>http://dx.doi.org/10.1016/j.nima.2016.06.137</u>

[3] M. Bacak et al., A compact fission detector for fission-tagging neutron capture experiments with radioactive fissile isotopes, NIMA 969 (2020) 163981; <u>https://doi.org/10.1016/j.nima.2020.163981</u>

[4] J. Perkowski et al., Multi-section ionization fission chamber for measurement of 239Pu(n,g) reaction in fission tagging method (paper in preparation)

PhD Thesis of Michael Bacak

Why

- U-233 capture cross section is important for reactors using the Th/U fuel cycle
- Only two measurements are available because of U-233 radioactivity and low capture cross section with respect to fission

How

- Development of a compact fission chamber to be coupled with the TAC
- Fission-tagging measurement of the U-233 capture cross section

Fission Chamber [M. Bacak, NIMA 969 (2020) 163981]

Compact (L 12 cm x Ø 9 cm)

Multi-plate chamber

- 14 ionization cells
- Readout from 8 anodes

Fast signals (34 ns FWHM) for high α -count rates (>1 MBq per anode)

- Fast ionizing gas CF₄
- Fast electronics (DAM/DIF)
- Gap width: 3 mm @ 420 V

14 isotopically enriched (>99.9%) ²³³U samples (JRC-Geel)

- Ø 4 cm
- ~46 mg 233U total

Data Taking

- □ TAC and Fission Chamber operated in coincidence
- □ Six weeks of measurement
- 950 TB of data

Analysis

- Multi-parametric data analysis (coincidences, anti-coincidences, crystal multiplicity, Sum energy, gamma spectra)
- □ Monte-Carlo simulations for various corrections (thresholds, background, efficiency)
- □ Still fine-tuning the analysis while finalizing the publication

Preliminary alpha-ratio [M. Bacak, EPJ Conf 239 (2020) 01043]

- Overall consistency with evaluated libraries
- Some deviations under investigations
- Final paper still to be published

2 2 2³⁸U @ NFS (2021)

Measurement of ²³⁸U @ NFS in 2021

30/11/2023

First experimental determination of the second-chance fission probability

<u>B. Fraïsse</u>, G. Bélier, V. Méot, L. Gaudefroy, O. Roig CEA, DAM Île-de-France, Bruyères-le-Châtel

B. Fraïsse et al, JEFF Meeting, OECD/NEA, November 2023, JEF/DOC-2292

Measurement of ²³⁸U @ NFS in 2021

SCONE detector

From B. Fraïsse et al, JEFF Meeting, OECD/NEA, November 2023, JEF/DOC-2292

Measurement of ²³⁸U @ NFS in 2021 SCONE detector

From B. Fraïsse et al, JEFF Meeting, OECD/NEA, November 2023, JEF/DOC-2292

Measurement of ²³⁸U @ NFS in 2021

Fission chamber

Fission chamber structureFission chamber in the pipeFrom B. Fraïsse et al, JEFF Meeting, OECD/NEA, November 2023, JEF/DOC-2292

Measurement of ²³⁸U @ NFS in 2021

Conclusion

- First experiment with SCONE at NFS (GANIL)
- First measurement of complete p(n) for uranium-238 up to 30 MeV
- Signature of second-chance fission on the standard-deviation
- Second-chance probability based on data : constraint for evaluations ?

From B. Fraïsse et al, JEFF Meeting, OECD/NEA, November 2023, JEF/DOC-2292

3 3 3 3 2 3 9 Pu @ NFS (2023)

Fission chamber design

FICH DAM-Pu239 (8 deposits and 4 anodes)

Stack of biased anodes (in black) and grounded cathodes with deposit (in red) Gap of 3 mm => stack of 3 cm

23

Fission chamber design

- Test de chute validé par le GANIL
- Tests de mise en pression sur la DIF

- Filtres THE métalliques
- Dépôts sur substrat Al 10 µm
- Fenêtres Ti 10 µm
- Nouvelles brides + compactes

Mounting of the samples at JRC-Geel

Boîtier de protection du PCB

Dispositif de manipulation d'échantillon

Fission chamber validation test

Gas pressure of 800 mbar
 Good α-FF separation

2 4 241 Pu @n_TOF (2025)

Motivations

Plutonium is produced in reactors, ²³⁹Pu and ²⁴¹Pu both contribute to energy production
 ²⁴¹Pu xs are not well known because of its short half-life (~14 years) and the ²⁴¹Am build-up

Capture and fission cross sections

The fission cross section of ²⁴¹Pu is at least three times larger than its capture cross section
 There is only one time-of-flight measurement for capture, made by Weston at ORNL in the 70's

Incident neutron data / / Pu241 / /

Radioactive decay of Pu and daughters

Parent nucleus	T _{1/2}	Decay mode	Daughter nucleus	T _{1/2}
²⁴¹ Pu	<mark>14.3 y</mark>	β - (~100%)	²⁴¹ Am	433 y
²⁴¹ Am	<mark>433 y</mark>	<mark>α (100%)</mark>	²³⁷ Np	2.1 My
²⁴¹ Pu	14.3 y	α (<<1%)	²³⁷ U	6.75 d
²³⁷ U	6.75 d	β- (100%)	²³⁷ Np	2.1 My
²³⁷ Np	2.1 My	a (100%)	²³³ Pa	27 d
²³³ Pa	27 d	b- (100%)	²³³ U	159 ky
²³⁸ Pu	87.7 y	α (100%)	²³⁴ U	245 ky
239Pu	24.1 ky	α (100%)	²³⁵ U	704 My
²⁴⁰ Pu	<mark>6.6 ky</mark>	<mark>α (100%)</mark>	²³⁶ U	23 My
242Pu	373 ky	α (100%)	²³⁸ U	~stable
²⁴⁴ Pu	81 My	α (100%)	N/A	

Possible issue for capture xs interferences Possible issue for α -background in the FICH ■ High activity (β > 99.99% with Q ~21 keV) ■ β decay populates ^{241gs}Am only (i.e., no γ)

Simulation of capture counting rates

Binning adapted to have a statistical precision better than $\sim 3\%$ ($\sim 10^3$ counts/bin) \Box E < ~20 eV \Rightarrow 200 bpd (bins per decade) allow for good resolution and statistics

Alpha-activity from a 15 mg sample (~10 mg of ²⁴¹Pu)

Composition calculated in 2025 four months after the last Am purification

	Pu-238	Pu-239	Pu-240	Pu-241	Pu-242	Am-241	Total
Atom %	0.07%	4.3%	16.6%	65.3%	12.4%	~1%	100%
α-activity (MBq)	6.5	1.5	21	0.9	0.3	~20	~50

- □ Significant contributions from ²³⁸Pu, ²⁴⁰Pu, and especially ²⁴¹Am
- □ Total contribution from Pu isotopes is 30 MBq (in 4π)
- □ ²⁴¹Am build-up would add between 20 MBq (1% build-up) and 40 MBq (2% build-up)
- The new FICH should be able to handle such an α-background, i.e. up to ~5 MBq/channel (see tests at 14 MBq/channel in Laurent et al., NIMA 990 (2021) 164966)

Deposits of ~10 mg of ²⁴¹Pu (15 mg of Pu)

Assuming a maximum activity in 4π of 70 MBq (30 MBq from Pu + 40 MBq from 2% ²⁴¹Am)

- 1 anode for every deposit (on the cathode), i.e. alpha-activity in 2π only
- deposits of diameter 40 mm or 30 mm

		4 anodes	6 anodes	8 anodes	10 anodes
α-activity/channel		8.8 MBq	5.8 MBq	<mark>4.4 MBq</mark>	3.5 MBq
Deposit thickness	Ø = 40 mm	298 µg/cm ²	200 μg/cm ²	150 μg/cm²	
	ø = 30 mm		354 μg/cm ²	<mark>265 μg/cm²</mark>	212 μg/cm ²

=> 8 deposits of Ø 30 mm should be ok (8 channels is the maximum with the "FICH-U3" design)

Fission chamber preliminary design

FICH n_TOF-Pu241 (8 deposits and 8 anodes)

Stack of biased anodes (in black) and grounded cathodes with deposits (in red)

Gap of 3 mm => two symmetric half-stacks of 19 mm

NB: the length of the chamber is constrained by the size of a preamp (which is ~37 mm)

Fission chamber preliminary design

Compact configuration (-7 mm) with bottom connections for PA

Absorber material preliminary study

The absorber of the TAC should:

- moderate/absorb all scattered (and fission) neutrons
- □ be transparent to gamma
- not produce any problematic secondary gammas

Typical materials: LiH, Polyethylene (PE) with Li or B

Geant4 simulation shows that 4 cm B-PE with 5% B-nat is very efficient

B Summary

Collaboration between DRF, DAM, DES, LP2i Bordeaux, IRSN (+JRC-Geel)

Development of Tagging Fission Chambers for high counting rates

- Compact FICH-U233 for TAC based on DAM design for high counting rate
- More compact FICH-U238 and FICH-Pu239 for SCONE based on FICH-U233
- FICH-Pu241 for TAC will be based on the latest developments
- Measurements making use of these developments
 - @n_TOF: ²³³U in 2016 (and ²⁴¹Pu in 2025)
 - @NFS: ²³⁸U in 2021 (and ²³⁹Pu...)

Thank you for your attention