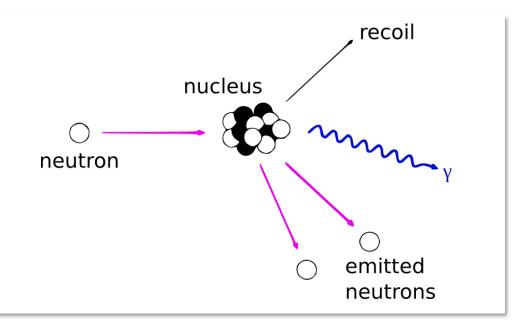
Étude Expérimentale de la Diffusion Inélastique du Neutron

Greg Henning, M. Kerveno, Ph. Dessagne, N. Dari-Bako (CNRS/IPHC) David Bernard, Pierre Leconte, Gilles Noguerre, (CEA/DES) Cyrille de Saint Jean, Stéphane Hilaire, Marc Dupuis, (CEA/DAM)

La collaboration EEDIN


- Rassemble des expérimentateurs (IPHC), théoriciens (CEA/DAM) et évaluateurs (CEA/DES)
- Débute en 2013 suite à des échanges sur la problématique de l'inélastique de l'²³⁸U lors de meetings Jeff
- Soutenue par Needs dès 2014.
- 1^{ere} réunion en septembre 2014 à Cadarache.
- Intègre le WP1 du projet structurant Nacre en 2015/2016.
- Une réunion plénière par an + meetings dédiés

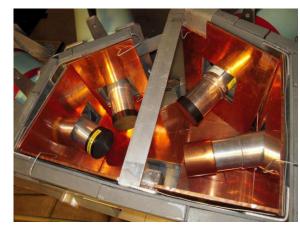
Diffusion inélastique des neutrons

Diffusion inélastique

- Mécanisme de ralentissement des neutrons dans les réacteurs
- Production de rayons gamma
- Interaction par force nucléaire uniquement (pas de Coulomb)
- Modifie le nombre de neutron et crée de nouveaux isotopes $(cas (n, x_{>2} n))$
- Participe au découplage local et affecte les calculs des flux radiaux du réacteur.

Intérets

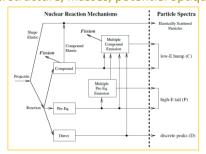
- Pour les nouveaux cycles de réacteurs utilisant des neutrons rapides, ou de nouveaux isotopes fissiles, les connaissances des réactions ²³⁵U(n_{th}, *) sont insuffisantes pour caractériser correctement les designs Gen IV [1].
- Inclus: O, F, Na, Pb, ²³²Th, ²³³U, ²³⁹Pu, ...
- Avec focus sur les neutrons rapides
- ²³⁸U(n_{65 keV 20 MeV}, n') : entrée n⁰18 de la HPRL


[1] NEA, International Evaluation Cooperation, Volume 26 (2008)

Mesures via les canaux exclusif (n, n' γ)

Mesure de section efficaces (n, n' γ) avec GRAPhEME [1]

- Installé au faisceau de neutron Gelina (JRC-Geel).
- Base de vol de 30 m.
- Chambre à Fission pour la mesure du flux de neutron incidents.
- 6 HPGe planaires de haute efficacité et résolution pour les γ d'énergie faibles (100-300 keV).
- Acquisition digitale.
- Mesures faites ou en cours : ²³⁵U, ²³²Th, ^{nat,182,183,184,186}W,
 ²³⁸U, ^{nat}Zr, ²³³U, ⁵⁷Fe, ²³⁹Pu

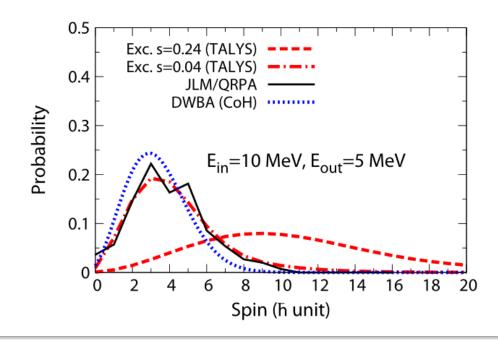


[1] M. Kerveno et al,. EPJ Web of Conferences 239, 01023 (2020)

Déduction de la section efficace (n, n') totale à partir des (n, n') [2]

Modèles et codes de réactions (input: structure, masses, potentiel optique, ...)

σ(n, n') calculée par le modèle contraint par les valeurs expérimentales

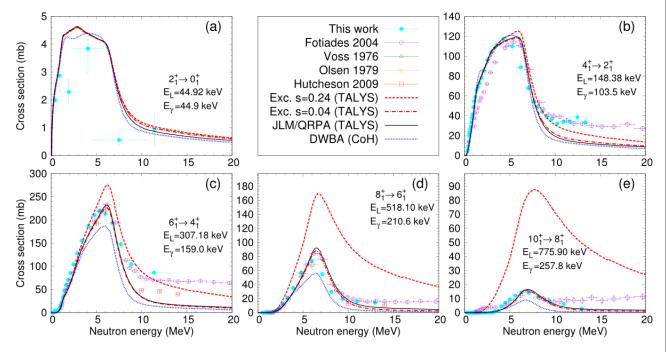
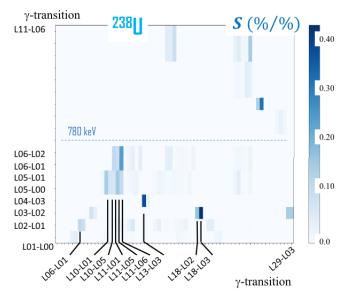

Mesures précises de section efficaces (n, n' γ)

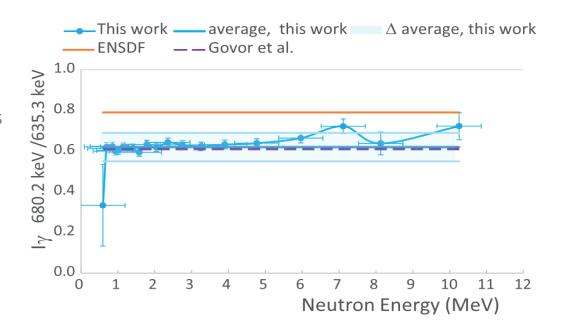
[2] "How to produce accurate inelastic cross sections from an indirect measurement method?" M. Kerveno et al., EPJ Nuclear Sci. Technol. 4, 23 (2018)

Résultats (n, n' γ)

²³⁸U(n, n' γ)

- 📃 M. Kerveno, et al. Physical Review C, 2021, 104
- Sections efficaces de 18 transitions γ, dont 5 mesurées pour la 1ere fois.
- Mise en évidence d'une dépendance au spin dans les amplitudes des transitions de la bande rotationnelle yrast (voir M. Dupuis, juste après).

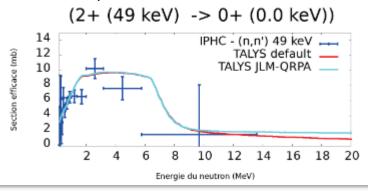



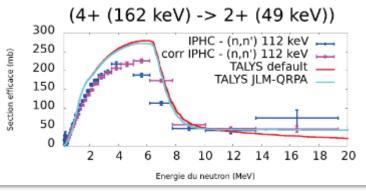

FIG. 11. Data for 238 U($n, n'\gamma$) cross sections for transitions within the ground state rotational band. Spin and parity of the initial and final states, energy of the γ ray, experimental data (symbols) and calculations (curves) are defined in the plots. Calculations based on four different preequilibrium models are compared: excitons with s = 0.24 or s = 0.04, JLM/QRPA (TALYS code) and DWBA (CoH code).

Résultats (n, n' γ)

$^{238}U(n, n' \gamma)$

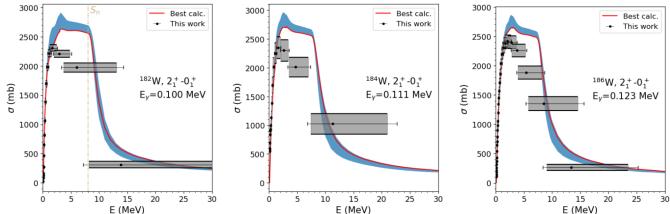
- 📃 M. Kerveno, et al. Physical Review C, 2021, 104
- Sections efficaces de 18 transitions γ, dont 5 mesurées pour la 1ere fois.
- Mise en évidence d'une dépendance au spin dans les amplitudes des transitions de la bande rotationnelle yrast (voir M. Dupuis, juste après).
- Les valeurs expérimentales ont également mis en évidence certaines lacunes au niveau de la structure.




• Une étude de sensibilité des $\sigma_{(n, \, n'\gamma)}$ au rapport d'embranchements montre que la structure est un élément clef pour interpréter correctement les résultats expérimentaux.

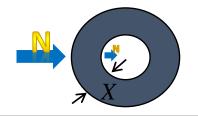
··· Résultats (n, n' γ)

²³²Th(n, n' γ)


Etude des réactions (n, xn) pour les noyaux fertiles / fissiles du cycle du combustible innovant au Thorium,
 E. Party, thèse de doctorat, 2019

^{182,184,186}W(n, n' γ)

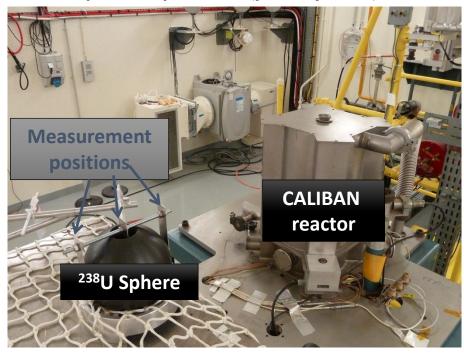
- Measurement of ^{182,184,186}W(n, n' γ) cross sections and what we can learn from it, G. Henning et al., EPJ Web of Conferences 247, 09003 (2021)
- Recherche des meilleurs paramètres de modèle pour reproduire **l'ensemble** des $\sigma_{(n,n'\nu)}$. (M. Dupuis)



+ ²³³U(n, n' γ) A venir... [F. Claeys, Thèse de doctorat, 2023]

Etude de la diffusion inélastique par mesure intégrale

Principe

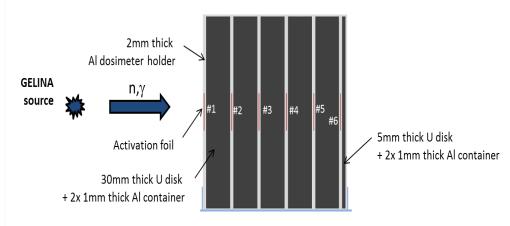

- Sur une idée de H. Bethe, 1956
- $T(X) \alpha e^{-\sigma X}$

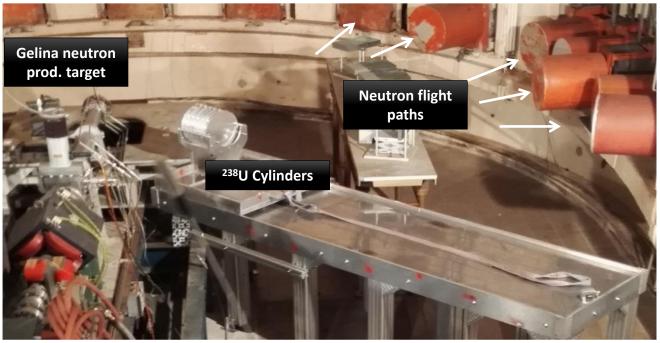
Mesures à CALIBAN

- Dosimètre placés autour/dans un bloc (sphere ou cylindres) de ²³⁸U
- Irradiation par les neutrons.
- Montre une sensibilité à la section efficace (n, n') mais il reste des incohérences.

Sphere Experiment (january 2014)

Cylinder Experiment (october 2014)


Etude de la diffusion inélastique par mesure intégrale


Mesures à CALIBAN

- Dosimètre placés autour/dans un bloc (sphere ou cylindres) de ²³⁸U
- Irradiation par les neutrons.
- Montre une sensibilité à la section efficace (n, n').

Mesures au JRC-Geel

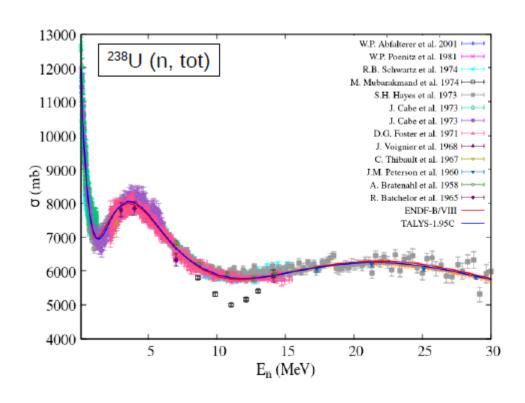
- Dans le Hall cible de Gelina
- Beaucoup plus de dosimètres.

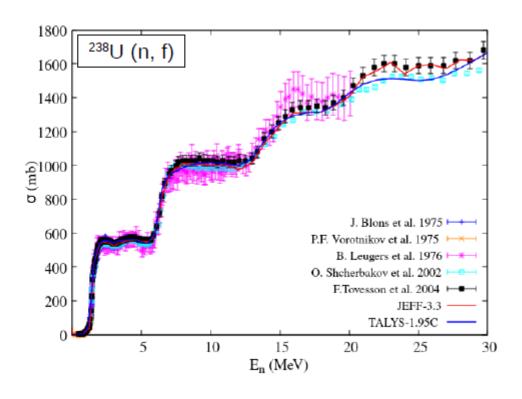
Etude de la diffusion inélastique par mesure intégrale

Conclusions

- Analyse de certains dosimètres compliquée par des états metastables. (résolu par des mesures à long terme)
- Effet de Room return sur les dosimètres "arrières".
- Integraal-II en cours d'analyse/interprétation pour s'affranchir de ces limitations

Reactions	E50%	χ^2_{ν}			$\chi^2_ u$ without extrema points		
		JEFF-3.1.1	JEFF-3.1.1 + ²³⁸ U ENDF/B-VIII.0	JEFF-3.1.1 + ²³⁸ U CEA/DEN	JEFF-3.1.1	JEFF-3.1.1 + ²³⁸ U ENDF/B-VIII.0	JEFF-3.1.1 + ²³⁸ U CEA/DEN
⁵⁹ Co(n,g) ⁶⁰ Co	Therm	7.5	6.3	5.7	3.5	3.1	2.8
⁵⁸ Fe(n,g) ⁵⁹ Fe	Therm	3.0	2.3	2.1	2.8	3.2	2.9
¹⁰³ Rh(n,n'g) ^{103m} Rh	2.38	71.9	45.4	29.9	92.4	55.8	31.6
¹¹⁵ ln(n,n'g) ^{115m} ln	2.67	26.2	5.7	1.3	38.4	8.6	1.0
⁴⁷ Ti(n,p) ⁴⁷ Sc	3.82	126.3	73.8	67.0	66.7	8.5	2.7
⁵⁸ Ni(n,p) ^{58(g+m)} Co	4.17	21.8	3.6	7.2	25.7	2.8	7.8
⁵⁴ Fe(n,p) ⁵⁴ Mn	4.32	16.5	3.2	4.5	27.5	3.9	7.3
⁴⁶ Ti(n,p) ⁴⁶ Sc	6.08	22.9	6.9	5.1	26.4	0.2	0.4
⁵⁶ Fe(n,p) ⁵⁶ Mn	7.56	3.2	3.7	2.4	3.8	4.0	1.8
²⁴ Mg(n,p) ²⁴ Na	8.25	4.3	2.2	2.0	7.6	0.0	0.4
⁴⁸ Ti(n,p) ⁴⁸ Sc	8.35	5.3	0.6	0.2	4.5	0.7	0.2
⁵⁹ Co(n,a) ⁵⁶ Mn	8.36	1.9	2.0	1.0	2.5	2.2	0.4
²⁷ Al(n,a) ²⁴ Na	8.66	1.9	2.0	1.0	2.5	2.2	0.4
Total		19.8	9.8	8.1	16.0	5.0	3.2

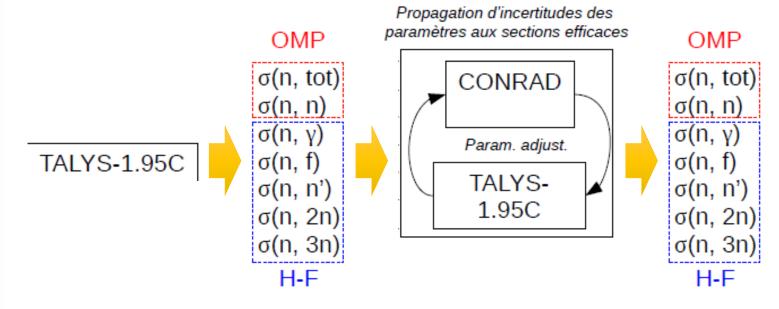

mais on peut déjà dire que :

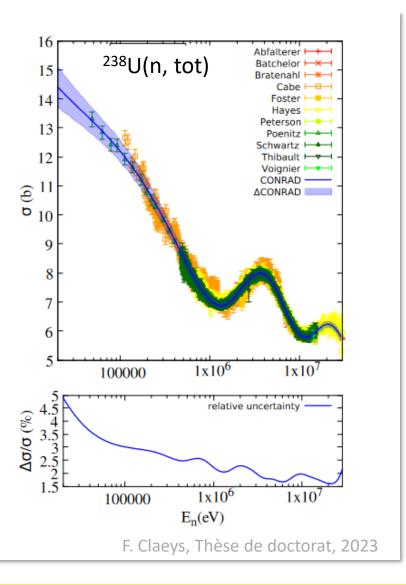

- · Les neutrons sont trop diffusés...
- La tendance à la surestimation de JEFF-3.1.1 est confirmée.

Nouvelle évaluation ²³⁸U(n,*)

Evaluation

- Evaluation basée sur Talys, avec pré-équilibre microscopique
- Canaux total, élastique, γ, n', 2n, 3n, f
- 238 U + $n_{[20 \text{ keV}, 30 \text{ MeV}]}$: 78 paramètres à ajuster.





Nouvelle évaluation ²³⁸U(n,*)

Evaluation

- Evaluation basée sur Talys, avec pré-équilibre microscopique
- Canaux total, élastique, γ, n', 2n, 3n, f
- $^{238}U + n_{[20 \text{ keV}, 30 \text{ MeV}]}$: 78 paramètres à ajuster.
- Utilisation de Conrad + Talys pour ajuster les sections efficaces et les incertitudes associées, en prenant en compte les incertitudes sur les paramètres.

•• Bilan et perspectives

Bilan

- Mesures des section efficaces ²³⁸U(n, n' γ) et interprétation théorique.
 - + ²³²Th, ^{182,184,186}W, ²³³U
- Etude de la diffusion inélastique 238 U par mesure intégrale \rightarrow indique une surestimation de 238 U(n, n') de JEFF-3.1.1
- Evaluation des canaux (n, tot), (n, el), (n, f), (n, n'), (n, 2n), (n, 3n) et (n, γ) avec pré-équilibre microscopique.

Perspectives

- Travaux sur la structure de l'²³⁸U
 - Analyse des données et participation à la campagne nuBall à ALTO
 - Article collaboratif "Need of precise nuclear structure data for reactor studies " soumis à EPJ N, "sous le label" Nacre
- Delco: détection des électrons de conversion dans les réactions ²³⁸U(n, n')
- Mesures ²³⁸U(n, 2-3n γ) à NFS (fin 2024)
- Mesures ²³⁹Pu à Gelina avec Grapheme (2024-2025)
- Données en enfilade 184,183,182 W (n, n' γ) et (n, 2n γ)
- 90Zr: première étude de faisabilité à Gelina (données préliminaires enregistrées, analyse à finaliser)